Identification of Potential Therapeutics of Mentha Essential Oil Content as Antibacterial MDR Agents against AcrAB-TolC Multidrug Efflux Pump from Escherichia coli: An In Silico Exploration
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Silico Molecular Docking Study
2.1.1. Bioinformatics Tools
2.1.2. Protein Preparation
2.1.3. Ligands Preparation
2.1.4. Docking of the Receptors with the Ligands
3. Results and Discussion
3.1. Antimicrobial Exploration of Mentha Essential Oil
3.2. Molecular Docking Analysis
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Alanis, A.J. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 2005, 36, 697–705. [Google Scholar] [CrossRef]
- Klein, E.; Smith, D.L.; Laxminarayan, R. Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg. Infect. Dis. 2007, 13, 1840–1846. [Google Scholar] [CrossRef]
- Núñez-Núñez, M.; Navarro, M.D.; Gkolia, P.; Babu Rajendran, N.; Del Toro, M.D.; Voss, A.; Sharland, M.; Sifakis, F.; Tacconelli, E.; Rodríguez-Baño, J. Surveillance systems from public health institutions and scientific societies for antimicrobial resistance and healthcare-associated infections in Europe (SUSPIRE): Protocol for a systematic review. BMJ. Open 2017, 7, e014538. [Google Scholar] [CrossRef]
- Cantón, R.; Horcajada, J.P.; Oliver, A.; Garbajosa, P.R.; Vila, J. Inappropriate use of antibiotics in hospitals: The complex relationship between antibiotic use and antimicrobial resistance. Enferm. Infec. Microbiol. Clin. 2013, 31 (Suppl. S4), S3–S11. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, V. Horizontal transfer of antimicrobial resistance by extended-spectrum β-lactamase-producing enterobacteriaceae. J. Lab. Phys. 2011, 3, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 1994, 264, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Piddock, L.J. Multidrug-resistance efflux pumps-not just for resistance. Nat. Rev. Microbiol. 2006, 4, 629–636. [Google Scholar] [CrossRef]
- Blair, J.; Webber, M.; Baylay, A.; Ogbolu, D.; Piddock, L. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- Du, D.; Wang-Kan, X.; Neuberger, A.; van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug efflux pumps: Structure, function and regulation. Nat. Rev. Microbiol. 2018, 16, 523–539. [Google Scholar] [CrossRef]
- Blanco, P.; Hernando-Amado, S.; Reales-Calderon, J.A.; Corona, F.; Lira, F.; Alcalde-Rico, M.; Bernardini, A.; Sanchez, M.B.; Martinez, J.L. Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganism 2016, 4, 14. [Google Scholar] [CrossRef]
- Pumbwe, L.; Randall, L.P.; Woodward, M.J.; Piddock, L.J.V. Expression of the efflux pump genes cmeB, cmeF and the porin gene porA in multiple antibiotic-resistant Campylobacter jejuni. J. Antimicrob. Chemother. 2004, 54, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Newman, D.J. Medicinals for the millennia: The historical record. Ann. N. Y. Acad. Sci. 2001, 953, 3–25. [Google Scholar] [CrossRef]
- Pauli, A.; Schilcher, H. In vitro antimicrobial activities of essential oils monographed in the European Pharmacopoeia. In Handbook of Essential Oils: Science, Technology, and Applications, 6th ed.; Baser, K.H.C., Buchbauer, G., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2010; pp. 353–547. [Google Scholar]
- Oussalah, M.; Caillet, S.; Lacroix, M. Mechanism of action of Spanish Oregano, Chinese Cinnamon and Savory essential oils against cell membranes and walls of Escherichia Coli O157;H7 and Listeria monocytogenes. J. Food Prot. 2006, 69, 1046–1055. [Google Scholar] [CrossRef]
- Turina, A.D.V.; Nolan, M.V.; Zygadio, J.A.; Perillo, M.A. Natural terpenes; self-assembly and membrane partitioning. Biophys. Chem. 2006, 122, 101–113. [Google Scholar] [CrossRef]
- Kokkini, S. Chemical races within the genus Mentha L. In Essential Oils and Waxes; Liskens, H.F., Jackson, J.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 63–78. [Google Scholar]
- El-Shabasy, A. Survey on medicinal plants in the flora of Jizan region, Saudi Arabia. Int. J. Bot. Stud. 2016, 2, 38–59. [Google Scholar]
- Mancuso, M. The Antibacterial Activity of Mentha. In Herbs and Spices; Akram, M., Ahmed, R.S., Eds.; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar]
- Arumugam, P.; Gayatri Priya, N.; Subathra, M.; Ramesh, A. Anti-inflammatory activity of four solvent fractions of ethanol extract of Mentha spicata L. investigated on acute and chronic inflammation induced rats. Environ. Toxicol. Pharmacol. 2008, 26, 92–95. [Google Scholar] [CrossRef]
- Abbaszadeh, B.; Valadabadi, S.A.; Farahani, H.A.; Darvishi, H.H. Studying of essential oil variations in leaves of Mentha species. Afr. J. Plant Sci. 2009, 3, 217–221. [Google Scholar]
- Kunnumakkara, A.B.; Chung, J.G.; Koca, C.; Dey, S. Mint and its constituents. In Molecular Targets and Therapeutic Uses of Spices; Aggarwal, B.B., Kunnumakkara, A.B., Eds.; World Scientific: Singapore; Hackensack, NJ, USA, 2009; pp. 373–401. [Google Scholar]
- Kapp, K. Polyphenolic and Essential Oil Composition of Mentha and Their Antimicrobial Effect. Ph.D. Thesis, Faculty of Pharmacy of the University of Helsinki, Helsinki, Finland, 2015; p. 90. [Google Scholar]
- Mkaddem, M.; Bouajila, J.; Ennajar, M.; Lebrihi, A.; Mathieu, F.; Romdhane, M. Chemical composition and antimicrobial and antioxidant activities of Mentha (longifolia L. and viridis) essential oils. J. Food Sci. 2009, 74, 358–363. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Trabelsi, N.; Noumi, E.; Snoussi, M.; Fallah, H.; Ksouri, R.; Bakhrouf, A. Biological activities of the essential oils and methanol extract of tow cultivated mint species (Mentha longifolia and Mentha pulegium) used in the Tunisian folkloric medicine. World J. Microbiol. Biotech. 2009, 25, 2227–2238. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Batista, I.; Serrano, C.; Matos, O.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. European pennyroyal (Mentha pulegium) from Portugal: Chemical composition of essential oil and antioxidant and antimicrobial properties of extracts and essential oil. Ind. Crops Prod. 2012, 36, 81–87. [Google Scholar] [CrossRef]
- Peixoto, I.T.A.; Furlanetti, V.F.; Anibal, P.C.; Duarte, M.C.T.; Höfling, J.F. Potential pharmacological and toxicological basis of the essential oil from Mentha spp. Rev. Ciênc. Farm. Básica. Apl. 2009, 30, 235–239. [Google Scholar]
- Diop, S.M.; Guèye, M.T.; Ndiaye, I.; Ndiaye, E.B.; Diop, M.B.; Heuskin, S.; Fauconnier, M.L.; Lognay, G. Chemical composition of essential oils and floral waters of Mentha longifolia (L.) Huds. From Senegal. Am. J. Essent Oils Nat. Prod. 2016, 4, 46–49. [Google Scholar]
- Ultee, A.; Bennik, M.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the foodborne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Huey, R.; Morris, G.M.; Forli, S. Using AutoDock 4 and AutoDock vina with AutoDockTools: A tutorial. Scripps Res. Inst. Mol. Graph. Lab. 2012, 10550, 92037. [Google Scholar]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Pandey, A.K. Prospective of essential oils of the genus Mentha as biopesticides: A review. Front. Plant Sci. 2018, 9, 1295. [Google Scholar] [CrossRef]
- Mikaili, P.; Mojaverrostami, S.; Moloudizargari, M.; Aghajanshakeri, S. Pharmacological and therapeutic effects of Mentha Longifolia L. and its main constituent, menthol. Anc. Sci. Life 2013, 33, 129–136. [Google Scholar]
- Sutour, S.; Bradesi, P.; de Rocca-Serra, D.; Casanova, J.; Tomi, F. Chemical composition and antibacterial activity of the essential oil from Mentha suaveolens ssp. Insularis (Req.) Greuter. Flavor Frag. J. 2008, 23, 107–114. [Google Scholar] [CrossRef]
- Ladjel, S.; Gherraf, N.; Hamada, D. Antimicrobial effect of essential oils from the Algerianmedicinal plant Mentha rotundifolia L. J. Appl. Sci. Res. 2011, 7, 1665–1667. [Google Scholar]
- Riahi, L.; Elferchichi, M.; Ghazghazi, H.; Jebali, J.; Ziadi, S.; Aouadhi, C.; Chograni, H.; Zaouali, Y.; Zoghlami, N.; Mliki, A. Phytochemistry: Antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. in Tunisia. Ind. Crops Prod. 2013, 49, 883–889. [Google Scholar] [CrossRef]
- Oumzil, H.; Ghoulami, S.; Rhajaoui, M.; Ilidrissi, A.; Fkih-Tetouani, S.; Faid, M.; Ben-Jouad, A. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother. Res. 2002, 16, 723–731. [Google Scholar] [CrossRef]
- Abdelli, M.; Moghrani, H.; Aboun, A.; Maachi, R. Algerian Mentha pulegium L. leaves essential oil: Chemical composition, antimicrobial, insecticidal and antioxidant activities. Indust. Crops Prod. 2016, 94, 197–205. [Google Scholar] [CrossRef]
- Kizil, S.; Hasimi, N.; Tolan, V.; Kilinç, E.; Yuksel, U. Mineral content, essential oil components and biological activity of two Mentha species (M. piperita L., M. spicata L.). Turkish J. Field Crops. 2010, 15, 148–153. [Google Scholar]
- Boukhebti, H.; Chaker, A.N.; Belhadj, H.; Sahli, F.; Ramdhani, M.; Laouer, H.; Harzallah, D. Chemical composition and antibacterial activity of Mentha pulegium L. and Menthaspicata L. essential oils. Der Pharmacia Lett. 2011, 3, 267–275. [Google Scholar]
- Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Mihajlovic, B.; Matavulj, M. Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med. 2003, 69, 413–419. [Google Scholar]
- Hussain, A.I.; Anwar, F.; Nigam, P.S.; Ashraf, M.; Gilani, A.H. Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J. Sci. Food Agric. 2010, 90, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Justin, K.; Protais, M.; Rose, N.; Viateur, U. Chemical composition and in vitro antibacterial activity of the leaf essential oil of Mentha officinalis from Rwanda. J. Chem. Chem. Eng. 2012, 6, 401–409. [Google Scholar]
- Mohammed, M.M.D.; Heikal, E.A.; Ellessy, F.M.; Aboushousha, T.; Ghareeb, M.A. Comprehensive chemical profiling of Bassia indica Wight. aerial parts extract using LC-MS/MS, and its antiparasitic activity in Trichinella spiralis infected mice: In silico supported in vivo study. BMC Complement. Med. Ther. 2023, 23, 161. [Google Scholar]
- Aouf, A.; Bouaouina, S.; Abdelgawad, M.A.; Abourehab, M.A.S.; Farouk, A. In silico study for Algerian essential oils as antimicrobial agents against multidrug-resistant bacteria isolated from Pus samples. Antibiotics 2022, 11, 1317. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.-V.; Nguyen, C.-H.-H.; Nguyen, V.-T.-V. 3D-pharmacophore and molecular docking studies for AcrAB-TolC efflux pump potential inhibitors from drug-bank and traditional Chinese medical database. J. Med. Sci. 2022, 10, 1659–1667. [Google Scholar]
- Abdel-Halim, H.; AlDajani, A.; Abdelhalim, A.; Abdelmalek, S. The search of potential inhibitors of the AcrAB–TolC system of multidrug-resistant Escherichia coli: An in-silico approach. Appl. Microbiol. Biotech. 2019, 103, 6309–6318. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H. Structure and mechanism of RND-type multidrug efflux pumps. Adv. Enzymol. Relat. Areas Mol. Biol. 2011, 77, 1–60. [Google Scholar] [PubMed]
Ligands | 4DX7 | 1KZN | ||||||
---|---|---|---|---|---|---|---|---|
∆G *1 | HBs | Molecular Interactions between the Amino Acid Residues and the Docked Ligands at the Binding Site | ∆G *1 | HBs | Molecular Interactions between the Amino Acid Residues and the Docked Ligands at the Binding Site | |||
No. and Type of Interactions | Interacted Amino Acids | No. and Type of Interactions | Interacted Amino Acids | |||||
Doxorubicin *2 | −8.42 | 7 | 13 (7 HB, 2 CHB, 1 π-HB, 1 π-σ, 1 π-anion, 1 π-alkyl) | Thr87, Gln89, Glu130, Lys163, Gln176, Asn274, Arg620 (HB) Asp174, Gln176 (C–HB) Gln176 (Pi-DHB) Leu177 (Pi-Sigma) Glu273 (Pi-Anion) Phe615 (Pi-Alkyl) | ||||
Clorobiocin *2 | −6.73 | 2 | 13 (1 vdW, 2 HB, 1 π-anion, 1 π-HB, 1 Amide-π, 7 π-alkyl) | Ala47 (van de Waals) Asp73, Gly77, Gly177 (HB) Glu50 (Pi-Anion) Thr165 (Pi-DHB) Asn46 (Amide-Pi Stacked) Val43, Ile78, Ile90, Ala96, Val118, Val120, Val167 (Alkyl and Pi-Alkyl) | ||||
1-β-Caryophyllene | −5.96 | 0 | 4 (4 Alkyl) | Ala580, Leu721, Pro814, Arg815 (Alkyl) | −6.07 | 0 | 6 (6 Alkyl) | Val43, Ala47, Ile78, Ile90, Val120, Val167 (Alkyl) |
2-Carvone | −6.39 | 2 | 6 (2 HB, 1 CHB, 3 π-alkyl) | Ser155 (2.59 Å), Ser180 (1.71 Å) (HB) Ser155 (2.70 Å) (C–HB) Tyr182, Tyr275, Ile278 (Alkyl and Pi-Alkyl) | −5.57 | 1 | 7 (1 HB, 6 Alkyl) | Val167 (2.48 Å) (HB) Ala47, Val71, Ile78, Met91, Val120, Val167 (Alkyl) |
3-Cineole | −5.28 | 1 | 3 (1 HB, 2 Alkyl) | Gly296 (2.01 Å) (HB) Ala39, Leu293 (Alkyl) | −5.33 | 0 | 6 (6 Alkyl) | Val43, Ala47, Val71, Ile78, Val120, Val167 (Alkyl) |
4-Iso-menthone | −6.07 | 1 | 3 (1 HB, 2 Alkyl) | Gly272 (1.84 Å) (HB) Tyr275, Ile278 (Alkyl) | −5.57 | 0 | 7 (7 Alkyl) | Val43, Ala47, Val71, Ile78, Met91, Val120, Val167 (Alkyl) |
5-Iso-pulegone | −5.49 | 1 | 4 (1 HB, 3 π-alkyl) | Gln151 (2.04 Å) (HB) Tyr182, Tyr275, Ile278 (Alkyl and Pi-Alkyl) | −5.46 | 0 | 5 (5 Alkyl) | Val43, Ala47, Val71, Ile78, Val167 (Alkyl) |
6-Limonene | −5.82 | 0 | 3 (3 π-alkyl) | Tyr182, Tyr275, Ile278 (Alkyl and Pi-Alkyl) | −5.41 | 0 | 5 (5 Alkyl) | Val43, Ala47, Val71, Ile78, Val167 (Alkyl) |
7-Linalool | −4.76 | 2 | 5 (2 HB, 3 π-alkyl) | Gln151 (1.74 Å), Ile277 (1.69 Å) (HB) Tyr275, Ile277, Ile278 (Alkyl and Pi-Alkyl) | −4.94 | 1 | 6 (1 HB, 5 Alkyl) | Val43 (1.94 Å) (HB) Val43, Ala47, Val71, Ile78, Val167 (Alkyl) |
8-Linalyl acetate | −4.69 | 1 | 3 (1 HB, 2 π-alkyl) | Thr624 (1.96 Å) (HB) Met575, Phe617 (Alkyl and Pi-Alkyl) | −5.59 | 2 | 6 (2 HB, 4 Alkyl) | Gly77 (2.14 Å), Thr165 (2.00 Å) (HB) Val43, Ala47, Val71, Val167 (Alkyl) |
9-Menthofuran | −6.04 | 2 | 6 (2 HB, 1 π-HB, 3 π-alkyl) | Gln151 (2.13 Å), Ser155 (2.48 Å) (HB) Ser180 (Pi-H) Tyr182, Tyr275, Ile278 (Alkyl and Pi-Alkyl) | −5.77 | 0 | 7 (1 CHB, 1 π-σ, 5 π-alkyl) | Val71 (2.89 Å) (C–HB) Thr165 (Pi-Sigma) Val43, Ala47, Ile78, Val120, Val167 (Alkyl and Pi-Alkyl) |
10-Menthol | −7.10 | 2 | 5 (2 HB, 3 π-alkyl) | Gln151 (1.83 Å), Ile277 (2.24 Å) (HB) Tyr182, Tyr275, Ile278 (Alkyl and Pi-Alkyl) | −5.75 | 1 | 5 (1 HB, 4 Alkyl) | Val43 (2.06 Å) (HB) Val43, Ala47, Val71, Ile78 (Alkyl) |
11-Menthone | −6.37 | 1 | 4 (1 HB, 1 CHB, 2 π-alkyl) | Ile277 (2.55 Å) (HB) Ser180 (3.58 Å) (C–HB) Tyr275, Ile278 (Alkyl and Pi-Alkyl) | −5.74 | 0 | 4 (4 Alkyl) | Val43, Ala47, Val71, Ile78 (Alkyl) |
12-Menthyl acetate | −6.07 | 3 | 6 (3 HB, 3 π-alkyl) | Gln151 (2.32 Å), Ser155 (2.30 Å), Ser180 (1.92 Å) (HB) Tyr275, Ile277, Ile278 (Alkyl and Pi-Alkyl) | −6.49 | 1 | 6 (1 HB, 5 Alkyl) | Thr165 (2.05 Å) (HB) Val43, Ala47, Val71, Val120, Val167 (Alkyl) |
13-Neoisomenthol | −6.02 | 2 | 4 (2 HB, 2 π-alkyl) | Gln151 (1.87 and 2.08 Å) (2 HB) Tyr275, Ile278 (Alkyl and Pi-Alkyl) | −5.37 | 2 | 5 (2 HB, 1 CHB, 2 Alkyl) | Asp73 (1.65 Å), Thr165 (3.08 Å) (HB) Thr165 (3.07 Å) (C–HB) Ala47, Ile78 (Alkyl) |
14-Piperitenone | −6.14 | 1 | 4 (1 HB, 3 π-alkyl) | Gln151 (2.04 Å) (HB) Tyr182, Tyr275, Ile278 (Alkyl and Pi-Alkyl) | −5.71 | 0 | 6 (6 Alkyl) | Ala47, Val71, Ile78, Met91, Val120, Val167 (Alkyl) |
15-Piperitenoneoxide | −5.94 | 3 | 8 (3 HB, 2 CHB, 3 π-alkyl) | Gln151 (1.83 Å), Ser155 (2.66 Å), Ser180 (2.37 Å) (HB) Gly179 (3.18 Å), Ile277 (2.94 Å) (C–HB) Tyr182, Tyr275, Ile278 (Alkyl and Pi-Alkyl) | −5.69 | 0 | 4 (4 Alkyl) | Val43, Ala47, Val71, Val167 (Alkyl) |
16-Piperitone | −6.26 | 1 | 5 (1 HB, 1 CHB, 3 π-alkyl) | Gln151 (1.94 Å) (HB) Gly179 (2.87 Å) (C–HB) Tyr182, Tyr275, Ile278 (Alkyl and Pi-Alkyl) | −5.55 | 0 | 7 (7 Alkyl) | Val43, Ala47, Val71, Ile78, Met91, Val120, Val167 (Alkyl) |
17-Piperitoneoxide | −5.55 | 1 | 4 (1 HB, 1 π-lone pair, 2 Alkyl) | Gly272 (2.50 Å) (HB) Tyr275 (Pi-Lone Pair) Ile278 2(Alkyl) | −5.17 | 1 | 8 (1 HB, 7 Alkyl) | Thr165 (2.95 Å) (HB) Val43, Ala47, Val71, Ile78, Met91, Val120, Val167 (Alkyl) |
18-P-menth-2-en-ol | −5.57 | 1 | 4 (1 HB, 3 π-alkyl) | Ile277 (2.07 Å) (HB) Tyr182, Tyr275, Ile278 (Alkyl and Pi-Alkyl) | −5.58 | 1 | 5 (1 HB, 4 Alkyl) | Val71 (2.08 Å) (HB) Val43, Ala47, Val71, Val167 (Alkyl) |
19-Pulegone | −6.26 | 2 | 5 (2 HB, 3 π-alkyl) | Gln151 (2.16 Å), Ser180 (2.51 Å) (HB) Tyr182, Tyr275, Ile278 (Alkyl and Pi-Alkyl) | −5.77 | 0 | 6 (6 Alkyl) | Ala47, Val71, Ile78, Met91, Val120, Val167 (Alkyl) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alenazy, R. Identification of Potential Therapeutics of Mentha Essential Oil Content as Antibacterial MDR Agents against AcrAB-TolC Multidrug Efflux Pump from Escherichia coli: An In Silico Exploration. Life 2024, 14, 610. https://doi.org/10.3390/life14050610
Alenazy R. Identification of Potential Therapeutics of Mentha Essential Oil Content as Antibacterial MDR Agents against AcrAB-TolC Multidrug Efflux Pump from Escherichia coli: An In Silico Exploration. Life. 2024; 14(5):610. https://doi.org/10.3390/life14050610
Chicago/Turabian StyleAlenazy, Rawaf. 2024. "Identification of Potential Therapeutics of Mentha Essential Oil Content as Antibacterial MDR Agents against AcrAB-TolC Multidrug Efflux Pump from Escherichia coli: An In Silico Exploration" Life 14, no. 5: 610. https://doi.org/10.3390/life14050610
APA StyleAlenazy, R. (2024). Identification of Potential Therapeutics of Mentha Essential Oil Content as Antibacterial MDR Agents against AcrAB-TolC Multidrug Efflux Pump from Escherichia coli: An In Silico Exploration. Life, 14(5), 610. https://doi.org/10.3390/life14050610