Contribution of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 to Upper Tract Urothelial Cancer Risk in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment of UTUC Patients and Non-UTUC Control Groups
2.2. Genotyping Methodology of MMP-2 rs243865 and rs2285053
2.3. Genotyping Methodology of MMP-9 rs3918242
2.4. Transcriptional Expression of MMP-2 and MMP-9
2.5. Translational Expression of MMP-2 and MMP-9
2.6. Statistical Analysis Methodology
3. Results
3.1. Demographic Characteristics of the UTUC Population
3.2. The Genotyping Outcomes for the UTUC Patients and Non-UTUC Control Groups
3.3. The Allelic Frequency Distribution Analyzing Outcomes for the UTUC Patients and Non-UTUC Control Groups
3.4. The mRNA and Protein Expression Levels of MMP-2 and MMP-9
3.5. The Associations of SNPs with the Risks of Metastasis in UTUC Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hung, C.F.; Yang, C.K.; Ou, Y.C. Urologic cancer in Taiwan. Jpn. J. Clin. Oncol. 2016, 46, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Cutress, M.L.; Stewart, G.D.; Zakikhani, P.; Phipps, S.; Thomas, B.G.; Tolley, D.A. Ureteroscopic and percutaneous management of upper tract urothelial carcinoma (UTUC): Systematic review. BJU Int. 2012, 110, 614–628. [Google Scholar] [CrossRef] [PubMed]
- Ouzzane, A.; Colin, P. Bladder cancer: Tumour recurrence after radical nephroureterectomy for UTUC. Nat. Rev. Urol. 2014, 11, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.H.; Chen, K.K.; Yen, C.C.; Wang, W.S.; Chang, Y.H.; Huang, W.J.; Fan, F.S.; Chiou, T.J.; Liu, J.H.; Chen, P.M. Unusually high incidence of upper urinary tract urothelial carcinoma in Taiwan. Urology 2002, 59, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Liao, Y.M.; Tsai, W.M.; Kuo, H.C. Upper urinary tract urothelial carcinoma in eastern Taiwan: High proportion among all urothelial carcinomas and correlation with chronic kidney disease. J. Formos. Med. Assoc. 2007, 106, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Wu, W.J.; Lin, H.H.; Li, W.M.; Huang, C.N.; Hsu, W.C.; Chang, L.L.; Li, C.C.; Yeh, H.C.; Li, C.F.; et al. Prognostic Value of Leptin Receptor Overexpression in Upper Tract Urothelial Carcinomas in Taiwan. Clin. Genitourin. Cancer 2017, 15, e653–e659. [Google Scholar] [CrossRef]
- Shen, C.H.; Chiou, H.Y.; Tung, M.C.; Wu, C.C.; Kao, W.T.; Wang, Y.H.; Juang, G.D. Clinical and demographic characteristics among patients with urothelial carcinomas of the upper urinary tract and bladder in Taiwan. J. Chin. Med. Assoc. 2017, 80, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Roupret, M.; Babjuk, M.; Comperat, E.; Zigeuner, R.; Sylvester, R.J.; Burger, M.; Cowan, N.C.; Bohle, A.; Van Rhijn, B.W.; Kaasinen, E.; et al. European Association of Urology Guidelines on Upper Urinary Tract Urothelial Cell Carcinoma: 2015 Update. Eur. Urol. 2015, 68, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Colin, P.; Koenig, P.; Ouzzane, A.; Berthon, N.; Villers, A.; Biserte, J.; Roupret, M. Environmental factors involved in carcinogenesis of urothelial cell carcinomas of the upper urinary tract. BJU Int. 2009, 104, 1436–1440. [Google Scholar] [CrossRef]
- Simsir, A.; Sarsik, B.; Cureklibatir, I.; Sen, S.; Gunaydin, G.; Cal, C. Prognostic factors for upper urinary tract urothelial carcinomas: Stage, grade, and smoking status. Int. Urol. Nephrol. 2011, 43, 1039–1045. [Google Scholar] [CrossRef]
- Colin, P.; Koenig, P.; Ballereau, C.; Phe, V.; Berthon, N.; Villers, A.; Biserte, J.; Roupret, M. Sporadic upper urinary tract urothelial cell carcinomas: Identification of interaction between toxic carcinogens and individuals genetic susceptibility. Prog. Urol. 2010, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shao, I.H.; Chang, Y.H.; Pang, S.T. Recent advances in upper tract urothelial carcinomas: From bench to clinics. Int. J. Urol. 2019, 26, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.S.; Lin, S.S.; Li, F.J.; Tsai, C.W.; Li, L.Y.; Lien, C.S.; Liao, W.L.; Wu, H.C.; Tsai, C.H.; Shih, T.C.; et al. Significant association of caveolin-1 (CAV1) genotypes with upper urothelial tract cancer. Anticancer. Res. 2013, 33, 4907–4912. [Google Scholar] [PubMed]
- Chang, W.S.; Liao, C.H.; Hsu, C.M.; Huang, C.Y.; Fang, H.Y.; Kao, P.Y.; Tsai, C.W.; Wu, H.C.; Hu, P.S.; Wang, T.C.; et al. Significant Association of Cyclo-oxygenase 2 Genotypes with Upper Tract Urothelial Cancer. Anticancer. Res. 2015, 35, 2725–2730. [Google Scholar] [PubMed]
- Lekstan, A.; Lampe, P.; Lewin-Kowalik, J.; Olakowski, M.; Jablonska, B.; Labuzek, K.; Jedrzejowska-Szypulka, H.; Olakowska, E.; Gorka, D.; Filip, I.; et al. Concentrations and activities of metalloproteinases 2 and 9 and their inhibitors (TIMPS) in chronic pancreatitis and pancreatic adenocarcinoma. J. Physiol. Pharmacol. 2012, 63, 589–599. [Google Scholar] [PubMed]
- Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 2001, 17, 463–516. [Google Scholar] [CrossRef] [PubMed]
- Butkiewicz, D.; Krzesniak, M.; Drosik, A.; Giglok, M.; Gdowicz-Klosok, A.; Kosarewicz, A.; Rusin, M.; Maslyk, B.; Gawkowska-Suwinska, M.; Suwinski, R. The VEGFR2, COX-2 and MMP-2 polymorphisms are associated with clinical outcome of patients with inoperable non-small cell lung cancer. Int. J. Cancer 2015, 137, 2332–2342. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liang, X.; Qin, X.; Cai, S.; Yu, S. Association of matrix metalloproteinase family gene polymorphisms with lung cancer risk: Logistic regression and generalized odds of published data. Sci. Rep. 2015, 5, 10056. [Google Scholar] [CrossRef] [PubMed]
- Dofara, S.G.; Chang, S.L.; Diorio, C. Gene Polymorphisms and Circulating Levels of MMP-2 and MMP-9: A Review of Their Role in Breast Cancer Risk. Anticancer. Res. 2020, 40, 3619–3631. [Google Scholar] [CrossRef]
- Miyata, Y.; Mitsunari, K.; Akihiro, A.; Watanabe, S.I.; Mochizuki, Y.; Sakai, H. Smoking-induced changes in cancer-related factors in patients with upper tract urothelial cancer. Mol. Clin. Oncol. 2015, 3, 287–294. [Google Scholar] [CrossRef]
- Su, Y.L.; Luo, H.L.; Huang, C.C.; Liu, T.T.; Huang, E.Y.; Sung, M.T.; Lin, J.J.; Chiang, P.H.; Chen, Y.T.; Kang, C.H.; et al. Galectin-1 Overexpression Activates the FAK/PI3K/AKT/mTOR Pathway and Is Correlated with Upper Urinary Urothelial Carcinoma Progression and Survival. Cells 2020, 9, 806. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.W.; Gong, C.L.; Hsu, H.M.; Chao, C.C.; Wang, Y.C.; Chang, W.S.; Tsai, Y.T.; Shih, L.C.; Tsai, C.W.; Bau, D.T. Contribution of Matrix Metalloproteinase-2 Promoter Genotypes to Nasopharyngeal Cancer Susceptibility and Metastasis in Taiwan. Cancer Genom. Proteom. 2019, 16, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, G.; Silva, L.P.D.; Matos, F.R.; Silva, T.A.D.; Medeiros, S.R.B.; Souza, L.B.; Freitas, R.A. Polymorphisms of matrix metalloproteinase-7 and -9 are associated with oral tongue squamous cell carcinoma. Braz. Oral Res. 2020, 35, e019. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.W.; Hsu, H.M.; Wang, Y.C.; Chang, W.S.; Shih, L.C.; Sun, K.T.; Hung, Y.W.; Yang, Y.C.; Gong, C.L.; Bau, D.T. Contribution of MMP2 Promoter Genotypes to Oral Cancer Susceptibility, Recurrence and Metastasis in Taiwan. Anticancer. Res. 2018, 38, 6821–6826. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yu, C.; Miao, X.; Wang, Y.; Tan, W.; Sun, T.; Zhang, X.; Xiong, P.; Lin, D. Functional haplotypes in the promoter of matrix metalloproteinase-2 and lung cancer susceptibility. Carcinogenesis 2005, 26, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Arriaga, P.; Pascual, T.; Garcia-Alvarez, A.; Fernandez-Somoano, A.; Lopez-Cima, M.F.; Tardon, A. Genetic polymorphisms in MMP 2, 9 and 3 genes modify lung cancer risk and survival. BMC Cancer 2012, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.; Tsai, Y.F.; Wu, W.T.; Chiu, K.L.; Tsai, C.W.; Chang, W.S.; Li, C.H.; Yang, J.S.; Mong, M.C.; Hsia, T.C.; et al. Association of Matrix Metalloproteinase-9 Genotypes With Lung Cancer Risk in Taiwan. Anticancer Res. 2024, 44, 1845–1852. [Google Scholar] [CrossRef]
- Wadowska, K.; Blasiak, P.; Rzechonek, A.; Sliwinska-Mosson, M. Analysis of MMP-2-735C/T (rs2285053) and MMP-9-1562C/T (rs3918242) Polymorphisms in the Risk Assessment of Developing Lung Cancer. Int. J. Mol. Sci. 2023, 24, 10576. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhou, Y.; Miao, X.; Xiong, P.; Tan, W.; Lin, D. Functional haplotypes in the promoter of matrix metalloproteinase-2 predict risk of the occurrence and metastasis of esophageal cancer. Cancer Res. 2004, 64, 7622–7628. [Google Scholar] [CrossRef]
- Li, Y.; Sun, D.L.; Duan, Y.N.; Zhang, X.J.; Wang, N.; Zhou, R.M.; Chen, Z.F.; Wang, S.J. Association of functional polymorphisms in MMPs genes with gastric cardia adenocarcinoma and esophageal squamous cell carcinoma in high incidence region of North China. Mol. Biol. Rep. 2010, 37, 197–205. [Google Scholar] [CrossRef]
- Zhu, Y.; Guo, L.; Wang, S.; Yu, Q.; Lu, J. Association of Smoking and XPG, CYP1A1, OGG1, ERCC5, ERCC1, MMP2, and MMP9 Gene Polymorphisms with the early detection and occurrence of Laryngeal Squamous Carcinoma. J. Cancer 2018, 9, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Yari, K.; Rahimi, Z.; Moradi, M.T.; Rahimi, Z. The MMP-2 -735 C allele is a risk factor for susceptibility to breast cancer. Asian Pac. J. Cancer Prev. 2014, 15, 6199–6203. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, N.; Demin, S.; Churnosov, M.; Reshetnikov, E.; Aristova, I.; Churnosova, M.; Ponomarenko, I. Matrix Metalloproteinase Gene Polymorphisms Are Associated with Breast Cancer in the Caucasian Women of Russia. Int. J. Mol. Sci. 2022, 23, 12638. [Google Scholar] [CrossRef] [PubMed]
- Bartnykaite, A.; Savukaityte, A.; Bekampyte, J.; Ugenskiene, R.; Laukaitiene, D.; Korobeinikova, E.; Gudaitiene, J.; Juozaityte, E. The Role of Matrix Metalloproteinase Single-Nucleotide Polymorphisms in the Clinicopathological Properties of Breast Cancer. Biomedicines 2022, 10, 1891. [Google Scholar] [CrossRef] [PubMed]
- Kohan, L.; Mirhosseini, M.; Mortazavizadeh, S.M. The risk of relapse in breast cancer patients is associated with MMP-9 gene polymorphism: A prospective study in a sample of the Iranian population. Nucleosides Nucleotides Nucleic Acids 2022, 41, 1012–1023. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Qiu, W.; Dong, X.J.; Zhang, X.M.; Xie, W.M.; Zhang, H.X.; Yuan, X.Y.; Zhou, G.Q.; He, F.C. Functional polymorphisms in the promoters of MMP-1, MMP-2, MMP-3, MMP-9, MMP-12 and MMP-13 are not associated with hepatocellular carcinoma risk. Gut 2007, 56, 445–447. [Google Scholar] [CrossRef] [PubMed]
- Barakat, L.A.; Elsergany, A.R.; Ghattas, M.H.; Mahsoub, N.; Bondok, R.M. Relationship between interferon-induced transmembrane protein 3 and matrix metalloproteinase-9 gene polymorphisms in patients with hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol. 2023, 47, 102110. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.K.; Chang, W.S.; Tsai, C.W.; Wang, Y.C.; Yang, M.D.; Hsu, H.S.; Chao, C.Y.; Yu, C.C.; Chen, J.C.; Pei, J.S.; et al. The Association of MMP9 Promoter Rs3918242 Genotype With Gastric Cancer. Anticancer. Res. 2021, 41, 3309–3315. [Google Scholar] [CrossRef]
- Fu, C.K.; Mong, M.C.; Yu, C.C.; Yang, M.D.; Wang, Z.H.; Yang, Y.C.; Chen, J.C.; Pei, J.S.; Hsia, N.Y.; Tsai, C.W.; et al. Association of Matrix Metallopeptidase-2 Genotypes With Risk of Gastric Cancer in Taiwan. Anticancer. Res. 2022, 42, 1749–1755. [Google Scholar] [CrossRef]
- Okada, R.; Naito, M.; Hattori, Y.; Seiki, T.; Wakai, K.; Nanri, H.; Watanabe, M.; Suzuki, S.; Kairupan, T.S.; Takashima, N.; et al. Matrix metalloproteinase 9 gene polymorphisms are associated with a multiple family history of gastric cancer. Gastric Cancer 2017, 20, 246–253. [Google Scholar] [CrossRef]
- Park, K.S.; Kim, S.J.; Kim, K.H.; Kim, J.C. Clinical characteristics of TIMP2, MMP2, and MMP9 gene polymorphisms in colorectal cancer. J. Gastroenterol. Hepatol. 2011, 26, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Gaibar, M.; Galan, M.; Romero-Lorca, A.; Anton, B.; Malon, D.; Moreno, A.; Fernandez-Santander, A.; Novillo, A. Genetic Variants of ANGPT1, CD39, FGF2 and MMP9 Linked to Clinical Outcome of Bevacizumab Plus Chemotherapy for Metastatic Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 1381. [Google Scholar] [CrossRef] [PubMed]
- Banday, M.Z.; Sameer, A.S.; Mir, A.H.; Mokhdomi, T.A.; Chowdri, N.A.; Haq, E. Matrix metalloproteinase (MMP) -2, -7 and -9 promoter polymorphisms in colorectal cancer in ethnic Kashmiri population—A case-control study and a mini review. Gene 2016, 589, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Yueh, T.C.; Hung, Y.C.; Lee, H.T.; Yang, M.D.; Wang, Z.H.; Yang, Y.C.; Ke, T.W.; Pei, J.S.; Tsai, C.W.; Bau, D.T.; et al. Role of Matrix Metallopeptidase-2 Genotypes in Taiwanese Patients With Colorectal Cancer. Anticancer. Res. 2022, 42, 5335–5342. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.L.; Misra, S.; Kumar, A.; Mittal, B. Higher risk of matrix metalloproteinase (MMP-2, 7, 9) and tissue inhibitor of metalloproteinase (TIMP-2) genetic variants to gallbladder cancer. Liver Int. 2012, 32, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Jeeyar, V.; Prasad Singh, S.; Dixit, M. Functional relevance of MMP2 promoter variants in gallbladder cancer: A case-control study in an Eastern Indian Population. Gene 2024, 913, 148372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, G.; Zhang, Z.; Wang, S.; Zhang, S. MMP-2 and MMP-9 gene polymorphisms associated with cervical cancer risk. Int. J. Clin. Exp. Pathol. 2017, 10, 11760–11765. [Google Scholar] [PubMed]
- Srivastava, P.; Kapoor, R.; Mittal, R.D. Association of single nucleotide polymorphisms in promoter of matrix metalloproteinase-2, 8 genes with bladder cancer risk in Northern India. Urol. Oncol. 2013, 31, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, E.; Reszka, E.; Jablonowski, Z.; Jablonska, E.; Krol, M.B.; Grzegorczyk, A.; Gromadzinska, J.; Sosnowski, M.; Wasowicz, W. Genetic polymorphisms in matrix metalloproteinases (MMPs) and tissue inhibitors of MPs (TIMPs), and bladder cancer susceptibility. BJU Int. 2013, 112, 1207–1214. [Google Scholar] [CrossRef]
- Liao, C.H.; Tsai, C.L.; Chang, S.Y.; Lin, Y.H.; Wang, Y.C.; Huang, W.C.; Mong, M.C.; Yang, Y.C.; Wu, W.T.; Chen, J.C.; et al. Impacts of Matrix Metalloproteinase 9 Genotypes on Renal Cell Carcinoma. In Vivo 2023, 37, 2452–2458. [Google Scholar] [CrossRef]
- Li, P.H.; Liao, C.H.; Huang, W.C.; Chang, W.S.; Wu, H.C.; Hsu, S.W.; Chen, K.Y.; Wang, Z.H.; Hsia, T.C.; Bau, D.T.; et al. Association of Matrix Metalloproteinase-2 Genotypes With Prostate Cancer Risk. Anticancer Res. 2023, 43, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.; Kamankesh, M.; Vaisi-Raygani, A.; Moradi, M.R.; Tanhapour, M.; Rahimi, Z.; Elahi-Rad, S.; Bahrehmand, F.; Aliyari, M.; Aghaz, F.; et al. Activities and polymorphisms of MMP-2 and MMP-9, smoking, diabetes and risk of prostate cancer. Mol. Biol. Rep. 2020, 47, 9373–9383. [Google Scholar] [CrossRef] [PubMed]
- Schveigert, D.; Valuckas, K.P.; Kovalcis, V.; Ulys, A.; Chvatovic, G.; Didziapetriene, J. Significance of MMP-9 expression and MMP-9 polymorphism in prostate cancer. Tumori J. 2013, 99, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Greene, F.L.; Page, D.L.; Fleming, I.D.; Fritz, A.G.; Balch, C.M.; Haller, D.G.; Morrow, M. (Eds.) AJCC Cancer Staging Manual, 6th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Epstein, J.I.; Amin, M.B.; Reuter, V.R.; Mostofi, F.K. The World Health Organization/International Society of Urological Pathology consensus classification of urothelial (transitional cell) neoplasms of the urinary bladder. Bladder Consensus Conference Committee. Am. J. Surg. Pathol. 1998, 22, 1435–1448. [Google Scholar] [CrossRef]
- Yueh, T.C.; Wang, Y.C.; Chin, Y.T.; Hung, Y.C.; Mong, M.C.; Yang, Y.C.; Pei, J.S.; Gu, J.; Tsai, C.W.; Bau, D.T.; et al. Impact of Mir196a-2 Genotypes on Colorectal Cancer Risk in Taiwan. Int. J. Mol. Sci. 2023, 24, 11613. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.D.; Lin, K.C.; Lu, M.C.; Jeng, L.B.; Hsiao, C.L.; Yueh, T.C.; Fu, C.K.; Li, H.T.; Yen, S.T.; Lin, C.W.; et al. Contribution of matrix metalloproteinases-1 genotypes to gastric cancer susceptibility in Taiwan. Biomedicine 2017, 7, 10. [Google Scholar] [CrossRef]
- Tsai, C.W.; Chang, W.S.; Yueh, T.C.; Wang, Y.C.; Chin, Y.T.; Yang, M.D.; Hung, Y.C.; Mong, M.C.; Yang, Y.C.; Gu, J.; et al. The Significant Impacts of Interleukin-8 Genotypes on the Risk of Colorectal Cancer in Taiwan. Cancers 2023, 15, 4921. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.S.; Hsia, N.Y.; Wang, Z.H.; Chen, H.C.; Hsia, T.C.; Lin, M.L.; Wang, Y.C.; Chang, W.S.; Bau, D.T.; Tsai, C.W. Contribution of Matrix Metalloproteinase-2 Genotypes to Taiwan Pterygium Risk. In Vivo 2024, 38, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.B.; Hsia, N.Y.; Wang, Z.H.; Yang, J.S.; Hsu, Y.M.; Wang, Y.C.; Chang, W.S.; Bau, D.T.; Yin, M.C.; Tsai, C.W. The Contribution of MMP-9 Genotypes to Pterygium in Taiwan. Anticancer Res. 2020, 40, 4523–4527. [Google Scholar] [CrossRef]
- Kuo, C.C.; Tsai, C.W.; Chang, W.S.; Shen, T.C.; Tzeng, H.E.; Li, C.H.; Wang, Y.C.; Tsai, F.J.; Bau, D.T. Contribution of Matrix Metalloproteinase-9 rs3918242 Genotypes to Childhood Leukemia Risk. Anticancer Res. 2020, 40, 5751–5756. [Google Scholar] [CrossRef]
- Chen, C.C.; Chang, W.S.; Pei, J.S.; Kuo, C.C.; Wang, C.H.; Wang, Y.C.; Hsu, P.C.; He, J.L.; Gu, J.; Bau, D.T.; et al. Non-homologous End-joining Genotype, mRNA Expression, and DNA Repair Capacity in Childhood Acute Lymphocytic Leukemia. Cancer Genom. Proteom. 2024, 21, 144–157. [Google Scholar] [CrossRef]
- Tsai, C.W.; Shih, L.C.; Chang, W.S.; Hsu, C.L.; He, J.L.; Hsia, T.C.; Wang, Y.C.; Gu, J.; Bau, D.T. Non-Homologous End-Joining Pathway Genotypes Significantly Associated with Nasopharyngeal Carcinoma Susceptibility. Biomedicines 2023, 11, 1648. [Google Scholar] [CrossRef]
- Hung, K.C.; Tien, N.; Bau, D.T.; Yao, C.H.; Chen, C.H.; Yang, J.L.; Lin, M.L.; Chen, S.S. Let-7g Upregulation Attenuated the KRAS-PI3K-Rac1-Akt Axis-Mediated Bioenergetic Functions. Cells 2023, 12, 2313. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.Y.; Hsu, W.L.; Hsu, S.W.; Chen, C.H.; Hong, K.T.; Tsai, C.W.; Chang, W.S.; Chen, C.C.; Pei, J.S.; Lee, H.T.; et al. Involvement of Mitochondrial Damage and Oxidative Stress in Apoptosis Induced by Betulin Plus Arsenic Trioxide in Neuroblastoma Cells. Anticancer Res. 2023, 43, 2467–2476. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research, N. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014, 507, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Ku, J.H.; Byun, S.S.; Jeong, H.; Kwak, C.; Kim, H.H.; Lee, S.E. The role of p53 on survival of upper urinary tract urothelial carcinoma: A systematic review and meta-analysis. Clin. Genitourin. Cancer 2013, 11, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Krabbe, L.M.; Bagrodia, A.; Haddad, A.Q.; Kapur, P.; Khalil, D.; Hynan, L.S.; Wood, C.G.; Karam, J.A.; Weizer, A.Z.; Raman, J.D.; et al. Multi-institutional validation of the predictive value of Ki-67 in patients with high grade urothelial carcinoma of the upper urinary tract. J. Urol. 2015, 193, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Soria, F.; Moschini, M.; Haitel, A.; Wirth, G.J.; Karam, J.A.; Wood, C.G.; Roupret, M.; Margulis, V.; Karakiewicz, P.I.; Briganti, A.; et al. HER2 overexpression is associated with worse outcomes in patients with upper tract urothelial carcinoma (UTUC). World J. Urol. 2017, 35, 251–259. [Google Scholar] [CrossRef]
- Nakanishi, K.; Kawai, T.; Sato, H.; Aida, S.; Kasamatsu, H.; Aurues, T.; Ikeda, T. Expression of matrix metalloproteinase-2 (MMP-2) and of membrane-type-1-matrix metalloproteinase (MT1-MMP) in transitional cell carcinoma of the upper urinary tract. Hum. Pathol. 2000, 31, 193–200. [Google Scholar] [CrossRef]
- Miyata, Y.; Kanda, S.; Nomata, K.; Hayashida, Y.; Kanetake, H. Expression of metalloproteinase-2, metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 in transitional cell carcinoma of upper urinary tract: Correlation with tumor stage and survival. Urology 2004, 63, 602–608. [Google Scholar] [CrossRef]
- Kamijima, S.; Tobe, T.; Suyama, T.; Ueda, T.; Igarashi, T.; Ichikawa, T.; Ito, H. The prognostic value of p53, Ki-67 and matrix metalloproteinases MMP-2 and MMP-9 in transitional cell carcinoma of the renal pelvis and ureter. Int. J. Urol. 2005, 12, 941–947. [Google Scholar] [CrossRef]
- Li, W.M.; Wei, Y.C.; Huang, C.N.; Ke, H.L.; Li, C.C.; Yeh, H.C.; Chang, L.L.; Huang, C.H.; Li, C.F.; Wu, W.J. Matrix metalloproteinase-11 as a marker of metastasis and predictor of poor survival in urothelial carcinomas. J. Surg. Oncol. 2016, 113, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science 2002, 295, 2387–2392. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.; Prasad, D.; Mukherjee, S. Matrix Metalloproteinases in Oral Cancer Pathogenesis and their Use in Therapy. Anticancer Agents Med. Chem. 2024, 24, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.C.L.; Pereira, E.R.; Francelino, A.L.; Guembarovski, A.; Fuganti, P.E.; de Oliveira, K.B.; Miqueloto, C.A.; Serpeloni, J.M.; Guembarovski, R.L. Metalloproteinase 9 immunostaining profile is positively correlated with tumor grade, extraprostatic extension and biochemical recurrence in prostate cancer. Pathol. Res. Pract. 2024, 253, 155024. [Google Scholar] [CrossRef] [PubMed]
- Nannuru, K.C.; Futakuchi, M.; Varney, M.L.; Vincent, T.M.; Marcusson, E.G.; Singh, R.K. Matrix metalloproteinase (MMP)-13 regulates mammary tumor-induced osteolysis by activating MMP9 and transforming growth factor-beta signaling at the tumor-bone interface. Cancer Res. 2010, 70, 3494–3504. [Google Scholar] [CrossRef] [PubMed]
- Perrin, L.; Gligorijevic, B. Proteolytic and mechanical remodeling of the extracellular matrix by invadopodia in cancer. Phys. Biol. 2022, 20, 015001. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, S.; Kalloush, H.M.; Manoon, N.A.; Bardaweel, S.K. Matrix Metalloproteinases Inhibitors in Cancer Treatment: An Updated Review (2013–2023). Molecules 2023, 28, 5567. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.; Koran, S.; AlOmair, L. Insights Into the Role of Matrix Metalloproteinases in Cancer and its Various Therapeutic Aspects: A Review. Front. Mol. Biosci. 2022, 9, 896099. [Google Scholar] [CrossRef]
- Guo, J.; Song, Z.; Muming, A.; Zhang, H.; Awut, E. Cysteine protease inhibitor S promotes lymph node metastasis of esophageal cancer cells via VEGF-MAPK/ERK-MMP9/2 pathway. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 1–9. [Google Scholar] [CrossRef]
- Choi, E.K.; Kim, H.D.; Park, E.J.; Song, S.Y.; Phan, T.T.; Nam, M.; Kim, M.; Kim, D.U.; Hoe, K.L. 8-Methoxypsoralen Induces Apoptosis by Upregulating p53 and Inhibits Metastasis by Downregulating MMP-2 and MMP-9 in Human Gastric Cancer Cells. Biomol. Ther. 2023, 31, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lu, S.; Chen, Y.; Zheng, L.; Chen, L.; Ding, H.; Ding, J.; Lou, D.; Liu, F.; Zheng, B. AKT2 phosphorylation of hexokinase 2 at T473 promotes tumorigenesis and metastasis in colon cancer cells via NF-kappaB, HIF1alpha, MMP2, and MMP9 upregulation. Cell Signal. 2019, 58, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int. J. Mol. Sci. 2016, 17, 868. [Google Scholar] [CrossRef] [PubMed]
- Aimes, R.T.; Quigley, J.P. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J. Biol. Chem. 1995, 270, 5872–5876. [Google Scholar] [CrossRef] [PubMed]
- Grunwald, B.; Vandooren, J.; Locatelli, E.; Fiten, P.; Opdenakker, G.; Proost, P.; Kruger, A.; Lellouche, J.P.; Israel, L.L.; Shenkman, L.; et al. Matrix metalloproteinase-9 (MMP-9) as an activator of nanosystems for targeted drug delivery in pancreatic cancer. J. Control Release 2016, 239, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.H.; Yang, X.Q.; Wang, B.C.; Liu, S.P.; Wang, F.B. Overexpression of twist and matrix metalloproteinase-9 with metastasis and prognosis in gastric cancer. Asian Pac. J. Cancer Prev. 2013, 14, 5055–5060. [Google Scholar] [CrossRef] [PubMed]
- El-Tanani, M.; Platt-Higgins, A.; Lee, Y.F.; Al Khatib, A.O.; Haggag, Y.; Sutherland, M.; Zhang, S.D.; Aljabali, A.A.A.; Mishra, V.; Serrano-Aroca, A.; et al. Matrix metalloproteinase 2 is a target of the RAN-GTP pathway and mediates migration, invasion and metastasis in human breast cancer. Life Sci. 2022, 310, 121046. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.J.; Chin, M.C.; Lin, C.C.; His, Y.T.; Lo, Y.S.; Chuang, Y.C.; Chen, M.K. Pinostilbene Hydrate Suppresses Human Oral Cancer Cell Metastasis by Downregulation of Matrix Metalloproteinase-2 Through the Mitogen-Activated Protein Kinase Signaling Pathway. Cell Physiol. Biochem. 2018, 50, 911–923. [Google Scholar] [CrossRef]
- Chiu, Y.T.; Husain, A.; Sze, K.M.; Ho, D.W.; Suarez, E.M.S.; Wang, X.; Lee, E.; Ma, H.T.; Lee, J.M.; Chan, L.K.; et al. Midline 1 interacting protein 1 promotes cancer metastasis through FOS-like 1-mediated matrix metalloproteinase 9 signaling in HCC. Hepatology 2023, 78, 1368–1383. [Google Scholar] [CrossRef]
- Gautam, J.; Banskota, S.; Lee, H.; Lee, Y.J.; Jeon, Y.H.; Kim, J.A.; Jeong, B.S. Down-regulation of cathepsin S and matrix metalloproteinase-9 via Src, a non-receptor tyrosine kinase, suppresses triple-negative breast cancer growth and metastasis. Exp. Mol. Med. 2018, 50, 1–14. [Google Scholar] [CrossRef]
- Tauro, M.; Shay, G.; Sansil, S.S.; Laghezza, A.; Tortorella, P.; Neuger, A.M.; Soliman, H.; Lynch, C.C. Bone-Seeking Matrix Metalloproteinase-2 Inhibitors Prevent Bone Metastatic Breast Cancer Growth. Mol. Cancer Ther. 2017, 16, 494–505. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.L.; Hames, R.A.; Mastroianni, N.M.; Greenstein, A.E.; Weed, S.A. Evaluation of the matrix metalloproteinase 9 (MMP9) inhibitor Andecaliximab as an Anti-invasive therapeutic in Head and neck squamous cell carcinoma. Oral Oncol. 2022, 132, 106008. [Google Scholar] [CrossRef] [PubMed]
- Koutros, S.; Kiemeney, L.A.; Pal Choudhury, P.; Milne, R.L.; Lopez de Maturana, E.; Ye, Y.; Joseph, V.; Florez-Vargas, O.; Dyrskjot, L.; Figueroa, J.; et al. Genome-wide Association Study of Bladder Cancer Reveals New Biological and Translational Insights. Eur. Urol. 2023, 84, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Bau, D.T.; Tsai, C.W.; Chang, W.S.; Yang, J.S.; Liu, T.Y.; Lu, H.F.; Wang, Y.W.; Tsai, F.J. Genetic susceptibility to prostate cancer in Taiwan: A genome-wide association study. Mol. Carcinog. 2024, 63, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.Q.; Xiong, G.Y.; Yang, K.W.; Zhang, L.; He, S.M.; Gong, Y.Q.; He, Q.; Li, X.Y.; Wang, Z.C.; Bao, Z.Q.; et al. Detection of urothelial carcinoma, upper tract urothelial carcinoma, bladder carcinoma, and urothelial carcinoma with gross hematuria using selected urine-DNA methylation biomarkers: A prospective, single-center study. Urol. Oncol. 2018, 36, 342.e15–342.e23. [Google Scholar] [CrossRef] [PubMed]
- Wolff, E.M.; Chihara, Y.; Pan, F.; Weisenberger, D.J.; Siegmund, K.D.; Sugano, K.; Kawashima, K.; Laird, P.W.; Jones, P.A.; Liang, G. Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res. 2010, 70, 8169–8178. [Google Scholar] [CrossRef] [PubMed]
- Grelus, A.; Nica, D.V.; Miklos, I.; Belengeanu, V.; Ioiart, I.; Popescu, C. Clinical Significance of Measuring Global Hydroxymethylation of White Blood Cell DNA in Prostate Cancer: Comparison to PSA in a Pilot Exploratory Study. Int. J. Mol. Sci. 2017, 18, 2465. [Google Scholar] [CrossRef]
- Chen, G.L.; Wang, S.C.; Shen, T.C.; Tsai, C.W.; Chang, W.S.; Li, H.T.; Wu, C.N.; Chao, C.Y.; Hsia, T.C.; Bau, D.T. The association of matrix metalloproteinas-2 promoter polymorphisms with lung cancer susceptibility in Taiwan. Chin. J. Physiol. 2019, 62, 210–216. [Google Scholar] [CrossRef]
Characteristics | Cases (n = 218) | Controls (n = 580) | p-Value | ||
---|---|---|---|---|---|
N | % | N | % | ||
Age (mean ± SD) | 65.4 ± 4.7 | 62.9 ± 3.9 | 0.8518 a | ||
Gender | |||||
Male | 114 | 52.3% | 323 | 55.7% | 0.4256 b |
Female | 104 | 47.7% | 257 | 44.3% | |
Location | |||||
Renal pelvic tumor | 84 | 38.5% | |||
Ureter tumor | 76 | 34.9% | |||
Multiple tumor | 58 | 26.6% | |||
Lymph node metastasis | |||||
Yes | 41 | 18.8% | |||
No | 177 | 81.2% | |||
Grade | |||||
Low | 86 | 39.4% | |||
High | 132 | 60.6% | |||
Stage | |||||
I or II | 168 | 77.1% | |||
III or IV | 50 | 22.9% |
Genotypes | Controls, n (%) | Cases, n (%) | OR (95%CI) | p-Value a |
---|---|---|---|---|
MMP-2 promoter -1306 | ||||
rs243865 | ||||
CC | 472 (81.4) | 173 (79.4) | 1.00 (Reference) | |
CT | 99 (17.1) | 40 (18.3) | 1.10 (0.73–1.66) | 0.7152 |
TT | 9 (1.5) | 5 (2.3) | 1.52 (0.50–4.59) | 0.6620 |
CT + TT | 108 (18.6) | 45 (20.6) | 1.14 (0.77–1.68) | 0.5854 |
Ptrend | 0.6955 | |||
PHWE | 0.1559 | |||
MMP-2 promoter -735 | ||||
rs2285053 | ||||
CC | 353 (60.9) | 113 (51.8) | 1.00 (Reference) | |
CT | 200 (34.5) | 86 (39.5) | 1.34 (0.97–1.87) | 0.0946 |
TT | 27 (4.6) | 19 (8.7) | 2.20 (1.18–4.10) | 0.0190 * |
CT + TT | 227 (39.1) | 105 (48.2) | 1.44 (1.05–1.98) | 0.0261 * |
Ptrend | 0.0199 * | |||
PHWE | 0.8444 | |||
MMP-9 promoter -1562 | ||||
rs3918242 | ||||
CC | 430 (74.1) | 138 (63.3) | 1.00 (Reference) | |
CT | 134 (23.1) | 65 (29.8) | 1.51 (1.06–2.15) | 0.0272 * |
TT | 16 (2.8) | 15 (6.9) | 2.92 (1.41–6.06) | 0.0054 * |
CT + TT | 150 (25.9) | 80 (36.7) | 1.66 (1.19–2.32) | 0.0035 * |
Ptrend | 0.0020 * | |||
PHWE | 0.1627 |
Allelic Types | Controls, n (%) | Cases, n (%) | OR (95%CI) | p-Value a |
---|---|---|---|---|
MMP-2 rs243865 | ||||
Allele C | 1043 (89.9) | 386 (88.5) | 1.00 (Reference) | |
Allele T | 117 (10.1) | 50 (11.5) | 1.15 (0.81–1.64) | 0.4766 |
MMP-2 rs2285053 | ||||
Allele C | 906 (78.1) | 312 (71.6) | 1.00 (Reference) | |
Allele T | 254 (21.9) | 124 (28.4) | 1.42 (1.10–1.82) | 0.0075 * |
MMP-9 rs3918242 | ||||
Allele C | 944 (85.7) | 341 (78.2) | 1.00 (Reference) | |
Allele T | 166 (14.3) | 95 (21.8) | 1.58 (1.20–2.10) | 0.0016 * |
Genotypes | Metastasis | OR (95%CI) | p-Value a | |
---|---|---|---|---|
No | Yes | |||
MMP-2 rs243865 | ||||
CC | 142 | 31 | 1.00 (Reference) | 0.6571 |
CT + TT | 35 | 10 | 1.31 (0.59–2.92) | |
MMP-2 rs2285053 | ||||
CC | 99 | 14 | 1.00 (Reference) | 0.0192 * |
CT + TT | 78 | 27 | 2.47 (1.20–4.98) | |
MMP-9 rs3918242 | ||||
CC | 122 | 16 | 1.00 (Reference) | 0.0007 * |
CT + TT | 55 | 25 | 3.47 (1.71–7.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.-R.; Ma, H.-H.; Chang, C.-H.; Liao, C.-H.; Chang, W.-S.; Mong, M.-C.; Yang, Y.-C.; Gu, J.; Bau, D.-T.; Tsai, C.-W. Contribution of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 to Upper Tract Urothelial Cancer Risk in Taiwan. Life 2024, 14, 801. https://doi.org/10.3390/life14070801
Wang B-R, Ma H-H, Chang C-H, Liao C-H, Chang W-S, Mong M-C, Yang Y-C, Gu J, Bau D-T, Tsai C-W. Contribution of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 to Upper Tract Urothelial Cancer Risk in Taiwan. Life. 2024; 14(7):801. https://doi.org/10.3390/life14070801
Chicago/Turabian StyleWang, Bo-Ren, Hung-Huan Ma, Chao-Hsiang Chang, Cheng-Hsi Liao, Wen-Shin Chang, Mei-Chin Mong, Ya-Chen Yang, Jian Gu, Da-Tian Bau, and Chia-Wen Tsai. 2024. "Contribution of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 to Upper Tract Urothelial Cancer Risk in Taiwan" Life 14, no. 7: 801. https://doi.org/10.3390/life14070801
APA StyleWang, B.-R., Ma, H.-H., Chang, C.-H., Liao, C.-H., Chang, W.-S., Mong, M.-C., Yang, Y.-C., Gu, J., Bau, D.-T., & Tsai, C.-W. (2024). Contribution of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 to Upper Tract Urothelial Cancer Risk in Taiwan. Life, 14(7), 801. https://doi.org/10.3390/life14070801