Respiratory Muscle Dysfunction and Associated Risk Factors Following COVID-19-Related Hospitalisation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Variables and Outcomes
2.4.1. Variables
2.4.2. Outcomes
2.5. Data Analysis
3. Results
3.1. Prevalence of MIP/MEP Dysfunction and Related Risk Factors
3.2. Correlation Among MIP/MEP, Peripheral Muscle Function, Lung Function, and Dyspnoea
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. Coronavirus Disease (COVID-19) Situation Reports. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 29 September 2024).
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19. National Institute for Health and Care Excellence (NICE), Scottish Intercollegiate Guidelines Network (SIGN) and Royal College of General Practitioners (RCGP). NICE Guideline [NG188]. 18 December 2020. Available online: https://www.nice.org.uk/guidance/ng188 (accessed on 11 November 2021).
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Dua, A.; Gupta, S.; Injeti, E. A Research Update: Significance of Cytokine Storm and Diaphragm in COVID-19. Curr. Res. Pharm. Drug Discov. 2021, 2, 100031. [Google Scholar] [CrossRef] [PubMed]
- Cesanelli, L.; Satkunskiene, D.; Bileviciute-Ljungar, I.; Kubilius, R.; Repečkaite, G.; Cesanelli, F.; Iovane, A.; Messina, G. The possible impact of COVID-19 on respiratory muscles structure and functions: A literature review. Sustainability 2022, 14, 7446. [Google Scholar] [CrossRef]
- Cacciani, N.; Skärlén, Å.; Wen, Y.; Zhang, X.; Addinsall, A.B.; Llano-Diez, M.; Li, M.; Gransberg, L.; Hedström, Y.; Bellander, B.M.; et al. A prospective clinical study on the mechanisms underlying critical illness myopathy-A time-course approach. J. Cachexia Sarcopenia Muscle 2022, 13, 2669–2682. [Google Scholar] [CrossRef]
- Núñez-Seisdedos, M.N.; Valcárcel-Linares, D.; Gomez-Gonzalez, M.T.; Lazaro-Navas, I.; Lopez-Gonzalez, L.; Pecos-Martin, D.; Rodriguez-Costa, I. Inspiratory muscle strength and function in mechanically ventilated COVID-19 survivors 3 and 6 months after intensive care unit discharge. ERJ Open. Res. 2023, 9, 00329–2022. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, M.J.; Haddadi, S.; Tahvildari, A.; Farsi, Y.; Arbabi, M.; Hasanzadeh, S.; Jamshidi, P.; Murthi, M.; Mirsaeidi, M. COVID-19 clinical characteristics, and sex-specific risk of mortality: Systematic review and meta-analysis. Front. Med. 2020, 7, 459. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. ATS/ERS Task Force. Standardization of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten, C.P.; Gustafsson, P.; Hankinson, J.; et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef]
- Laveneziana, P.; Albuquerque, A.; Aliverti, A.; Babb, T.; Barreiro, E.; Dres, M.; Dubé, B.P.; Fauroux, B.; Gea, J.; Guenette, J.A.; et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur. Respir. J. 2019, 53, 1801214. [Google Scholar] [CrossRef]
- Lista-Paz, A.; Langer, D.; Barral-Fernandez, M.; Quintela-del-Rio, A.; Gimeno-Santos, E.; Arbillaga-Etxarri, A.; Torres-Castro, R.; Vilarç Casamitjana, J.; Varas de la Fuente, A.B.; Serrano Veguillas, C.; et al. Maximal respiratory pressure reference equations in herlathy adults and cut-off points for defining muscle weakness. Arch Bronconeumol. 2023, 59, 813–820. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Bohannon, R.W.; Li, X.; Sindhu, B.; Kapellusch, J. Hand-grip strength: Normative reference values and equations for individuals 18 to 85 years of age residing in the United States. J. Orthop. Sports Phys. Ter. 2018, 48, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, C.M. Standardised questionnaire on respiratory symptoms: A statement prepared and approved by the MRC Committee on the Aetiology of Chronic Bronchitis (MRC breathlessness score). Br. Med. J. 1960, 2, 1662. [Google Scholar]
- Combret, Y.; Prieur, G.; Hilfiker, R.; Gravier, F.-E.; Smondack, P.; Contal, O.; Lamia, B.; Bonnevie, T.; Medrinal, C. The relationship between maximal expiratory pressure values and critical outcomes in mechanically ventilated patients: A post hoc analysis of an observational study. Ann. Intensive Care 2021, 11, 8. [Google Scholar] [CrossRef]
- Schellekens, W.-J.M.; van Hees, H.W.H.; Doorduin, J.; Roesthuis, L.H.; Scheffer, G.J.; van der Hoeven, J.G.; Heunks, L.M.A. Strategies to optimize respiratory muscle function in ICU patients. Crit. Care 2016, 20, 103. [Google Scholar] [CrossRef]
- Tzanis, G.; Vasileiadis, I.; Zervakis, D.; Karatzanos, E.; Dimopoulos, S.; Pitsolis, T.; Tripodaki, E.; Gerovasili, V.; Routsi, C.; Nanas, S. Maximum inspiratory pressure, a surrogate parameter for the assessment of ICU-acquired weakness. BMC Anesthesiol. 2011, 11, 14. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, C.; Wu, J.; Chen, M.; Wang, Z.; Luo, L.; Zhou, X.; Liu, X.; Huang, X.; Yuan, S.; et al. Impact of coronavirus 2019 on pulmonary function in early convalescence phase. Respir. Res. 2020, 21, 163. [Google Scholar] [CrossRef]
- Fagevik Olsén, M.; Lannefors, L.; Johansson, E.L.; Persson, H.C. Variations in respiratory and functional symptoms at four months after hospitalisation due to COVID-19: A cross-sectional study. BMC Pulm. Med. 2024, 24, 63. [Google Scholar] [CrossRef]
- Goulart, C.D.L.; Arêas, G.P.T.; Milani, M.; Borges, F.F.D.R.; Magalhães, J.R.; Back, G.D.; Borghi-Silva, A.; Oliveira, L.F.L.; de Paula, A.R.; Marinho, C.C.; et al. Sex-based differences in pulmonary function and cardiopulmonary response 30 months post-COVID-19: A Brazilian multicentric study. Int. J. Environ. Res. Public Health 2024, 21, 1293. [Google Scholar] [CrossRef]
- Regmi, B.; Friedrich, J.; Jörn, B.; Senol, M.; Giannoni, A.; Boentert, M.; Daher, A.; Dreher, M.; Spiesshoefer, J. Diaphragm muscle weakness might explain exertional dyspnea 15 months after hospitalization for COVID-19. Am. J. Respir. Crit. Care Med. 2023, 15, 1012–1021. [Google Scholar] [CrossRef]
- Farr, E.; Wolfe, A.R.; Deshmukh, S.; Rydberg, L.; Soriano, R.; Walter, J.M.; Boon, A.J.; Wolfe, L.F.; Franz, C.K. Diaphragm dysfunction in severe COVID-19 as determined by neuromuscular ultrasound. Ann. Clin. Transl. Neurol. 2021, 8, 1745–1749. [Google Scholar] [CrossRef]
- Medrinal, C.; Prieur, G.; Bonnevie, T.; Gravier, F.E.; Mayard, D.; Desmalles, E.; Smondack, P.; Lamia, B.; Combret, Y.; Fossat, G. Muscle weakness, functional capacities and recovery from COVID-19 ICU survivors. BMC Anesthesiol. 2021, 21, 64. [Google Scholar] [CrossRef] [PubMed]
- Severin, R.; Arena, R.; Lavie, C.J.; Bond, S.; Phillips, S.A. Respiratory muscle performance screening for infectious disease management following COVID-19: A highly pressurized situation. Am. J. Med. 2020, 133, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Hennigs, J.K.; Huwe, M.; Hennigs, A.; Oqueka, T.; Simon, M.; Harbaum, L.; Körbelin, J.; Schmiedel, S.; Schulze Zur Wiesch, J.; Addo, M.M.; et al. Respiratory muscle dysfunction in long-COVID patients. Infection 2022, 50, 1391–1397. [Google Scholar] [CrossRef]
- Steinbeis, F.; Kedor, C.; Meyer, H.J.; Thibeault, C.; Mittermaier, M.; Knape, P.; Ahrens, K.; Rotter, G.; Temmesfeld-Wollbrück, B.; Sander, L.E.; et al. A new phenotype of patients with post-COVID-19 condition is characterised by a pattern of complex ventilatory dysfunction, neuromuscular disturbance and fatigue symptoms. ERJ Open. Res. 2024, 10, 01027–2023. [Google Scholar] [CrossRef]
- Carfi, A.; Bernabei, R.; Landi, F.; for the Gemelli against COVID-19 Post-acute Care Study Group. Persistent symptoms in patients after acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Shah, A.S.; Wong, A.W.; Hague, C.J.; Murphy, D.T.; Johnston, J.C.; Ryerson, C.J.; Carlsten, C. A prospective study of 12-week respiratory outcomes in COVID-19-related hospitalizations. Thorax 2021, 76, 402–404. [Google Scholar] [CrossRef]
- Arnold, D.T.; Hamilton, F.W.; Milne, A.; Morley, A.J.; Viner, J.; Attwood, M.; Noel, A.; Gunning, S.; Hatrick, J.; Hamilton, S.; et al. Patient outcomes after hospitalization with COVID-19 and implications for follow up: Results from a prospective UK cohort. Thorax 2021, 76, 399–401. [Google Scholar] [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2023, 401, e21–e33. [Google Scholar] [CrossRef]
- Fernandez-de-las-Penas, C.; Martin-Guerrero, J.D.; Pellicer-Valero, O.J.; Navarro-Pardo, E.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Arias-Navalón, J.A.; Cigarán-Méndez, M.; Hernández-Barrera, V.; Arendt-Nielsen, L. Female sex is a risk factor associated with long-term post-COVID related-symptoms but not with COVID-19 symptoms: The LONG-COVID-EXP-CM Multicenter Study. J. Clin. Med. 2022, 11, 413. [Google Scholar] [CrossRef]
- Johnsen, S.; Sattler, S.M.; Miskowiak, K.W.; Kunalan, K.; Victor, A.; Pedersen, L.; Andreassen, H.F.; Jørgensen, B.J.; Heebøll, H.; Andersen, M.B.; et al. Descriptive analysis of long COVID sequalae identified in a multidisciplinary clinic serving hospitalized and non-hospitalized patients. ERJ Open. Res. 2021, 7, 00205-2021. [Google Scholar] [CrossRef] [PubMed]
- de Godoy, C.G.; Schmitt, A.C.B.; Ochiai, G.S.; Gouveia E Silva, E.C.; de Oliveira, D.B.; da Silva, E.M.; de Carvalho, C.R.F.; Junior, C.T.; D’Andre A Greve, J.M.; Hill, K.; et al. Postural balance, mobility, and handgrip strength one year after hospitalization due to COVID-19. Gait. Posture 2024, 114, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Hansson, P.O.; Samuelsson, C.M.; Persson, C.U. Function and activity capacity at 1 year after the admission to intensive care unit for COVID-19. Clin. Rehabil. 2024, 38, 1382–1392. [Google Scholar] [CrossRef]
- Shin, H.I.; Kim, D.K.; Seo, K.M.; Kang, S.H.; Lee, S.Y.; Son, S. Relation between respiratory muscle strength and skeletal muscle mass and hand grip strength in the healthy elderly. Ann. Rehabil. Med. 2017, 41, 686–692. [Google Scholar] [CrossRef]
- González-Islas, D.; Robles-Hernández, R.; Flores-Cisneros, L.; Orea-Tejeda, A.; Galicia-Amor, S.; Hernández-López, N.; Valdés-Moreno, M.I.; Sánchez-Santillán, R.; García-Hernández, J.C.; Castorena-Maldonado, A. Association between muscle quality index and pulmonary function in post-COVID-19 subjects. BMC Pulm. Med. 2023, 23, 442. [Google Scholar] [CrossRef]
- Lee, J.H.; Yim, J.-J.; Park, J. Pulmonary function and chest computed tomography abnormalities 6-12 months after recovery from COVID-19: A systematic review and meta-analysis. Respir. Res. 2022, 23, 233. [Google Scholar] [CrossRef]
- Wu, X.; Liu, X.; Zhou, Y.; Yu, H.; Li, R.; Zhan, Q.; Ni, F.; Fang, S.; Lu, Y.; Ding, X.; et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalization: A prospective study. Lancet Respir. Med. 2021, 9, 747–754. [Google Scholar] [CrossRef]
- Lombardi, F.; Calabrese, A.; Iovene, A.; Pierandrei, C.; Lerede, M.; Varone, F.; Richeldi, L.; Sgalla, G.; Gemelli Against COVID-19 Post-Acute Care Study Group. Residual respiratory impairment after COVID-19 pneumonia. BMC Pulm. Med. 2021, 21, 241. [Google Scholar] [CrossRef]
- Hewitt, J.; Carter, B.; Vilches-Moraga, A.; Quinn, T.J.; Braude, P.; Verduri, A.; Pearce, L.; Stechman, M.; Short, R.; Price, A.; et al. The effect on frailty on survival in patients with COVID-19 (COPE): A multicentre, European, observational cohort study. Lancet Public Health 2020, 5, e444–e451. [Google Scholar] [CrossRef]
- Calvache-Mateo, A.; Reychler, G.; Heredia-Ciuró, A.; Martín-Núñez, J.; Ortiz-Rubio, A.; Navas-Otero, A.; Valenza, M.C. Respiratory training effects in Long COVID-19 patients: A systematic review and meta-analysis. Expert. Rev. Respir. Med. 2024, 18, 207–217. [Google Scholar] [CrossRef]
- Illi, S.K.; Held, U.; Frank, I.; Spengler, C.M. Effect of respiratory muscle training on exercise performance in healthy individuals. Sport Med. 2012, 42, 707–724. [Google Scholar] [CrossRef] [PubMed]
Overall n = 223 (100) | MIP/MEP Abnormal Values * n = 121 (54.2) | MIP/MEP Normal Values * n = 102 (45.8) | p Value | |
---|---|---|---|---|
Demographics | ||||
Age, years [IQR] | 67 (57–75) | 67 (59–74) | 65 (55–75) | 0.11 |
Male gender, no. [%] | 153 (68.6) | 76 (62.8) | 77 (75.5) | 0.04 |
Ethnicity | ||||
Caucasian, n [%] | 218 (97.8) | 118 (97.5) | 100 (98) | 0.99 |
Black, n [%] | 4 (1.8) | 2 (1.7) | 2 (2) | 0.99 |
Asian, n [%] | 1 (0.4) | 1 (0.8) | 0 (0) | 0.99 |
Smoking history | ||||
Current smoker, no. [%] | 2 (0.9) | 1 (0.8) | 1 (1) | 0.99 |
Former smoker, no. [%] | 88 (39.5) | 51 (42.1) | 37 (36.2) | 0.41 |
Non-smoker, no. [%] | 133 (59.6) | 69 (57) | 64 (62.7) | 0.41 |
BMI (pre-admission), median [IQR] | 30 (27–34) | 30 (27–34) | 30 (27–34) | 0.64 |
BMI > 30, no. [%] | 121 (54.3) | 68 (56.2) | 53 (52) | 0.21 |
Outcomes | ||||
LOS, days [IQR] | 14 (10–21) | 15 (11–23.5) | 13 (9–19.3) | 0.14 |
Respiratory support | ||||
HFNC, no. [%] | 60 (26.9) | 32 (26.4) | 28 (27.5) | 0.88 |
NIV, no. [%] | 74 (33.2) | 48 (39.7) | 26 (25.5) | 0.03 |
Intubation/MV, no. [%] | 36 (16.1) | 21 (17.4) | 15 (14.7) | 0.72 |
Use of Tocilizumab | 150 (67.3) | 79 (65.3) | 71 (69.6) | 0.47 |
Use of Dexamethasone | 67 (30) | 37 (16.6) | 30 (13.4) | 0.88 |
Use of other corticosteroids (oral/IV) | 134 (60.1) | 73 (60.3) | 61 (59.8) | 0.99 |
O2 at discharge, no. [%] | 32 (14.3) | 19 (15.7) | 13 (12.75) | 0.57 |
Follow up | ||||
Dyspnoea grade (mMRC), median [IQR] | 0 (0–1) | 0 (0–1) | 0 (0–1) | 0.09 |
Dyspnoea as mMRC ≥ 1, no. [%] | 67 (30) | 39 (32.2) | 28 (27.5) | 0.46 |
FEV1/FVC, % [IQR] | 82 (78–85.7) | 81.8 (78.7–86.3) | 82.1 (78.1–85.1) | 0.78 |
TLC, %pred [IQR] | 105 (94–116) | 101 (91.5–113) | 107.5 (96.8–117) | 0.06 |
TLC < 90%pred, no. [%] | 38 (17) | 27 (22.3) | 11 (10.8) | 0.03 |
DLCO, %pred [IQR] | 77 (67–87) | 75 (64.5–86) | 79.5 (68–92.3) | 0.02 |
DLCO < 80%pred, no. [%] | 128 (57.4) | 77 (63.6) | 51 (50.5) | 0.06 |
MIP, %pred [IQR] | 84 (66–104) | 68 (58–73) | 102 (90–120) | <0.0001 |
MEP, %pred [IQR] | 82 (62–93) | 65 (54–72) | 96 (88–101) | <0.0001 |
Reduced strength in dominant hand, no. [%] | 60 (26.9) | 40 (33.1) | 20 (19.6) | 0.034 |
Reduced strength in right hand, no. [%] | 68 (30.5) | 46 (38) | 22 (21.6) | 0.01 |
Reduced strength in left hand, no. [%] | 77 (34.5) | 46 (38) | 31 (30.4) | 0.26 |
Univariable | Multivariable | |||||
---|---|---|---|---|---|---|
Parameter | OR | 95% Confidence Interval | p Value | aOR | 95% Confidence Interval | p Value |
Age | 1.02 | 0.99–1.04 | 0.12 | 1.01 | 0.95–1.06 | 0.09 |
Female sex | 1.85 | 1.02–3.98 | 0.04 | 1.76 | 1.09–4.16 | 0.03 * |
Smoking status (active/former) | 1.19 | 0.91–1.55 | 0.20 | 1.11 | 0.89–1.57 | 0.29 |
BMI | 1.01 | 0.96–1.07 | 0.64 | 1.09 | 0.97–1.08 | 0.66 |
BMI ≥ 30 kg/m2 | 1.19 | 0.7–2 | 0.53 | 1.21 | 0.78–1.99 | 0.51 |
Hospital length of stay | 1.01 | 0.99–1.03 | 0.15 | 1.00 | 0.43–1.00 | 0.45 |
HFNC | 0.95 | 0.52–1.93 | 0.87 | 0.91 | 0.99–1.76 | 0.61 |
NIV | 1.79 | 1.01–3.22 | 0.04 | 1.91 | 1.07–3.49 | 0.04 * |
Intubation/MV | 1.22 | 0.59–2.54 | 0.59 | 1.31 | 0.61–2.78 | 0.43 |
Use of Dexamethasone | 1.06 | 0.59–1.6 | 0.85 | 1.1 | 0.67–1.71 | 0.71 |
Use of other corticosteroids | 1.02 | 0.6–1.75 | 0.94 | 1.01 | 0.52–1.65 | 0.97 |
Use of Tocilizumab | 0.82 | 0.47–1.44 | 0.49 | 0.88 | 0.58–1.98 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verduri, A.; Tonelli, R.; Donatelli, P.; Hewitt, J.; Guaraldi, G.; Milić, J.; Ruggieri, V.; Mussini, C.; Clini, E.; Beghè, B. Respiratory Muscle Dysfunction and Associated Risk Factors Following COVID-19-Related Hospitalisation. Life 2025, 15, 194. https://doi.org/10.3390/life15020194
Verduri A, Tonelli R, Donatelli P, Hewitt J, Guaraldi G, Milić J, Ruggieri V, Mussini C, Clini E, Beghè B. Respiratory Muscle Dysfunction and Associated Risk Factors Following COVID-19-Related Hospitalisation. Life. 2025; 15(2):194. https://doi.org/10.3390/life15020194
Chicago/Turabian StyleVerduri, Alessia, Roberto Tonelli, Pierluigi Donatelli, Jonathan Hewitt, Giovanni Guaraldi, Jovana Milić, Valentina Ruggieri, Cristina Mussini, Enrico Clini, and Bianca Beghè. 2025. "Respiratory Muscle Dysfunction and Associated Risk Factors Following COVID-19-Related Hospitalisation" Life 15, no. 2: 194. https://doi.org/10.3390/life15020194
APA StyleVerduri, A., Tonelli, R., Donatelli, P., Hewitt, J., Guaraldi, G., Milić, J., Ruggieri, V., Mussini, C., Clini, E., & Beghè, B. (2025). Respiratory Muscle Dysfunction and Associated Risk Factors Following COVID-19-Related Hospitalisation. Life, 15(2), 194. https://doi.org/10.3390/life15020194