UVC Box: An Effective Way to Quickly Decontaminate Healthcare Facilities’ Wheelchairs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the UVC Box
2.2. Wheelchair and Material Samples Preparation
2.3. Metallic Samples Preparation
- Polished samples (Pol.) to simulate a scratched condition. The specimens were polished with a polishing turret and 80# diamond abrasive paper.
- Sandblasted samples (San.) to simulate a surface condition typically found on industrial parts. Blasting was performed with a 220# corundum and 7 bar dry air pressure.
- Mirror-polished samples (Mir.) to simulate a perfect finish. The samples were manually polished to 1200 grit before being automatically polished with 9, 6, and 3 µm diamond powder solutions for 5 min at a pressure of 20 N. The final mirroring step was performed using a colloidal silica suspension (OPS) for 5 min at a pressure of 10 N.
2.4. Bacterial Strains Preparation
2.4.1. Vegetative Bacteria
2.4.2. Bacillus Subtilis Spores
2.5. UVC Treatment Procedure and Evaluation of Antibacterial Activity
2.6. Statistical Analysis
3. Results
3.1. UVC Power Displayed in the Box
3.2. Effects of Treatment Time and Positions on the Wheelchair
3.3. Investigation of the Effect of the Surface Material and Position on the Wheelchair on the Antibacterial Activity
3.4. Effect of Sample Surface Treatment on Antibacterial Efficacy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
PH position: | ||||||||
Arm rest | Ribbed plastic | Black steel tube | Push handle | Grey steel tube | Angled plastic | Seatback | Seat cushion | |
Arm rest | ||||||||
Ribbed plastic | 0.002 | |||||||
Black steel tube | 0.0004 | 0.7273 | ||||||
Push handle | 0.1077 | 0.0043 | 0.0022 | |||||
Grey steel tube | 0.0046 | 0.21 | 0.1515 | 0.0022 | ||||
Angled plastic | 0.7125 | 0.0065 | 0.0028 | 0.405 | 0.0162 | |||
Seatback | 0.0892 | 0.0105 | 0.0022 | 0.0016 | 0.047 | 0.0625 | ||
Seat cushion | 0.0054 | 0.0016 | 0.0007 | 0.0007 | 0.0007 | <0.0001 | <0.0001 | |
SE position: | ||||||||
Arm rest | Ribbed plastic | Black steel tube | Push handle | Grey steel tube | Angled plastic | Seatback | Seat cushion | |
Arm rest | ||||||||
Ribbed plastic | <0.0001 | |||||||
Black steel tube | 0.0002 | 0.0769 | ||||||
Push handle | 0.3277 | 0.0443 | 0.0006 | |||||
Grey steel tube | 0.0004 | 0.1329 | 0.4615 | 0.0022 | ||||
Angled plastic | <0.0001 | 0.0993 | 0.0014 | 0.662 | 0.007 | |||
Seatback | <0.0001 | 0.8566 | 0.0337 | 0.01 | 0.168 | 0.0355 | ||
Seat cushion | 0.0315 | <0.0001 | 0.0002 | 0.012 | 0.0004 | <0.0001 | <0.0001 | |
SB position: | ||||||||
Arm rest | Ribbed plastic | Black steel tube | Push handle | Grey steel tube | Angled plastic | Seatback | Seat cushion | |
Arm rest | ||||||||
Ribbed plastic | 0.0047 | |||||||
Black steel tube | 0.0027 | 0.4978 | ||||||
Push handle | 0.4136 | 0.0087 | 0.0043 | |||||
Grey steel tube | 0.0193 | 0.3268 | >0.9999 | 0.0087 | ||||
Angled plastic | 0.0109 | 0.0043 | 0.0043 | 0.2468 | 0.0087 | |||
Seatback | 0.0592 | 0.0004 | 0.0004 | 0.9546 | 0.0028 | 0.042 | ||
Seat cushion | 0.0003 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0025 | 0.0002 |
PH position: | ||||||||
Arm rest | Ribbed plastic | Black steel tube | Push handle | Grey steel tube | Angled plastic | Seatback | Seat cushion | |
Arm rest | ||||||||
Ribbed plastic | 0.0011 | |||||||
Black steel tube | 0.0007 | 0.4126 | ||||||
Push handle | 0.007 | >0.9999 | 0.4545 | |||||
Grey steel tube | 0.004 | >0.9999 | 0.4 | >0.9999 | ||||
Angled plastic | 0.0022 | 0.2351 | 0.023 | 0.315 | 0.2747 | |||
Seatback | <0.0001 | 0.8612 | 0.1944 | 0.7385 | 0.8601 | 0.0603 | ||
Seat cushion | 0.0002 | 0.0002 | 0.0007 | 0.0007 | 0.004 | 0.0002 | <0.0001 | |
SE position: | ||||||||
Arm rest | Ribbed plastic | Black steel tube | Push handle | Grey steel tube | Angled plastic | Seatback | Seat cushion | |
Arm rest | ||||||||
Ribbed plastic | 0.0002 | |||||||
Black steel tube | 0.0003 | 0.7333 | ||||||
Push handle | 0.0027 | 0.3187 | 0.3147 | |||||
Grey steel tube | 0.0007 | 0.248 | 0.2902 | >0.9999 | ||||
Angled plastic | 0.0003 | 0.4462 | 0.4974 | >0.9999 | 0.9394 | |||
Seatback | <0.0001 | 0.0211 | 0.0437 | 0.5756 | 0.5439 | 0.4103 | ||
Seat cushion | 0.0037 | <0.0001 | 0.0002 | 0.0004 | 0.0004 | <0.0001 | <0.0001 | |
SB position: | ||||||||
Arm rest | Ribbed plastic | Black steel tube | Push handle | Grey steel tube | Angled plastic | Seatback | Seat cushion | |
Arm rest | ||||||||
Ribbed plastic | <0.0001 | |||||||
Black steel tube | 0.0007 | 0.8418 | ||||||
Push handle | 0,8518 | 0.0004 | 0.0022 | |||||
Grey steel tube | 0.0007 | 0.4821 | 0.5455 | 0.0022 | ||||
Angled plastic | 0.0373 | 0.0081 | 0.0123 | 0.1395 | 0.1868 | |||
Seatback | 0.0007 | 0.3267 | 0.2963 | 0.0004 | 0.9888 | 0.0412 | ||
Seat cushion | <0.0001 | <0.0001 | 0.0004 | 0.0008 | 0.0004 | 0.0002 | <0.0001 |
PH position: | ||||||||
Arm rest | Ribbed plastic | Black steel tube | Push handle | Grey steel tube | Angled plastic | Seatback | Seat cushion | |
Arm rest | ||||||||
Ribbed plastic | 0.0498 | |||||||
Black steel tube | 0.0709 | >0.9999 | ||||||
Push handle | 0.351 | 0.2022 | 0.1818 | |||||
Grey steel tube | 0.2308 | 0.4264 | 0.4545 | 0.9242 | ||||
Angled plastic | 0.0294 | >0.9999 | >0.9999 | 0.044 | 0.1429 | |||
Seatback | 0.0294 | >0.9999 | >0.9999 | 0.044 | 0.1429 | >0.9999 | ||
Seat cushion | 0.0002 | <0.0001 | 0.0012 | 0.0012 | 0.0012 | <0.0001 | <0.0001 | |
SE position: | ||||||||
Arm rest | Ribbed plastic | Black steel tube | Push handle | Grey steel tube | Angled plastic | Seatback | Seat cushion | |
Arm rest | ||||||||
Ribbed plastic | 0.0115 | |||||||
Black steel tube | 0.0086 | >0.9999 | ||||||
Push handle | 0.0086 | >0.9999 | >0.9999 | |||||
Grey steel tube | 0.0086 | >0.9999 | >0.9999 | >0.9999 | ||||
Angled plastic | 0.0023 | >0.9999 | >0.9999 | >0.9999 | >0.9999 | |||
Seatback | 0.0023 | >0.9999 | >0.9999 | >0.9999 | >0.9999 | >0.9999 | ||
Seat cushion | <0.0001 | <0.0001 | 0.0004 | 0.0004 | 0.0004 | <0.0001 | <0.0001 | |
SB position: | ||||||||
Arm rest | Ribbed plastic | Black steel tube | Push handle | Grey steel tube | Angled plastic | Seatback | Seat cushion | |
Arm rest | ||||||||
Ribbed plastic | 0.0056 | |||||||
Black steel tube | 0.0281 | >0.9999 | ||||||
Push handle | 0.1017 | 0.2352 | 0.4242 | |||||
Grey steel tube | 0.0256 | >0.9999 | >0.9999 | 0.1818 | ||||
Angled plastic | 0.0152 | 0.7353 | >0.9999 | 0.2448 | >0.9999 | |||
Seatback | 0.002 | >0.9999 | 0.4 | 0.044 | >0.9999 | 0.4706 | ||
Seat cushion | 0.0004 | <0.0001 | 0.0004 | 0.0004 | 0.0004 | <0.0001 | <0.0001 |
References
- Baker, M.A.; Sands, K.E.; Huang, S.S.; Kleinman, K.; Septimus, E.J.; Varma, N.; Blanchard, J.; Poland, R.E.; Coady, M.H.; Yokoe, D.S.; et al. The Impact of Coronavirus Disease 2019 (COVID-19) on Healthcare-Associated Infections. Clin. Infect. Dis. 2022, 74, 1748–1754. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Lynfield, R.; Maloney, M.; McAllister-Hollod, L.; Nadle, J.; et al. Multistate Point-Prevalence Survey of Health Care–Associated Infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Dagli, O.; Tasdemir, E.; Ulutasdemir, N. Palliative Care Infections and Antibiotic Cost: A Vicious Circle. Aging Male 2020, 23, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.A. Epidemiology and Control of Nosocomial Infections Iu Adult Intensive Care Units. Am. J. Med. 1991, 91, S179–S184. [Google Scholar] [CrossRef] [PubMed]
- Otter, J.A.; Yezli, S.; Salkeld, J.A.G.; French, G.L. Evidence That Contaminated Surfaces Contribute to the Transmission of Hospital Pathogens and an Overview of Strategies to Address Contaminated Surfaces in Hospital Settings. Am. J. Infect. Control 2013, 41, S6–S11. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.; Schwebke, I.; Kampf, G. How Long Do Nosocomial Pathogens Persist on Inanimate Surfaces? A Systematic Review. BMC Infect. Dis. 2006, 6, 130. [Google Scholar] [CrossRef] [PubMed]
- Otter, J.A.; Yezli, S.; French, G.L. The Role Played by Contaminated Surfaces in the Transmission of Nosocomial Pathogens. Infect. Control Hosp. Epidemiol. 2011, 32, 687–699. [Google Scholar] [CrossRef]
- Abreu, A.C.; Tavares, R.R.; Borges, A.; Mergulhao, F.; Simoes, M. Current and Emergent Strategies for Disinfection of Hospital Environments. J. Antimicrob. Chemother. 2013, 68, 2718–2732. [Google Scholar] [CrossRef]
- Weber, D.J.; Rutala, W.A.; Anderson, D.J.; Chen, L.F.; Sickbert-Bennett, E.E.; Boyce, J.M. Effectiveness of Ultraviolet Devices and Hydrogen Peroxide Systems for Terminal Room Decontamination: Focus on Clinical Trials. Am. J. Infect. Control 2016, 44, e77–e84. [Google Scholar] [CrossRef]
- Huang, Y.-S.; Chen, Y.-C.; Chen, M.-L.; Cheng, A.; Hung, I.-C.; Wang, J.-T.; Sheng, W.-H.; Chang, S.-C. Comparing Visual Inspection, Aerobic Colony Counts, and Adenosine Triphosphate Bioluminescence Assay for Evaluating Surface Cleanliness at a Medical Center. Am. J. Infect. Control 2015, 43, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.M.; Havill, N.L.; Havill, H.L.; Mangione, E.; Dumigan, D.G.; Moore, B.A. Comparison of Fluorescent Marker Systems with 2 Quantitative Methods of Assessing Terminal Cleaning Practices. Infect. Control Hosp. Epidemiol. 2011, 32, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Carling, P.C.; Parry, M.F.; Von Beheren, S.M.; Healthcare Environmental Hygiene Study Group. Identifying Opportunities to Enhance Environmental Cleaning in 23 Acute Care Hospitals. Infect. Control Hosp. Epidemiol. 2008, 29, 1–7. [Google Scholar] [CrossRef]
- Carling, P.C.; Bartley, J.M. Evaluating Hygienic Cleaning in Health Care Settings: What You Do Not Know Can Harm Your Patients. Am. J. Infect. Control 2010, 38, S41–S50. [Google Scholar] [CrossRef]
- Goodman, E.R.; Piatt, R.; Bass, R.; Onderdonk, A.B.; Yokoe, D.S.; Huang, S.S. Impact of an Environmental Cleaning Intervention on the Presence of Methicillin-Resistant Staphylococcus Aureus and Vancomycin-Resistant Enterococci on Surfaces in Intensive Care Unit Rooms. Infect. Control Hosp. Epidemiol. 2008, 29, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Hayden, M.K.; Bonten, M.J.M.; Blom, D.W.; Lyle, E.A.; van de Vijver, D.A.M.C.; Weinstein, R.A. Reduction in Acquisition of Vancomycin-Resistant Enterococcus after Enforcement of Routine Environmental Cleaning Measures. Clin. Infect. Dis. 2006, 42, 1552–1560. [Google Scholar] [CrossRef]
- Grass, G.; Rensing, C.; Solioz, M. Metallic Copper as an Antimicrobial Surface. Appl. Environ. Microbiol. 2011, 77, 1541–1547. [Google Scholar] [CrossRef]
- Chyderiotis, S.; Legeay, C.; Verjat-Trannoy, D.; Le Gallou, F.; Astagneau, P.; Lepelletier, D. New Insights on Antimicrobial Efficacy of Copper Surfaces in the Healthcare Environment: A Systematic Review. Clin. Microbiol. Infect. 2018, 24, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Colin, M.; Charpentier, E.; Klingelschmitt, F.; Bontemps, C.; De Champs, C.; Reffuveille, F.; Gangloff, S.C. Specific Antibacterial Activity of Copper Alloy Touch Surfaces in Five Long-Term Care Facilities for Older Adults. J. Hosp. Infect. 2020, 104, 283–292. [Google Scholar] [CrossRef]
- Colin, M.; Klingelschmitt, F.; Charpentier, E.; Josse, J.; Kanagaratnam, L.; De Champs, C.; Gangloff, S. Copper Alloy Touch Surfaces in Healthcare Facilities: An Effective Solution to Prevent Bacterial Spreading. Materials 2018, 11, 2479. [Google Scholar] [CrossRef]
- Wallace, R.L.; Ouellette, M.; Jean, J. Effect of UV-C Light or Hydrogen Peroxide Wipes on the Inactivation of Methicillin-Resistant Staphylococcus Aureus, Clostridium Difficile Spores and Norovirus Surrogate. J. Appl. Microbiol. 2019, 127, 586–597. [Google Scholar] [CrossRef]
- Tseng, C.-C.; Li, C.-S. Inactivation of Viruses on Surfaces by Ultraviolet Germicidal Irradiation. J. Occup. Environ. Hyg. 2007, 4, 400–405. [Google Scholar] [CrossRef]
- ISO 21348:2007; Space Environment (Natural and Artificial)—Process for Determining Solar Irradiances. ISO: Geneva, Switzerland, 2007.
- Nicolau, T.; Gomes Filho, N.; Padrão, J.; Zille, A. A Comprehensive Analysis of the UVC LEDs’ Applications and Decontamination Capability. Materials 2022, 15, 2854. [Google Scholar] [CrossRef] [PubMed]
- Schreier, W.J.; Kubon, J.; Regner, N.; Haiser, K.; Schrader, T.E.; Zinth, W.; Clivio, P.; Gilch, P. Thymine Dimerization in DNA Model Systems: Cyclobutane Photolesion Is Predominantly Formed via the Singlet Channel. J. Am. Chem. Soc. 2009, 131, 5038–5039. [Google Scholar] [CrossRef] [PubMed]
- De Jager, T.L.; Cockrell, A.E.; Du Plessis, S.S. Ultraviolet Light Induced Generation of Reactive Oxygen Species. In Ultraviolet Light in Human Health, Diseases and Environment; Springer: Cham, Switzerland, 2017; pp. 15–23. [Google Scholar] [CrossRef]
- Kreitenberg, A.; Martinello, R.A. Perspectives and Recommendations Regarding Standards for Ultraviolet-C Whole-Room Disinfection in Healthcare. J. Res. Natl. Inst. Stan. 2021, 126, 126015. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, M.; Tano, E.; Lindahl, C.; Huss, F. Ultraviolet-C Decontamination of a Hospital Room: Amount of UV Light Needed. Burns 2020, 46, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Elmnasser, N.; Guillou, S.; Leroi, F.; Orange, N.; Bakhrouf, A.; Federighi, M. Pulsed-Light System as a Novel Food Decontamination Technology: A Review. Can. J. Microbiol. 2007, 53, 813–821. [Google Scholar] [CrossRef] [PubMed]
- VanOsdell, D.; Foarde, K. Defining the Effectiveness of UV Lamps Installed in Circulating Air Ductwork; DOE/OR22674/610-40030-01. 2002; 807360. [Google Scholar] [CrossRef]
- Woodling, S.E.; Moraru, C.I. Influence of Surface Topography on the Effectiveness of Pulsed Light Treatment for the Inactivation of Listeria Innocua on Stainless-Steel Surfaces. J. Food Sci. 2005, 70, m345–m351. [Google Scholar] [CrossRef]
- Kim, D.-K.; Kim, S.-J.; Kang, D.-H. Bactericidal Effect of 266 to 279 Nm Wavelength UVC-LEDs for Inactivation of Gram Positive and Gram Negative Foodborne Pathogenic Bacteria and Yeasts. Food Res. Int. 2017, 97, 280–287. [Google Scholar] [CrossRef]
- Levy, C.; Aubert, X.; Lacour, B.; Carlin, F. Relevant Factors Affecting Microbial Surface Decontamination by Pulsed Light. Int. J. Food Microbiol. 2012, 152, 168–174. [Google Scholar] [CrossRef]
- Nicholson, W.L.; Galeano, B. UV Resistance of Bacillus Anthracis Spores Revisited: Validation of Bacillus Subtilis Spores as UV Surrogates for Spores of B. Anthracis Sterne. Appl. Environ. Microbiol. 2003, 69, 1327–1330. [Google Scholar] [CrossRef]
- Joux, F.; Jeffrey, W.H.; Lebaron, P.; Mitchell, D.L. Marine Bacterial Isolates Display Diverse Responses to UV-B Radiation. Appl. Environ. Microbiol. 1999, 65, 3820–3827. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D. UV Inactivation of Pathogenic and Indicator Microorganisms. Appl. Environ. Microbiol. 1985, 49, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.; Muller, M.P.; Prior, B.; So, K.; Tooze, J.; Eum, L.; Kachur, O. Wheelchair Cleaning and Disinfection in Canadian Health Care Facilities: “That’s Wheelie Gross!”. Am. J. Infect. Control 2014, 42, 1173–1177. [Google Scholar] [CrossRef] [PubMed]
- Vitzilaiou, E.; Kuria, A.M.; Siegumfeldt, H.; Rasmussen, M.A.; Knøchel, S. The Impact of Bacterial Cell Aggregation on UV Inactivation Kinetics. Water Res. 2021, 204, 117593. [Google Scholar] [CrossRef]
- Nyangaresi, P.O.; Qin, Y.; Chen, G.; Zhang, B.; Lu, Y.; Shen, L. Comparison of the Performance of Pulsed and Continuous UVC-LED Irradiation in the Inactivation of Bacteria. Water Res. 2019, 157, 218–227. [Google Scholar] [CrossRef]
- Mitxelena-Iribarren, O.; Mondragon, B.; Pérez-Lorenzo, E.; Smerdou, C.; Guillen-Grima, F.; Sierra-Garcia, J.E.; Rodriguez-Merino, F.; Arana, S. Evaluation of the Degradation of Materials by Exposure to Germicide UV-C Light through Colorimetry, Tensile Strength and Surface Microstructure Analyses. Mater. Today Commun. 2022, 31, 103690. [Google Scholar] [CrossRef]
- Thomas, R.E.; Thomas, B.C.; Conly, J.; Lorenzetti, D. Cleaning and Disinfecting Surfaces in Hospitals and Long-Term Care Facilities for Reducing Hospital- and Facility-Acquired Bacterial and Viral Infections: A Systematic Review. J. Hosp. Infect. 2022, 122, 9–26. [Google Scholar] [CrossRef]
Type of Samples | Materials | Porosity |
---|---|---|
Armrest | Artificial leather | Non-porous |
Push handle | Rubber | Non-porous |
Black steel tube | Painted steel | Non-porous |
Grey steel tube | Painted steel | Non-porous |
Ribbed plastic | Plastic | Non-porous |
Angled plastic | Plastic | Non-porous |
Seatback | Artificial leather | Non-porous |
Seat cushion | Tissue and foam | Porous |
5754 Aluminum | Al | Mg | Mn | Fe | Si | Cr | Zn | Ti | Cu |
bal. | 2.6–3.6 | <0.5 | <0.4 | <0.4 | <0.3 | <0.2 | <0.15 | <0.1 | |
S235 steel | Fe | C | Mn | Cu | P | S | N | ||
bal. | <0.2 | <1.4 | <0.55 | <0.04 | <0.04 | <0.012 | |||
304L steel | Fe | C | Cr | Ni | Mn | Si | N | P | S |
bal. | <0.03 | 17.5–19.5 | 8–10.5 | <2 | <1 | <0.11 | <0.045 | <0.015 |
304L Steel | S235 Steel | 5754 Aluminum | |||||||
---|---|---|---|---|---|---|---|---|---|
Pol. | San. | Mir. | Pol. | San. | Mir. | Pol. | San. | Mir. | |
Ra (µm) | 0.584 | 2.061 | 0.029 | 0.832 | 1.305 | 0.01 | 1.651 | 0.887 | 0.032 |
Standard deviation | 0.059 | 0.145 | 0.027 | 0.052 | 0.092 | 0.002 | 0.164 | 0.206 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adam, C.; Colin, M.; Stock, R.; Weiss, L.; Gangloff, S.C. UVC Box: An Effective Way to Quickly Decontaminate Healthcare Facilities’ Wheelchairs. Life 2024, 14, 256. https://doi.org/10.3390/life14020256
Adam C, Colin M, Stock R, Weiss L, Gangloff SC. UVC Box: An Effective Way to Quickly Decontaminate Healthcare Facilities’ Wheelchairs. Life. 2024; 14(2):256. https://doi.org/10.3390/life14020256
Chicago/Turabian StyleAdam, Cloé, Marius Colin, Romuald Stock, Laurent Weiss, and Sophie C. Gangloff. 2024. "UVC Box: An Effective Way to Quickly Decontaminate Healthcare Facilities’ Wheelchairs" Life 14, no. 2: 256. https://doi.org/10.3390/life14020256
APA StyleAdam, C., Colin, M., Stock, R., Weiss, L., & Gangloff, S. C. (2024). UVC Box: An Effective Way to Quickly Decontaminate Healthcare Facilities’ Wheelchairs. Life, 14(2), 256. https://doi.org/10.3390/life14020256