The Efficiency, Predictability, and Safety of First-Generation (Visumax 500) and Second-Generation (Visumax 800) Keratorefractive Lenticule Extraction Surgeries: Real-World Experiences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Surgery Technique
2.3. Ophthalmic Exam
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganesh, S.; Brar, S.; Arra, R.R. Refractive lenticule extraction small incision lenticule extraction: A new refractive surgery paradigm. Indian J. Ophthalmol. 2018, 66, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Ang, M.; Gatinel, D.; Reinstein, D.Z.; Mertens, E.; Alió Del Barrio, J.L.; Alió, J.L. Refractive surgery beyond 2020. Eye 2021, 35, 362–382. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, P.; Mrochen, M.; Basuthkar, S.; Viswanathan, D.; Joseph, R. Wavefront-guided versus wavefront-optimized laser in situ keratomileusis: Contralateral comparative study. J. Cataract. Refract. Surg. 2008, 34, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Radi, M.; Shehata, M.; Mostafa, M.M.; Aly, M.O.M. Transepithelial photorefractive keratectomy: A prospective randomized comparative study between the two-step and the single-step techniques. Eye 2023, 37, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.Y.; Lin, P.Y.; Hsu, C.C.; Liu, C.J. Comparison of clinical outcomes of LASIK, Trans-PRK, and SMILE for correction of myopia. J. Chin. Med. Assoc. 2022, 85, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Dupps, W.J., Jr.; Randleman, J.B.; Kohnen, T.; Srinivasan, S.; Werner, L. Scientific Nomenclature for Keratorefractive Lenticule Extraction (KLEx) Procedures: A Joint Editorial Statement. J. Refract. Surg. 2023, 39, 726–727. [Google Scholar] [CrossRef] [PubMed]
- Reinstein, D.Z.; Carp, G.I.; Archer, T.J.; Vida, R.S.; Yammouni, R. Large Population Outcomes of Small Incision Lenticule Extraction in Young Myopic Patients. J. Refract. Surg. 2022, 38, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Reinstein, D.Z.; Archer, T.J.; Vida, R.S.; Carp, G.I.; Reinstein, J.F.R.; McAlinden, C. Objective and Subjective Quality of Vision After SMILE for High Myopia and Astigmatism. J. Refract. Surg. 2022, 38, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Jabbarvand, M.; Khodaparast, M.; Moravvej, Z.; Shahraki, K.; Ahmadi, H.; Shahraki, K.; Jamali, A.; Narooie-Noori, F. Vector analysis of moderate to high myopic astigmatism after small-incision lenticule extraction (SMILE): 12-month follow-up. Eur. J. Ophthalmol. 2022, 32, 3312–3320. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Chuck, R.S.; Park, C.Y. Femtosecond laser refractive surgery: Small-incision lenticule extraction vs. femtosecond laser-assisted LASIK. Curr. Opin. Ophthalmol. 2015, 26, 260–264. [Google Scholar] [CrossRef]
- Alió Del Barrio, J.L.; Vargas, V.; Al-Shymali, O.; Alió, J.L. Small incision lenticule extraction (SMILE) in the correction of myopic astigmatism: Outcomes and limitations—An update. Eye Vis. 2017, 4, 26. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Li, M.; Han, T.; Fu, D.; Zhou, X. Four-year outcomes of small incision lenticule extraction (SMILE) to correct high myopic astigmatism. Br. J. Ophthalmol. 2021, 105, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, Q.; Jia, Y.; Zhou, D.; Zhou, J. Clinical Outcomes of SMILE and FS-LASIK Used to Treat Myopia: A Meta-analysis. J. Refract. Surg. 2016, 32, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Cao, H.; Chen, X.; Zhao, X.; Zhang, J.; Wu, G.; Wang, Y. Small Incision Lenticule Extraction (SMILE) Versus Laser Assisted Stromal In Situ Keratomileusis (LASIK) for Astigmatism Corrections: A Systematic Review and Meta-analysis. Am. J. Ophthalmol. 2023, 247, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Asgari, S.; Khabazkhoob, M.; Heidari, Z. Vector analysis of astigmatism correction after PRK, FS-LASIK, and SMILE for myopic astigmatism. Int. Ophthalmol. 2023, 43, 3999–4009. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, L.; Ma, J.; Li, M.; Zhang, J.; Zhao, X.; Wang, Y. Comparison of Wavefront-Guided Femtosecond LASIK and Optimized SMILE for Correction of Moderate-to-High Astigmatism. J. Refract. Surg. 2021, 37, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Gao, W.; Xu, C.; Wang, Y. Clinical outcomes and higher order aberrations of wavefront-guided LASIK versus SMILE for correction of myopia: A systemic review and meta-analysis. Acta Ophthalmol. 2023, 101, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.; Klabe, K.; Kirca, M.; Kretz, F.A.T.; Auffarth, G.; Breyer, D.R.H. Refractive outcomes of small lenticule extraction (SMILE) Pro® with a 2 MHz femtosecond laser. Int. Ophthalmol. 2024, 44, 52. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Archer, T.J.; Potter, J.G.; Gupta, R.; Wiltfang, R. Refractive and Visual Outcomes of SMILE for Compound Myopic Astigmatism With the VISUMAX 800. J. Refract. Surg. 2023, 39, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Brar, S.; Ganesh, S.; Bhargav, S. Comparison of Intraoperative Time Taken for Docking, Lenticule Dissection, and Overall Workflow for SMILE Performed With the VisuMax 800 Versus the VisuMax 500 Femtosecond Laser. J. Refract. Surg. 2023, 39, 648. [Google Scholar] [CrossRef] [PubMed]
- Gomel, N.; Negari, S.; Frucht-Pery, J.; Wajnsztajn, D.; Strassman, E.; Solomon, A. Predictive factors for efficacy and safety in refractive surgery for myopia. PLoS ONE 2018, 13, e0208608. [Google Scholar] [CrossRef] [PubMed]
- Reinstein, D.Z.; Archer, T.J.; Vida, R.S.; Carp, G.I.; Reinstein, J.F.R.; McChesney, T.; Potter, J.G. Small Incision Lenticule Extraction (SMILE) for the Correction of High Myopia With Astigmatism. J. Refract. Surg. 2022, 38, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Gyldenkerne, A.; Hjortdal, J.; Ivarsen, A. Astigmatism prediction in small-incision lenticule extraction. J. Cataract. Refract. Surg. 2020, 46, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Chow, S.S.W.; Chow, L.L.W.; Lee, C.Z.; Chan, T.C.Y. Astigmatism Correction Using SMILE. Asia. Pac. J. Ophthalmol. 2019, 8, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Cui, G.; Di, Y.; Yang, S.; Chen, D.; Li, Y. Efficacy of small-incision lenticule extraction surgery in high astigmatism: A meta-analysis. Front. Med. 2022, 9, 1100241. [Google Scholar] [CrossRef] [PubMed]
- Naderi, M.; Sabour, S.; Khodakarim, S.; Daneshgar, F. Studying the factors related to refractive error regression after PRK surgery. BMC Ophthalmol. 2018, 18, 198. [Google Scholar] [CrossRef] [PubMed]
- Sahay, P.; Bafna, R.K.; Reddy, J.C.; Vajpayee, R.B.; Sharma, N. Complications of laser-assisted in situ keratomileusis. Indian J. Ophthalmol. 2021, 69, 1658–1669. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.I.; Bafna, R.K.; Mehta, J.S.; Reddy, J.; Titiyal, J.S.; Maharana, P.K.; Sharma, N. Complications of small incision lenticule extraction. Indian J. Ophthalmol. 2020, 68, 2711–2722. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Han, Y.; Wang, J.; Han, T.; Zhou, X. Impact of unintended initial dissection of the posterior plane during SMILE surgery on surgery time and visual outcomes. BMC Ophthalmol. 2022, 22, 108. [Google Scholar] [CrossRef] [PubMed]
- Piñero, D.P.; Teus, M.A. Clinical outcomes of small-incision lenticule extraction and femtosecond laser-assisted wavefront-guided laser in situ keratomileusis. J. Cataract. Refract. Surg. 2016, 42, 1078–1093. [Google Scholar] [CrossRef] [PubMed]
- Alió Del Barrio, J.L.; Canto-Cerdán, M.; Bo, M.; Subirana, N.; Alió, J.L. Laser-assisted in situ keratomileusis long term outcomes in late adolescence. Eur. J. Ophthalmol. 2021, 31, 2307–2312. [Google Scholar] [CrossRef]
Characteristics | First KLEx Group (N = 80) | Second KLEx Group (N = 80) | p |
---|---|---|---|
Age | 31.52 ± 7.42 | 33.38 ± 8.87 | 0.152 |
Sex (male/female) | 38:42 | 32:48 | 0.426 |
Laterality (right/left) | 36:44 | 39:41 | 0.535 |
Systemic disease | 0.017 * | ||
Hypertension | 0 | 6 | |
Diabetes mellitus | 0 | 2 | |
Heart disease | 2 | 4 | |
Others | 3 | 6 | |
BCVA (LogMAR) | 0.00 ± 0.02 | 0.01 ± 0.04 | 0.154 |
Manifest refraction (D) | |||
Sphere | −4.75 ± 2.11 | −4.93 ± 2.06 | 0.597 |
Cylinder | −0.98 ± 0.93 | −1.12 ± 1.02 | 0.385 |
SE | −5.24 ± 2.26 | −5.49 ± 2.31 | 0.503 |
Cycloplegic refraction (D) | |||
Sphere | −4.78 ± 1.93 | −4.83 ± 2.01 | 0.873 |
Cylinder | −1.01 ± 1.00 | −1.16 ± 1.05 | 0.356 |
SE | −5.28 ± 2.04 | −5.40 ± 2.28 | 0.715 |
Topographic cylinder (D) | 1.44 ± 0.83 | 1.49 ± 0.67 | 0.668 |
CCT (μm) | 553.50 ± 27.74 | 554.98 ± 38.93 | 0.783 |
Pupil diameter (mm) | 3.91 ± 0.70 | 3.78 ± 0.59 | 0.198 |
Schirmer test (mm) | 13.74 ± 8.19 | 15.24 ± 7.22 | 0.219 |
Optic zone (mm) | 7.05 ± 0.54 | 6.93 ± 0.45 | 0.129 |
Side cut depth (μm) | 16.31 ± 5.44 | 16.44 ± 5.91 | 0.889 |
Cap thickness (μm) | 114.94 ± 7.53 | 115.50 ± 7.23 | 0.630 |
RST (μm) | 318.89 ± 30.17 | 323.88 ± 36.96 | 0.351 |
Lenticule thickness (μm) | 116.01 ± 27.78 | 118.35 ± 34.45 | 0.637 |
Outcome | First KLEx Group (N = 80) | Second KLEx Group (N = 80) | p |
---|---|---|---|
UDVA (LogMAR) | |||
1 day | 0.06 ± 0.08 | 0.09 ± 0.19 | 0.196 |
1 week | 0.04 ± 0.04 | 0.03 ± 0.07 | 0.269 |
1 month | 0.01 ± 0.03 | 0.00 ± 0.04 | 0.076 |
3 months | 0.01 ± 0.02 | 0.01 ± 0.04 | 0.992 |
SE | |||
1 day | −0.31 ± 0.51 | −0.38 ± 0.52 | 0.391 |
1 week | −0.39 ± 0.52 | −0.45 ± 0.60 | 0.500 |
1 month | −0.44 ± 0.54 | −0.43 ± 0.56 | 0.909 |
3 months | −0.47 ± 0.48 | −0.41 ± 0.55 | 0.463 |
Complication | First KLEx Group (N = 80) | Second KLEx Group (N = 80) | p |
---|---|---|---|
Intraoperative | |||
UIDPP | 9 | 2 | 0.032 * |
Incision tear | 3 | 2 | 0.689 |
Cap perforation | 0 | 0 | >0.999 |
Residual lenticule | 0 | 0 | >0.999 |
Suction loss | 0 | 0 | >0.999 |
Postoperative | |||
Superficial punctate keratitis | 0 | 0 | >0.999 |
Dry eye disease | 5 | 3 | 0.881 |
Corneal edema | 0 | 0 | >0.999 |
Interface foreign body | 1 | 0 | 0.913 |
Epithelial ingrowth | 0 | 0 | >0.999 |
Diffuse lamellar keratitis | 0 | 0 | >0.999 |
Microbial keratitis | 0 | 0 | >0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Lian, I.-B.; Chen, H.-C.; Huang, C.-T.; Huang, J.-Y.; Yang, S.-F.; Chang, C.-K. The Efficiency, Predictability, and Safety of First-Generation (Visumax 500) and Second-Generation (Visumax 800) Keratorefractive Lenticule Extraction Surgeries: Real-World Experiences. Life 2024, 14, 804. https://doi.org/10.3390/life14070804
Lee C-Y, Lian I-B, Chen H-C, Huang C-T, Huang J-Y, Yang S-F, Chang C-K. The Efficiency, Predictability, and Safety of First-Generation (Visumax 500) and Second-Generation (Visumax 800) Keratorefractive Lenticule Extraction Surgeries: Real-World Experiences. Life. 2024; 14(7):804. https://doi.org/10.3390/life14070804
Chicago/Turabian StyleLee, Chia-Yi, Ie-Bin Lian, Hung-Chi Chen, Chin-Te Huang, Jing-Yang Huang, Shun-Fa Yang, and Chao-Kai Chang. 2024. "The Efficiency, Predictability, and Safety of First-Generation (Visumax 500) and Second-Generation (Visumax 800) Keratorefractive Lenticule Extraction Surgeries: Real-World Experiences" Life 14, no. 7: 804. https://doi.org/10.3390/life14070804
APA StyleLee, C.-Y., Lian, I.-B., Chen, H.-C., Huang, C.-T., Huang, J.-Y., Yang, S.-F., & Chang, C.-K. (2024). The Efficiency, Predictability, and Safety of First-Generation (Visumax 500) and Second-Generation (Visumax 800) Keratorefractive Lenticule Extraction Surgeries: Real-World Experiences. Life, 14(7), 804. https://doi.org/10.3390/life14070804