Compaction and Segregation of DNA in Escherichia coli
Abstract
:1. Introduction
2. The Nucleoid as a Low-Density Structure
2.1. Phase-Contrast Microscopy and Immersive Refractometry
2.2. Polymer Physics Explanation of Low-Density Nucleoid Based on Odijk’s Depletion Theory
2.3. Fluorescence Microscopy: New Estimates of Nucleoid Volume
E. coli Strain | Doubling Time at 37 °C (Min) (1) | Volume of Newborn Cells (µm3) (2) (Cell Number Measured) | Nucleoid Volume in Newborn Cells (µm3) (Threshold) | DNA Concentration in Nucleoid (3) (mg/mL) | Microscopy/Staining: Figure(s) in References |
---|---|---|---|---|---|
B/rH266 | 150 | 0.33 (10) | 0.07 0.12 (4) | 69 40 | CSLM/unstained: Figure 1 in [28] |
K-12 (NK9387) | ~70 (125 at 30 °C) | 0.33 (2) | 0.27 (0.5) | 18 | Fluor. microscopy/HupA-mCherry: Figures 1B and 3B in [41,42] |
K-12 (MG1655) | 110 (220 at 28 °C) | 0.45 0.50 (5) | 0.23 0.25 | 21 19 | Fluor. microscopy/HupA-mNeonGreen: Tables S2 and S5 in [7] Fluor. microscopy: Figure 2 in [6] |
K-12 (CJW6324) | 81 (6) | - (B-period cells) (n = 19,510) | 0.7 | 7 | Fluor. microscopy/DAPI: Figure 7A in [9] |
B/rH266 | 150 | 0.58 (281) | 0.18 (0.6) (7) 0.24 (0.5) 0.34 (0.4) | 27 20 14 | Fluor. microscopy/DAPI: Figure 5 in main text [40] |
3. Different Views on DNA Compaction
3.1. Compaction through Polyribosome Exclusion
3.2. Compaction through Poor Cytoplasmic Solvent Quality or Transcriptional Activity
4. Segregation and Movement of Chromosome Arms (Replichores)
4.1. Replichore Movement to Opposite Halves of the Nucleoid
Strain FH4035 (1) | Number of Sequences Analyzed | Average Number of Spots/Cell | % Cells with 4–5 Spots | % Cells with 6 Spots | Average Length of 6-Spot Cells (µm) | % R-L-R-L/ L-R-L-R (2) | % R-L-L-R (2) | % L-R-R-L (2) | % L-L-R-R |
---|---|---|---|---|---|---|---|---|---|
Control (average of 8 experiments) | 4072 | 4.2 | 13/5 | 39 | 3.02 | 64 | 19 | 17 | 3 |
Rifampicin treatment (3) (average of 3 experiments) | 2848 | 4.6 | 1/1 | 53 | 2.73 | 51 | 28 | 21 | 0 |
4.2. Four-Excluding-Arms Model for Segregation [79]
4.3. Comparison between Bacteria and Eukaryotic Cells and the Phenomenon of Cohesion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Computation of theoretical values for protein volume fractions in nucleoid and cytoplasm and volume of the nucleoid
- (i)
- (ii)
- Take the derivatives of the free-energy equations with respect to the volume and number of proteins of the two phases. Equations of the force of compaction (osmotic pressure) and particle mixing (chemical potential) are obtained in both phases in the cytoplasm and nucleoid.
- (iii)
- Equalize both forces for the two compartments (Figure 4d in the main text), resulting in two coexistence equations that contain the three unknown variables of protein volume fractions in the cytoplasm (vcyto) and nucleoid (vnuc) and the volume of the nucleoid (Vnuc).
- (iv)
- Together with a third equation on the volume fraction of total protein, compute the three variables and compare them to experimental values.
- 2.
- Excluded volume of DNA supercoil self-interactions
- 3.
- Excluded volume of DNA–protein cross-interactions
- 4.
- Phase separation and coexistence equations
Variable | Input Value |
---|---|
Volume of cell (cytoplasm + nucleoid), Vcell (see Table 1, note (2) in the main text) | 0.81 µm3 |
Double helix contour length, L | 1600 µm |
Superhelix contour length, Ls | 640 µm |
Superhelix diameter, Ds | 22 nm |
Average radius of 40 kDal protein, a Volume of spherical 40 kDal protein | 2.3 nm 0.051 × 10−6 µm3 |
Supercoil Kuhn length, As | 158 nm |
Number of supercoiled Kuhn segments, Ns = Ls/As | 4000 |
DNA self-excluded volume Bs = | 7073 µm3 |
Fself = Bs/Vcell = 7073/0.81 | 0.87 × 104 kBT |
Number of soluble proteins, m (in the cytoplasm (0.77 × 106) plus nucleoid (0.84 × 106)) (see Figure 7b in the main text) | 1.6 × 106 |
Exclusion radius, E ( | 4.7 nm |
DNA–protein excluded volume, = | 0.11 µm3 |
Fcross = | 22 × 104 kBT |
Volume fraction total protein, | 0.101 |
Appendix B
- Calculation of refractive index (RI) of cytoplasm and nucleoid from macromolecular concentrations
Volume (× 10−12 mL), Mass (× 10−12 mg), and Numbers | E. coli K-12 [6] (1a) | E. coli B/rH266 [40] (1b) |
---|---|---|
Doubling time at 37 °C | 60 min | 150 min |
Volume of the cell, Vcell | 0.7 (2a) | 0.81 (2b) |
Volume of the nucleoid, Vnuc | 0.35 | 0.33 (2b) |
Volume of the envelope, Venv | - | 0.12 (3b) |
Volume of cytosolic phase, Vcyto | 0.35 (4a) | 0.36 (4b) |
Volume of cytoplasm + nucleoid, Vcyto+nuc | - | 0.69 (5b) |
Total mass of proteins | 22.59 (6a) | 136 (6b) |
Total mass of soluble and ribosomal proteins (considered as 40 kDa proteins) | 15.3 (6a) | 116 (6b) |
Total number of 40 kDa proteins (soluble + ribosomal proteins) | 0.34 × 106 | 2.05 × 106 |
Number of ribosomes | 6000 (7a) | 8000 (7b) |
DNA mass (1 chromosome equivalent) | 4.72 (8a,b) | |
Average number of chrom. equivalents per cell, Gc | 1.67 | 1.35 (9b) |
Total mass of stable RNA for 6000 (10a) or 8000 (10b) ribosomes | 19.2 (10a) | 23 (10b) |
Mass of ribosomal proteins in the cytosol | 7.32 (11a) | 9.76 (11b) |
Number of ribosomal proteins considered as 40 kDa proteins | 0.11 × 106 | 0.15 × 106 |
Mass of non-ribosomal (soluble) 40 kDa proteins in the cytosol | 8.1 | 106 (11b) |
Number of non-ribosomal (soluble) proteins in cytoplasm | 0.84 × 106 | |
Number of non-ribosomal (soluble) proteins in nucleoid | 0.108 × 106 | 0.77 × 106 |
Total number of non-ribosomal (soluble) proteins | 0.23 × 106 | 1.61 × 106 |
Concentrations (g/100 mL)(12) | ||
DNA concentration in nucleoid (DNA mass × number chrom.equiv./Vnuc) | 2.25 | 1.93 |
Concentration of soluble proteins in nucleoid | 2.05 (6a) | 15.4 (6b) |
Concentration of stable RNA in the cytosol, Vcyto | 5.49 (10a) | 6.39 (10b) |
Concentration of soluble proteins in the cytosol | 2.32 (6a) | 15.4 (6b) |
Concentration of ribosomal proteins in the cytosol, Vcyto | 2.09 (11a) | 2.71 (11b) |
Appendix C
- Calculation of domain volumes for the four-excluding-arms model
Time after Initiation | Length of Newly Replicated DNA per Domain (1) (µm) | Approximate Volume of Nascent Domain (2) (µm3) | Domain Diameter of Sphere or Diameter/Length of Cylinder (µm) | Used for Panels in Figure A1b |
---|---|---|---|---|
30 s | 10 | 0.0015 | 0.14 | 1 |
5 min | 100 | 0.015 | 0.31 | 2 |
10 min | 200 | 0.031 | 0.39 | - |
20 min | 400 | 0.062 | 0.46/0.53 | 3 |
30 min | 600 | 0.093 | 0.46/0.7 | - |
40 min | 800 | 0.124 | 0.46/0.9 | 4 |
- 2.
- Segregation distances measured between replicated loci pairs in growing and non-growing cells
References
- Mason, D.J.; Powelson, D.M. Nuclear division as observed in live bacteria by a new technique. J. Bacteriol. 1956, 71, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Robinow, C.; Kellenberger, E. The bacterial nucleoid revisited. Microbiol. Rev. 1994, 58, 211–232. [Google Scholar] [CrossRef]
- Kim, J.; Jeon, C.; Jeong, H.; Jung, Y.; Ha, B.Y. A polymer in a crowded and confined space: Effects of crowder size and poly-dispersity. Soft Matter 2015, 11, 1877–1888. [Google Scholar] [CrossRef]
- Joyeux, M. Organization of the bacterial nucleoid by DNA-bridging proteins and globular crowders. Front. Microbiol. 2023, 14, 1116776. [Google Scholar] [CrossRef] [PubMed]
- Odijk, T. Osmotic compaction of supercoiled DNA into a bacterial nucleoid. Biophys. Chem. 1998, 73, 23–29. [Google Scholar] [CrossRef]
- Chang, M.H.; Lavrentovich, M.O.; Mannik, J. Differentiating the roles of proteins and polysomes in nucleoid size homeostasis in Escherichia coli. Biophys. J. 2023, 123, 230a. [Google Scholar]
- Yang, D.; Mannik, J.; Retterer, S.T.; Mannik, J. The effects of polydisperse crowders on the compaction of the Escherichia coli nucleoid. Mol. Microbiol. 2020, 113, 1022–1037. [Google Scholar] [CrossRef]
- Woldringh, C.L. The bacterial nucleoid: From electron microscopy to polymer physics-a personal recollection. Life 2023, 13, 895. [Google Scholar] [CrossRef]
- Xiang, Y.; Surovtsev, I.V.; Chang, Y.; Govers, S.K.; Parry, B.R.; Liu, J.; Jacobs-Wagner, C. Interconnecting solvent quality, transcription, and chromosome folding in Escherichia coli. Cell 2021, 184, 3626–3642. [Google Scholar] [CrossRef] [PubMed]
- Le, T.B.; Imakaev, M.V.; Mirny, L.A.; Laub, M.T. High-resolution mapping of the spatial organization of a bacterial chromosome. Science 2013, 342, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Bignaud, A.; Cockram, C.; Borde, C.; Groseille, J.; Allemand, E.; Thierry, A.; Marbouty, M.; Mozziconacci, J.; Espéli, O.; Koszul, R. Transcription-induced domains form the elementary constraining building blocks of bacterial chromosomes. Nat. Struct. Mol. Biol. 2024, 31, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Leonard, A.C.; Grimwade, J.E. The orisome: Structure and function. Front. Microbiol. 2015, 6, 545. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, X.; Possoz, C.; Sherratt, D.J. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev. 2006, 20, 1727–1731. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.J.; Ottesen, J.R.; Youngren, B.; Austin, S.J.; Hansen, F.G. The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves. Mol. Microbiol. 2006, 62, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Kawalek, A.; Wawrzyniak, P.; Bartosik, A.A.; Jagura-Burdzy, G. Rules and exceptions: The role of chromosomal ParB in DNA segregation and other cellular processes. Microorganisms 2020, 8, 105. [Google Scholar] [CrossRef] [PubMed]
- Livny, J.; Yamaichi, Y.; Waldor, M.K. Distribution of centromere-like pars sites in bacteria: Insights from comparative genomics. J. Bacteriol. 2007, 189, 8693–8703. [Google Scholar] [CrossRef] [PubMed]
- Viollier, P.H.; Thanbichler, M.; McGrath, P.T.; West, L.; Meewan, M.; McAdams, H.H.; Shapiro, L. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl. Acad. Sci. USA 2004, 101, 9257–9262. [Google Scholar] [CrossRef] [PubMed]
- Robalino-Espinosa, J.S.; Zupan, J.R.; Chavez-Arroyo, A.; Zambryski, P. Segregation of four agrobacterium tumefaciens replicons during polar growth: PopZ and PodJ control segregation of essential replicons. Proc. Natl. Acad. Sci. USA 2020, 117, 26366–26373. [Google Scholar] [CrossRef] [PubMed]
- Badrinarayanan, A.; Le, T.B.; Laub, M.T. Bacterial chromosome organization and segregation. Annu. Rev. Cell Dev. Biol. 2015, 31, 171–199. [Google Scholar] [CrossRef]
- Gogou, C.; Japaridze, A.; Dekker, C. Mechanisms for chromosome segregation in bacteria. Front. Microbiol. 2021, 12, 685687. [Google Scholar] [CrossRef]
- Schaechter, M.; Williamson, J.P.; Hood, J.R., Jr.; Koch, A.L. Growth, cell and nuclear divisions in some bacteria. J. Gen. Microbiol. 1962, 29, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Binnerts, J.S.; Woldringh, C.L.; Brakenhoff, G.J. Visualization of the nucleoid in living bacteria on poly-lysine coated surfaces by the immersion technique. J. Microsc. 1982, 125, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Barer, R.; Joseph, S. Refractometry of living cells, Part I. Basic principles. J. Cell Sci. 1954, 3, 399–423. [Google Scholar] [CrossRef]
- Yamaichi, Y.; Niki, H. Migs, a cis-acting site that affects bipolar positioning of oric on the Escherichia coli chromosome. EMBO J. 2004, 23, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Woldringh, C.L. Morphological analysis of nuclear separation and cell division during the life cycle of Escherichia coli. J. Bacteriol. 1976, 125, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Oldewurtel, E.R.; Kitahara, Y.; van Teeffelen, S. Robust surface-to-mass coupling and turgor-dependent cell width determine bacterial dry-mass density. Proc. Natl. Acad. Sci. USA 2021, 118, e2021416118. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Ryu, J.S.; Lee, M.; Jung, J.; Han, S.; Chung, H.J.; Park, Y. Three-dimensional label-free observation of individual bacteria upon antibiotic treatment using optical diffraction tomography. Biomed. Opt. Express 2020, 11, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Valkenburg, J.A.; Woldringh, C.L. Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry. J. Bacteriol. 1984, 160, 1151–1157. [Google Scholar] [CrossRef]
- Churchward, G.; Bremer, H.; Young, R. Macromolecular composition of bacteria. J. Theor. Biol. 1982, 94, 651–670. [Google Scholar] [CrossRef]
- Brakenhoff, G.J.; Blom, P.; Barends, P. Confocal scanning light microscopy with high aperture immersion lenses. J. Microsc. 1979, 117, 219–232. [Google Scholar] [CrossRef]
- Nanninga, N. Molecular cytology of ‘little animals’: Personal recollections of Escherichia coli (and Bacillus subtilis). Life 2023, 13, 1782. [Google Scholar] [CrossRef]
- Woldringh, C.L.; Nanninga, N. Structure of the nucleoid and cytoplasm in the intact cell. In Molecular Cytology of Escherichia coli; Nanninga, N., Ed.; Academic Press: London, UK, 1985; pp. 161–197. [Google Scholar]
- Zimmerman, S.B.; Murphy, L.D. Release of compact nucleoids with characteristic shapes from Escherichia coli. J. Bacteriol. 2001, 183, 5041–5049. [Google Scholar] [CrossRef]
- Cunha, S.; Woldringh, C.L.; Odijk, T. Polymer-mediated compaction and internal dynamics of isolated Escherichia coli nucleoids. J. Struct. Biol. 2001, 136, 53–66. [Google Scholar] [CrossRef]
- Woldringh, C.L.; Odijk, T. Structure of DNA within the bacterial cell: Physics and physiology. In Organization of the Prokaryotic Genome; Charlebois, R.L., Ed.; American Society for Microbiology: Washington, DC, USA, 1999; pp. 171–187. [Google Scholar]
- Pelletier, J.; Halvorsen, K.; Ha, B.Y.; Paparcone, R.; Sandler, S.J.; Woldringh, C.L.; Wong, W.P.; Jun, S. Physical manipulation of the Escherichia coli chromosome reveals its soft nature. Proc. Natl. Acad. Sci. USA 2012, 109, E2649–E2656. [Google Scholar] [CrossRef] [PubMed]
- Grosberg, A.Y.; Khokhlov, A.R. Giant Molecules: Here, There, and Everywhere; Academic Press: New York, NY, USA, 1997; p. 242. [Google Scholar]
- Reisner, W.; Pedersen, J.N.; Austin, R.H. DNA confinement in nanochannels: Physics and biological applications. Rep. Prog. Phys. 2012, 75, 106601. [Google Scholar] [CrossRef] [PubMed]
- Odijk, T. (Lorentz Institute for Theoretical Physics, University of Leiden, Leiden, The Netherlands). Personal communication, 2024.
- Huls, P.G. (Institute for Molecular and Cell Biology, BioCentrum, University of Amsterdam, Amsterdam The Netherlands) Personal communication, unpublished growth experiment with E. coli B/rH266, 2001.
- Fisher, J.K.; Bourniquel, A.; Witz, G.; Weiner, B.; Prentiss, M.; Kleckner, N. Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell 2013, 153, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Kleckner, N. Chromosome and replisome dynamics in Escherichia coli: Loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation. Cell 2005, 121, 899–911. [Google Scholar] [CrossRef]
- Blattner, F.R.; Plunkett, G., 3rd; Bloch, C.A.; Perna, N.T.; Burland, V.; Riley, M.; Collado-Vides, J.; Glasner, J.D.; Rode, C.K.; Mayhew, G.F.; et al. The complete genome sequence of Escherichia coli K-12. Science 1997, 277, 1453–1462. [Google Scholar] [CrossRef]
- Weinberger, M.; Helmstetter, C.E. Chromosome replication and cell division in plasmid-containing Escherichia coli B/r. J. Bacteriol. 1979, 137, 1151–1157. [Google Scholar] [CrossRef]
- Gray, W.T.; Govers, S.K.; Xiang, Y.; Parry, B.R.; Campos, M.; Kim, S.; Jacobs-Wagner, C. Nucleoid size scaling and intracellular organization of translation across bacteria. Cell 2019, 177, 1632–1648.e1620. [Google Scholar] [CrossRef]
- Bremer, H.; Dennis, P.P. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. Ecosal Plus 2008, 3, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Wegner, A.S.; Alexeeva, S.; Odijk, T.; Woldringh, C.L. Characterization of Escherichia coli nucleoids released by osmotic shock. J. Struct. Biol. 2012, 178, 260–269. [Google Scholar] [CrossRef]
- Junier, I.; Ghobadpour, E.; Espeli, O.; Everaers, R. DNA supercoiling in bacteria: State of play and challenges from a viewpoint of physics based modeling. Front. Microbiol. 2023, 14, 1192831. [Google Scholar] [CrossRef] [PubMed]
- Endesfelder, U. From single bacterial cell imaging towards in vivo single-molecule biochemistry studies. Essays Biochem. 2019, 63, 187–196. [Google Scholar]
- Zhu, Y.; Mustafi, M.; Weisshaar, J.C. Biophysical properties of Escherichia coli cytoplasm in stationary phase by superresolution fluorescence microscopy. MBio 2020, 11, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Spahn, C.K.; Glaesmann, M.; Grimm, J.B.; Ayala, A.X.; Lavis, L.D.; Heilemann, M. A toolbox for multiplexed super-resolution imaging of the Escherichia coli nucleoid and membrane using novel paint labels. Sci. Rep. 2018, 8, 14768. [Google Scholar] [CrossRef] [PubMed]
- Spahn, C.; Hurter, F.; Glaesmann, M.; Karathanasis, C.; Lampe, M.; Heilemann, M. Protein-specific, multicolor and 3d STED imaging in cells with DNA-labeled antibodies. Angew. Chem. Int. Ed. Engl. 2019, 58, 18835–18838. [Google Scholar] [CrossRef]
- Stracy, M.; Lesterlin, C.; Garza de Leon, F.; Uphoff, S.; Zawadzki, P.; Kapanidis, A.N. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc. Natl. Acad. Sci. USA 2015, 112, E4390–E4399. [Google Scholar] [CrossRef]
- Jin, D.J.; Cagliero, C.; Zhou, Y.N. Role of rna polymerase and transcription in the organization of the bacterial nucleoid. Chem. Rev. 2013, 113, 8662–8682. [Google Scholar] [CrossRef]
- Lioy, V.S.; Junier, I.; Boccard, F. Multiscale dynamic structuring of bacterial chromosomes. Annu. Rev. Microbiol. 2021, 75, 541–561. [Google Scholar] [CrossRef]
- Mondal, J.; Bratton, B.P.; Li, Y.; Yethiraj, A.; Weisshaar, J.C. Entropy-based mechanism of ribosome-nucleoid segregation in Escherichia coli cells. Biophys. J. 2011, 100, 2605–2613. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, J.E.; Cagliero, C.; Quan, S.; Squires, C.L.; Jin, D.J. Active transcription of rrna operons condenses the nucleoid in Escherichia coli: Examining the effect of transcription on nucleoid structure in the absence of transertion. J. Bacteriol. 2009, 191, 4180–4185. [Google Scholar] [CrossRef] [PubMed]
- Spahn, C.; Middlemiss, S.; Gómez-de-Mariscal, E.; Henriques, R.; Bode, H.B.; Holden, S.; Heilemann, M. Transertion and cell geometry organize the Escherichia coli nucleoid during rapid growth. bioRxiv 2023. 2023.2010.2016.562172. [Google Scholar]
- Dworsky, P.; Schaechter, M. Effect of rifampin on the structure and membrane attachment of the nucleoid of Escherichia coli. J. Bacteriol. 1973, 116, 1364–1374. [Google Scholar] [CrossRef] [PubMed]
- Harrington, E.W.; Trun, N.J. Unfolding of the bacterial nucleoid both in vivo and in vitro as a result of exposure to camphor. J. Bacteriol. 1997, 179, 2435–2439. [Google Scholar] [CrossRef] [PubMed]
- Van Helvoort, J.; Huls, P.G.; Vischer, N.O.E.; Woldringh, C.L. Fused nucleoids resegregate faster than cell elongation in Escherichia coli pbpB(ts) filaments after release from chloramphenicol inhibition. Microbiology 1998, 144, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Margolin, W. Effects of perturbing nucleoid structure on nucleoid occlusion-mediated toporegulation of FtsZ ring assembly. J. Bacteriol. 2004, 186, 3951–3959. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, S.; Siryaporn, A.; Goulian, M.; Weisshaar, J.C. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 2012, 85, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, S.; Choi, H.; Mondal, J.; Weisshaar, J.C. Time-dependent effects of transcription- and translation-halting drugs on the spatial distributions of the Escherichia coli chromosome and ribosomes. Mol. Microbiol. 2014, 94, 871–887. [Google Scholar] [CrossRef]
- Bakshi, S.; Choi, H.; Weisshaar, J.C. The spatial biology of transcription and translation in rapidly growing Escherichia coli. Front. Microbiol. 2015, 6, 636. [Google Scholar] [CrossRef]
- Woldringh, C.L.; Hansen, F.G.; Vischer, N.O.; Atlung, T. Segregation of chromosome arms in growing and non-growing Escherichia coli cells. Front. Microbiol. 2015, 6, 448. [Google Scholar] [CrossRef] [PubMed]
- Kohiyama, M.; Herrick, J.; Norris, V. Open questions about the roles of DnaA, related proteins, and hyperstructure dynamics in the cell cycle. Life 2023, 13, 1890. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.J.; Youngren, B.; Hansen, F.G.; Austin, S. Dynamics of Escherichia coli chromosome segregation during multifork replication. J. Bacteriol. 2007, 189, 8660–8666. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X.; Reyes-Lamothe, R.; Sherratt, D. Replication-directed sister chromosome alignment in Escherichia coli. Mol. Microbiol. 2010, 75, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Lamothe, R.; Nicolas, E.; Sherratt, D.J. Chromosome replication and segregation in bacteria. Annu. Rev. Genet. 2012, 46, 121–143. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Lamothe, R.; Sherratt, D.J. The bacterial cell cycle, chromosome inheritance and cell growth. Nat. Rev. Microbiol. 2019, 17, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Helmstetter, C.E. DNA synthesis during the division cycle of rapidly growing Escherichia coli B/r. J. Mol. Biol. 1968, 31, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Makela, J.; Uphoff, S.; Sherratt, D.J. Nonrandom segregation of sister chromosomes by Escherichia coli MukBEF. Proc. Natl. Acad. Sci. USA 2021, 118, e2022078118. [Google Scholar] [CrossRef]
- Norris, V.; Madsen, M.S. Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: A model. J. Mol. Biol. 1995, 253, 739–748. [Google Scholar] [CrossRef]
- Lemon, K.P.; Grossman, A.D. The extrusion-capture model for chromosome partitioning in bacteria. Genes Dev. 2001, 15, 2031–2041. [Google Scholar] [CrossRef]
- Youngren, B.; Nielsen, H.J.; Jun, S.; Austin, S. The multifork Escherichia coli chromosome is a self-duplicating and self-segregating thermodynamic ring polymer. Genes Dev. 2014, 28, 71–84. [Google Scholar] [CrossRef]
- Wiggins, P.A.; Cheveralls, K.C.; Martin, J.S.; Lintner, R.; Kondev, J. Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament. Proc. Natl. Acad. Sci. USA 2010, 107, 4991–4995. [Google Scholar] [CrossRef]
- Wang, X.; Sherratt, D.J. Independent segregation of the two arms of the Escherichia coli ori region requires neither RNA synthesis nor MreB dynamics. J. Bacteriol. 2010, 192, 6143–6153. [Google Scholar] [CrossRef]
- Woldringh, C.L. Escherichia coli DNA-segregation patterns in the presence and absence of growth. Presented at the Lorentz workshop, Leiden, The Netherlands. 18 June 2012. [Google Scholar]
- Dame, R.T.; Rashid, F.M.; Grainger, D.C. Chromosome organization in bacteria: Mechanistic insights into genome structure and function. Nat. Rev. Genet. 2019, 21, 227–242. [Google Scholar] [CrossRef]
- Makela, J.; Sherratt, D.J. Organization of the Escherichia coli chromosome by a mukbef axial core. Mol. Cell 2020, 78, 250–260.e255. [Google Scholar] [CrossRef]
- Jun, S.; Mulder, B. Entropy-driven spatial organization of highly confined polymers: Lessons for the bacterial chromosome. Proc. Natl. Acad. Sci. USA 2006, 103, 12388–12393. [Google Scholar] [CrossRef]
- Jun, S.; Wright, A. Entropy as the driver of chromosome segregation. Nat. Rev. Microbiol. 2010, 8, 600–607. [Google Scholar] [CrossRef]
- Elmore, S.; Muller, M.; Vischer, N.; Odijk, T.; Woldringh, C.L. Single-particle tracking of oriC-GFP fluorescent spots during chromosome segregation in Escherichia coli. J. Struct. Biol. 2005, 151, 275–287. [Google Scholar] [CrossRef]
- Khodursky, A.; Guzman, E.C.; Hanawalt, P.C. Thymineless death lives on: New insights into a classic phenomenon. Annu. Rev. Microbiol. 2015, 69, 247–263. [Google Scholar] [CrossRef]
- Joshi, M.C.; Bourniquel, A.; Fisher, J.; Ho, B.T.; Magnan, D.; Kleckner, N.; Bates, D. Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps. Proc. Natl. Acad. Sci. USA 2011, 108, 2765–2770. [Google Scholar] [CrossRef]
- Zaritsky, A.; Vollmer, W.; Mannik, J.; Liu, C. Does the nucleoid determine cell dimensions in Escherichia coli? Front. Microbiol. 2019, 10, 1717. [Google Scholar] [CrossRef]
- Zaritsky, A.; Woldringh, C.L.; Fishov, I.; Vischer, N.O.E.; Einav, M. Varying division planes of secondary constrictions in spheroidal Escherichia coli cells. Microbiology 1999, 145 Pt 5, 1015–1022. [Google Scholar] [CrossRef]
- Valens, M.; Penaud, S.; Rossignol, M.; Cornet, F.; Boccard, F. Macrodomain organization of the Escherichia coli chromosome. EMBO J. 2004, 23, 4330–4341. [Google Scholar] [CrossRef]
- Javer, A.; Kuwada, N.J.; Long, Z.; Benza, V.G.; Dorfman, K.D.; Wiggins, P.A.; Cicuta, P.; Lagomarsino, M.C. Persistent super-diffusive motion of Escherichia coli chromosomal loci. Nat. Commun. 2014, 5, 3854. [Google Scholar] [CrossRef]
- Reyes-Lamothe, R.; Wang, X.; Sherratt, D. Escherichia coli and its chromosome. Trends Microbiol. 2008, 16, 238–245. [Google Scholar] [CrossRef]
- Zaritsky, A.; Wang, P.; Vischer, N.O. Instructive simulation of the bacterial cell division cycle. Microbiology 2011, 157, 1876–1885. [Google Scholar] [CrossRef]
- Woldringh, C.L.; Grover, N.B.; Rosenberger, R.F.; Zaritsky, A. Dimensional rearrangement of rod-shaped bacteria following nutritional shift-up. Ii. Experiments with Escherichia coli B/r. J. Theor. Biol. 1980, 86, 441–454. [Google Scholar] [CrossRef]
- Gadde, S.; Heald, R. Mechanisms and molecules of the mitotic spindle. Curr. Biol. 2004, 14, R797–R805. [Google Scholar] [CrossRef]
- Goloborodko, A.; Imakaev, M.V.; Marko, J.F.; Mirny, L. Compaction and segregation of sister chromatids via active loop extrusion. Elife 2016, 5, e14864. [Google Scholar] [CrossRef]
- Hirano, T. Condensin-based chromosome organization from bacteria to vertebrates. Cell 2016, 164, 847–857. [Google Scholar] [CrossRef]
- Nanninga, N.; Roos, M.; Woldringh, C.L. Models on stickiness of replicated Escherichia coli oriC. Microbiology 2002, 148, 3327–3328. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Reyes-Lamothe, R.; Sherratt, D.J. Modulation of Escherichia coli sister chromosome cohesion by topoisomerase iv. Genes Dev. 2008, 22, 2426–2433. [Google Scholar] [CrossRef] [PubMed]
- Woldringh, C.L.; Nanninga, N. Structural and physical aspects of bacterial chromosome segregation. J. Struct. Biol. 2006, 156, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Lau, I.F.; Filipe, S.R.; Soballe, B.; Okstad, O.A.; Barre, F.X.; Sherratt, D.J. Spatial and temporal organization of replicating Escherichia coli chromosomes. Mol. Microbiol. 2003, 49, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Helgesen, E.; Fossum-Raunehaug, S.; Saetre, F.; Schink, K.O.; Skarstad, K. Dynamic Escherichia coli SeqA complexes organize the newly replicated DNA at a considerable distance from the replisome. Nucleic. Acids. Res. 2015, 43, 2730–2743. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Japaridze, A.; Zheng, X.; Wiktor, J.; Kerssemakers, J.W.J.; Dekker, C. Direct imaging of the circular chromosome in a live bacterium. Nat. Commun. 2019, 10, 2194. [Google Scholar] [CrossRef] [PubMed]
- Japaridze, A.; Gogou, C.; Kerssemakers, J.W.J.; Nguyen, H.M.; Dekker, C. Direct observation of independently moving replisomes in Escherichia coli. Nat. Commun. 2020, 11, 3109. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.; Babacan, S.D.; Bednarz, M.; Do, M.N.; Golding, I.; Popescu, G. Visualizing Escherichia coli sub-cellular structure using sparse deconvolution spatial light interference tomography. PLoS ONE 2012, 7, e39816. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S. Experiments on the Bacterial Nucleoid of Escherichia coli Viewed as a Physical Entity. Ph.D. Thesis, Technical University of Delft, Delft, The Netherlands, 2004. ISBN 90-77595-77-5. [Google Scholar]
- Boles, T.C.; White, J.H.; Cozzarelli, N.R. Structure of plectonemically supercoiled DNA. J. Mol. Biol. 1990, 213, 931–951. [Google Scholar] [CrossRef] [PubMed]
- Popescu, G.; Park, Y.; Lue, N.; Best-Popescu, C.; Deflores, L.; Dasari, R.R.; Feld, M.S.; Badizadegan, K. Optical imaging of cell mass and growth dynamics. Am. J. Physiol. Cell Physiol. 2008, 295, C538–C544. [Google Scholar] [CrossRef]
- Ehrenberg, M.; Bremer, H.; Dennis, P.P. Medium-dependent control of the bacterial growth rate. Biochimie 2013, 95, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Milo, R. What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays 2013, 35, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Ortega, J.P. Physical Characterization of the 16s and 23s Ribosomal Ribonucleic acids from Escherichia coli. Master’s Thesis, University of Montana, Missoula, MT, USA, 1978. [Google Scholar]
- Xu, Z.-Q.; Dixon, N.E. Bacterial replisomes. Curr. Opin. Struct. Biol. 2018, 53, 159–168. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M. Replisome architecture and dynamics in Escherichia coli. J. Biol. Chem. 2006, 281, 10653–10656. [Google Scholar] [CrossRef] [PubMed]
First Author | Cells and Growth Conditions (Growth Rate: Fast/Slow) | Rifampicin Treatment and Imaging/Preparation/ Staining | Appearance of Nucleoid or Interpretation (Figure in Reference) | Fully Dispersed Nucleoid (1) (Yes/No) |
---|---|---|---|---|
Dworsky [59] | E. coli K-12; M9 + glucose + Casa, 37 °C (fast) | 100 µg/mL, 30 min, electron microscopy, and OsO4 fixation | Axial appearance (Figure 1b) | no |
Harrington [60] | E. coli K-12 (NT3) LB medium, 37 °C (fast) | 20 µg/mL, 60 min, light microscopy, poly-lysine slide, and no fixation | Nucleoids decondense (Figure 2D) | yes |
van Helvoort [61] | E. coli K-12 (MC4100) Glucose minimal medium, 30 °C (slow) | 100 µg/mL, 30 min, light microscopy, OsO4 fixation, and DAPI staining | Nucleoid fusion (Figure 4B) | no |
Zimmerman [33] | E. coli K-12 (C600) LB medium, 37 °C (fast) | 40 µg/mL, 60 min, and no fixation | Compact nucleoids (Figure 6B) | no |
Cabrera [57] | E. coli K-12 (DJ2599) M63 + glucose + Casa, 30 °C (fast) | 50 µg/mL, 10 min, DIC microscopy, formaldehyde fixation, and DAPI staining | Less condensed (Figure 2B) | yes |
Sun [62] | E. coli K-12 M9 + glucose + Casa, 30 °C (fast) | 100 µg/mL, 30 min, phase-contrast, methanol-fixed cells, and DAPI staining | Staining uniform throughout cells (Figure 3F) | yes |
Cabrera [57] | E. coli K-12 (DJ2599) LB medium, 32 °C (fast) | 100 µg/mL, 20 min, light microscopy, formaldehyde fixation, and DAPI staining | Quick expansion, elongated nucleoid, and phase-separated (Figure 1B) | no |
Bakshi [63] | E. coli K-12 (MG1655) Low-phosphate EZRDM 30 °C Td = 60 min (slow) | 200 µg/mL, 30 min, widefield epifluorescence microscopy, no fixation, and DNA stain DRAQ5 | Radial compaction and axial expansion (Figure 7B) | no |
Jin [54] | E. coli K-12 () LB medium, 37 °C (fast) | 50 µg/mL, 30 or 60 min, and fixation. | Fully expanded nucleoid and phase separation (Figures 11 and 13) | no |
Bakshi [64] | E. coli K-12 (MG1655) Low-phosphate EZRDM, 30 °C Td = 60 min (slow) | 300 µg/mL, 20 min, phase-contrast microscopy, no fixation, time-lapse, and SYTOX orange staining | Radial contraction and axial contraction, followed by expansion (Figure 2) | no |
Bakshi [65] | idem | idem | (Figure 8b) | no |
Stracy [53] | E. coli MG1655 LB medium, 37 °C (fast) | 50 µg/mL, 30 min, SI microscopy, no fixation, and DAPI staining | Nucleoid expansion (Figure 4C) | yes |
Woldringh [66] | E. coli MG1655 (FH4035) Minimal glycerol medium (slow) | 300 µg/mL, 210 min, 28 °C, fluorescence microscopy, OsO4 fixation, and DAPI staining | Compact nucleoids; 9% divided nucleoids (Figure 3B) | no |
Spahn [51] | E. coli K-12 (MG1655/KF26 cells) LB medium, 32 °C (fast) | 100 µg/mL (Sigma), 30 min, and fixation with 2% formaldehyde + 0.05% glutaraldehyde PAINT-SMLM imaging | Nucleoid contraction and expansion Nucleoid fusion? (Figure 5b) | no |
Yang [7] | E. coli K-12 (MG1655) Slow: M9 glycerol minimal medium, Td = 60 min at 28 °C Moderately fast: M9 + glucose +Casa, Td = 30 min at 28 °C | 300 µg/mL, 20–90 min, epifluoresc. microscopy, and no fixation | Length expansion at moderately fast growth (Figure 4) Volume expansion at fast growth (Figure S13) | Slow: no fast: yes |
Xiang [9] | E. coli K-12 (MG1655) M9-glycerol + Casa, 37 °C (fast) | 300 µg/mL, 40 min, no fixation, and DAPI staining | Nucleoid expansion and nucleoid fusion (Figure 7A) | yes |
Chang [6] | E. coli K-12 (MG1655-JM57) EZ-Rich medium + glucose, 37 °C (fast) | 300 µg/mL, 20–90 min, epifluoresc. microscopy, no fixation, and HupA-mNeon Green | Nucleoid expansion (Figure S4a) | yes |
Spahn [58] | E. coli K-12 (NO34) LB at 32 °C (fast) | 100 µg/mL, 60 min, CSL microscopy, and fixation with 2% formaldehyde + 0.05% glutaraldehyde | Contraction followed by expansion after 20 min to elongated structure (Figure 2B) | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woldringh, C.L. Compaction and Segregation of DNA in Escherichia coli. Life 2024, 14, 660. https://doi.org/10.3390/life14060660
Woldringh CL. Compaction and Segregation of DNA in Escherichia coli. Life. 2024; 14(6):660. https://doi.org/10.3390/life14060660
Chicago/Turabian StyleWoldringh, Conrad L. 2024. "Compaction and Segregation of DNA in Escherichia coli" Life 14, no. 6: 660. https://doi.org/10.3390/life14060660
APA StyleWoldringh, C. L. (2024). Compaction and Segregation of DNA in Escherichia coli. Life, 14(6), 660. https://doi.org/10.3390/life14060660