A Prospective Clinical Study of Ferric Citrate Hydrate for Chronic Heart Failure with Iron Deficiency Anemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Statistical Analysis
3. Results
Adverse Events
- <Newly administered cases:>
- Primary endpoint:
- Secondary endpoints:
- <Switching cases>
- Primary endpoint:
- Secondary endpoints:
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anand, I.; McMurray, J.J.; Whitmore, J.; Warren, M.; Pham, A.; McCamish, M.A.; Burton, P.B. Anemia and its relationship to clinical outcome in heart failure. Circulation 2004, 110, 149–154. [Google Scholar] [PubMed]
- Kajimoto, K.; Sato, N.; Takano, T.; Investigators of the Acute Decompensated Heart Failure Syndromes (ATTEND) Registry. Association between anemia, clinical features, and outcome in patients hospitalized for acute heart failure syndromes. Eur. Heart J. Acute Cardiovasc. Care 2015, 4, 568–576. [Google Scholar] [PubMed]
- Hamaguchi, S.; Tsuchihashi-Makaya, M.; Kinugawa, S.; Yokota, T.; Takeshita, A.; Yokoshiki, H.; Tsutsui, H.; JCARE-CARD Investigators. Anemia is an independent predictor of long-term adverse outcomes in patients hospitalized with heart failure in Japan. A report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ. J. 2009, 73, 1901–1908. [Google Scholar]
- Yamauchi, T.; Sakata, Y.; Takada, T.; Nochioka, K.; Miura, M.; Tadaki, S.; Ushigome, R.; Sato, K.; Onose, T.; Tsuji, K.; et al. Prognostic impact of anemia in patients with chronic heart failure—With special reference to clinical background: Report from the CHART-2 study. Circ. J. 2015, 79, 1984–1993. [Google Scholar] [CrossRef]
- Inder, S.; Anand, I.S. Anemia and iron deficiency in heart failure: Current concepts and emerging therapies. Circulation 2018, 138, 80–98. [Google Scholar]
- Jankowska, E.A.; Rozentryt, P.; Witkowska, A.; Nowak, J.; Hartmann, O.; Ponikowska, B.; Borodulin-Nadzieja, L.; Banasiak, W.; Polonski, L.; Filippatos, G.; et al. Iron deficiency: An ominous sign in patients with systolic chronic heart failure. Eur. Heart J. 2010, 31, 1872–1880. [Google Scholar]
- Cohen-Solal, A.; Damy, T.; Terbah, M.; Kerebel, S.; Baguet, J.P.; Hanon, O.; Zannad, F.; Laperche, T.; Leclercq, C.; Concas, V.; et al. High prevalence of iron deficiency in patients with acute decompensated heart failure. Eur. J. Heart Fail. 2014, 16, 984–991. [Google Scholar]
- Matsumoto, M.; Tsujino, T.; Lee-Kawabata, M.; Naito, Y.; Akahori, H.; Sakoda, T.; Ohyanagi, M.; Tomosugi, N.; Masuyama, T. Iron regulatory hormone hepcidin decreases in chronic heart failure patients with anemia. Circ. J. 2010, 74, 301–306. [Google Scholar]
- Jankowska, E.A.; Malyszko, J.; Ardehali, H.; Koc-Zorawska, E.; Banasiak, W.; von Haehling, S.; Macdougall, I.C.; Weiss, G.; McMurray, J.J.; Anker, S.D.; et al. Iron status in patients with chronic heart failure. Eur. Heart J. 2013, 34, 827–834. [Google Scholar]
- Ganz, T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood 2003, 102, 783–788. [Google Scholar] [CrossRef]
- Nemeth, E.; Valore, E.V.; Territo, M.; Schiller, G.; Lichtenstein, A.; Ganz, T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 2003, 101, 2461–2463. [Google Scholar] [PubMed]
- Masini, G.; Graham, F.J.; Pellicori, P.; Cleland, J.G.F.; Cuthbert, J.J.; Kazmi, S.; Inciardi, R.M.; Clark, A.L. Criteria for iron deficiency in patients with heart failure. J. Am. Coll. Cardiol. 2022, 79, 341–351. [Google Scholar] [PubMed]
- Anker, S.D.; Comin Colet, J.; Filippatos, G.; Willenheimer, R.; Dickstein, K.; Drexler, H.; Lüscher, T.F.; Bart, B.; Banasiak, W.; Niegowska, J.; et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 2009, 361, 2436–2448. [Google Scholar] [PubMed]
- Ponikowski, P.; van Veldhuisen, D.J.; Comin-Colet, J.; Ertl, G.; Komajda, M.; Mareev, V.; McDonagh, T.; Parkhomenko, A.; Tavazzi, L.; Levesque, V.; et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiency. Eur. Heart J. 2015, 36, 657–668. [Google Scholar]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar]
- Lewis, G.D.; Malhotra, R.; Hernandez, A.F.; McNulty, S.E.; Smith, A.; Felker, G.M.; Tang, W.H.W.; LaRue, S.J.; Redfield, M.M.; Semigran, M.J.; et al. Effect of oral iron repletion on exercise capacity in patients with heart failure with reduced ejection fraction and iron deficiency: The IRONOUT HF randomized clinical trial. JAMA 2017, 317, 1958–1966. [Google Scholar]
- Yokoyama, K.; Hashimoto, T.; Okuda, Y.; Matsumoto, Y.; Ito, K.; Yamada, R.; Susai, H.; Nishino, N. Safety and effectiveness of ferric citrate hydrate in serum phosphorus management of patients with chronic kidney disease: A long-term, real-world, observational, post-marketing surveillance study. Clin. Exp. Nephrol. 2022, 26, 688–699. [Google Scholar]
- Yokoyama, K.; Fukagawa, M.; Akiba, T.; Nakayama, M.; Ito, K.; Hanaki, K.; Wolf, M.; Hirakata, H. Randomised clinical trial of ferric citrate hydrate on anaemia management in haemodialysis patients with hyperphosphataemia: ASTRIO study. Sci. Rep. 2019, 9, 8877. [Google Scholar]
- Tomosugi, N.; Koshino, Y.; Ogawa, C.; Maeda, K.; Shimada, N.; Tomita, K.; Daimon, S.; Shikano, T.; Ryu, K.; Takatani, T.; et al. Oral iron absorption of ferric citrate hydrate and hepcidin-25 in hemodialysis patients: A prospective, multicenter, observational trial. Int. J. Mol. Sci. 2023, 24, 13799. [Google Scholar]
- Ponikowski, P.; Kirwan, B.A.; Anker, S.D.; McDonagh, T.; Dorobantu, M.; Drozdz, J.; Fabien, V.; Filippatos, G.; Göhring, U.M.; Keren, A.; et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: A multicentre, double-blind, randomised, controlled trial. Lancet 2020, 396, 1895–1904. [Google Scholar]
- Kalra, P.R.; Cleland, J.G.F.; Petrie, M.C.; Thomson, E.A.; Kalra, P.A.; Squire, I.B.; Ahmed, F.Z.; Al-Mohammad, A.; Cowburn, P.J.; Foley, P.W.X.; et al. Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN): An investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial. Lancet 2022, 400, 2199–2209. [Google Scholar] [PubMed]
- Clark, S.F. Iron deficiency anemia: Diagnosis and management. Curr. Opin. Gastroenterol. 2009, 25, 122–128. [Google Scholar] [PubMed]
- Gereklioglu, C.; Asma, S.; Korur, A.; Erdogan, F.; Kut, A. Medication adherence to oral iron therapy in patients with iron deficiency anemia. Pak. J. Med. Sci. 2016, 32, 604–607. [Google Scholar] [PubMed]
- Galloway, R.; McGuire, J. Determinants of compliance with iron supplementation: Supplies, side effects, or psychology? Soc. Sci. Med. 1994, 39, 381–390. [Google Scholar]
- Komatsu, N.; Arita, K.; Mitsui, H.; Nemoto, T.; Hanaki, K. Efficacy and safety of ferric citrate hydrate compared with sodium ferrous citrate in Japanese patients with iron deficiency anemia: A randomized, double-blind, phase 3 non-inferiority study. Int. J. Hematol. 2021, 114, 8–17. [Google Scholar]
- Momoeda, M.; Ito, K.; Inoue, S.; Shibahara, H.; Mitobe, Y.; Komatsu, N. Cost-effectiveness of ferric citrate hydrate in patients with iron deficiency anemia. Int. J. Hematol. 2024, 121, 467–475. [Google Scholar] [CrossRef]
- Andrews, P.L.; Rapeport, W.G.; Sanger, G.J. Neuropharmacology of emesis induced by anti-cancer therapy. Trends Pharmacol. Sci. 1988, 9, 334–341. [Google Scholar]
- Torii, Y.; Mutoh, M.; Saito, H.; Matsuki, N. Involvement of free radicals in cisplatin-induced emesis in Suncus murinus. Eur. J. Pharmacol. 1993, 248, 131–135. [Google Scholar]
- Machida, T.; Hiraide, S.; Yamamoto, T.; Shiga, S.; Hasebe, S.; Fujibayashi, A.; Iizuka, K. Ferric citrate hydrate has little impact on hyperplasia of enterochromaffin cells in the rat small intestine compared to sodium ferrous citrate. Pharmacology 2022, 107, 574–583. [Google Scholar]
- Fishbane, S.; Pollock, C.A.; El-Shahawy, M.; Escudero, E.T.; Rastogi, A.; Van, B.P.; Frison, L.; Houser, M.; Maksym, P.; Dustin, J.L.; et al. Roxadustat versus epoetin alfa for treating anemia in patients with chronic kidney disease on dialysis: Results from the randomized phase 3 ROCKIES Study. J. Am. Soc. Nephrol. 2022, 33, 850–866. [Google Scholar]
- Akizawa, T.; Nangaku, M.; Yamaguchi, T.; Koretomo, R.; Maeda, K.; Miyazawa, Y.; Hirakata, H. A phase 3 study of enarodustat in anemic patients with CKD not requiring dialysis: The SYMPHONY ND study. Kidney Int. Rep. 2021, 6, 1840–1849. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xing, J.; Zhu, X.; Xie, X.; Wang, L.; Zhang, X. Effects of hypoxia-inducible factor-prolyl hydroxylase inhibitors vs. erythropoiesis-stimulating agents on iron metabolism in non-dialysis-dependent anemic patients with CKD: A network meta-analysis. Front. Endocrinol. 2023, 14, 1131516. [Google Scholar] [CrossRef] [PubMed]
- Takkavatakarn, K.; Thammathiwat, T.; Phannajit, J.; Katavetin, P.; Praditpornsilpa, K.; Eiam-Ong, S.; Susantitaphong, P. The impacts of hypoxia-inducible factor stabilizers on laboratory parameters and clinical outcomes in chronic kidney disease patients with renal anemia: A systematic review and meta-analysis. Clin. Kidney J. 2023, 16, 845–858. [Google Scholar] [CrossRef]
- Sezai, A.; Abe, M.; Maruyama, T.; Taoka, M.; Sekino, H.; Tanaka, M. A prospective randomized controlled clinical study to investigate the efficacy and safety of hypoxia-inducible factor-prolyl hydroxylase inhibitors in non-dialysis patients with chronic heart failure and renal anemia switched from continuous erythropoietin receptor activator treatment. J. Clin. Med. 2024, 13, 2764. [Google Scholar] [CrossRef]
Newly Administered Cases | Switching Cases | |
---|---|---|
Number | 95 | 46 |
Age (years) | 74.7 ± 1.2 (43–97) | 77.4 ± 1.6 (47–92) |
Gender (male:female) | 64:31 | 29:17 |
Duration of Heart Failure (months) | 11.6 ± 3.6 | 14.9 ± 5.7 |
NYHA classification | 1.87 ± 0.65 | |
I | 11 | 13 |
II | 62 | 26 |
III | 22 | 7 |
Average | 2.12 ± 0.58 | 1.87 ± 0.65 |
Classifications of heart failure | ||
HFrEF | 24 (25%) | 16 (35%) |
HFmrEF | 20 (21%) | 9 (19%) |
HFpEF | 51 (54%) | 21 (46%) |
Causes of heart failure | ||
Ischemic heart disease | 25 (26%) | 14 (30%) |
Valve disease | 49 (52%) | 19 (41%) |
Cardiomyopathy | 4 (4%) | 7 (15%) |
Arrhythmia | 4 (4%) | 1 (2%) |
Hypertension | 12 (13%) | 5 (11%) |
Amyloidosis | 1 (1%) | 0 (0%) |
Complication | ||
Hypertension | 58 (61%) | 25 (54%) |
Diabetes mellitus | 30 (32%) | 20 (43%) |
Dyslipidemia | 68 (72%) | 35 (76%) |
Hyperuricemia | 34 (36%) | 21 (46%) |
CKD (stage G3a>) | 48 (51%) | 26 (57%) |
CKD (stage G3b>) | 40 (42%) | 24 (52%) |
CKD (stage G4>) | 12 (13%) | 8 (17%) |
Obesity | 21 (22%) | 7 (15%) |
Cerebral infarct | 3 (3%) | 2 (4%) |
Peripheral atrial disease | 5 (5%) | 4 (9%) |
Treatment for heart failure | ||
ACE-I or ARB | 31 (33%) | 11 (24%) |
ARNI | 39 (41%) | 23 (50%) |
MRA | 64 (67%) | 30 (65%) |
Beta-blockers | 77 (81%) | 39 (85%) |
SGLT2 inhibitor | 33 (35%) | 17 (37%) |
Ivabradine | 2 (2%) | 2 (4%) |
Loop diuretics | 40 (42%) | 24 (52%) |
Tolvaptan | 11 (12%) | 4 (9%) |
Calcium channel blocker | 31 (33%) | 14 (30%) |
Digoxin | 3 (3%) | 1 (2%) |
Pimobendan | 2 (2%) | 2 (4%) |
HIF-PH inhibitor use | 24 (25%) | 16 (35%) |
Newly Administered Cases | Pre | 1 Month | 3 Months | 6 Months |
---|---|---|---|---|
NYHA classification | 2.12 ± 0.58 | - | - | 1.74 ± 0.53 |
p value | - | - | - | <0.001 |
Hematocrit (%) | 32.8 ± 0.3 | 37.8 ± 0.4 | 39.9 ± 0.5 | 39.6 ± 0.5 |
p value | - | <0.001 | <0.001 | <0.001 |
Serum iron (μg/dL) | 47.5 ± 2.9 | 95.5 ± 6.2 | 84.6 ± 3.8 | 94.6 ± 3.7 |
p value | - | <0.001 | <0.001 | <0.001 |
TSAT (%) | 15.1 ± 1.1 | 33.0 ± 2.3 | 29.8 ± 1.5 | 32.9 ± 1.4 |
p value | - | <0.001 | <0.001 | <0.001 |
Ferritin (ng/mL) | 39.5 ± 6.4 | 66.3 ± 12.0 | 80.4 ± 11.5 | 114.9 ± 16.2 |
p value | - | <0.001 | <0.001 | <0.001 |
BUN (mg/dL) | 20.5 ± 0.8 | 20.3 ± 0.7 | 20.0 ± 0.8 | 20.6 ± 0.8 |
p value | - | 0.638 | 0.381 | 0.895 |
Serum creatine (mg/dL) | 1.14 ± 0.05 | 1.13 ± 0.05 | 1.12 ± 0.05 | 1.11 ± 0.05 |
p value | - | 0.377 | 0.226 | 0.023 |
eGFR (mL/dL/1.73 m2) | 51.2 ± 1.8 | 50.8 ± 1.7 | 51.0 ± 1.8 | 51.6 ± 1.7 |
p value | - | 0.403 | 0.787 | 0.518 |
AST (U/L) | 24.2 ± 1.1 | 24.6 ± 0.9 | 24.9 ± 1.1 | 25.8 ± 1.1 |
p value | - | 0.545 | 0.480 | 0.156 |
ALT (U/L) | 16.3 ± 0.9 | 17.1 ± 0.8 | 17.5 ± 1.0 | 17.6 ± 0.9 |
p value | - | 0.244 | 0.253 | 0.108 |
hs-CRP (mg/dL) | 0.50 ± 0.11 | 0.38 ± 0.10 | 0.50 ± 0.10 | 0.33 ± 0.07 |
p value | - | 0.088 | 0.959 | 0.092 |
Oxidized LDL (U/L) | 57.6 ± 2.0 | - | 53.5 ± 2.0 | 51.3 ± 1.9 |
p value | - | - | 0.025 | 0.001 |
Switching Cases | Pre | 1 Month | 3 Months | 6 Months |
---|---|---|---|---|
NYHA classification | 1.87 ± 0.65 | - | - | 1.78 ± 0.59 |
p value | - | - | - | 0.044 |
Hematocrit (%) | 36.7 ± 0.7 | 37.8 ± 0.6 | 38.2 ± 0.6 | 38.7 ± 0.6 |
p value | - | 0.003 | 0.012 | 0.02 |
Serum iron (μg/dL) | 82.0 ± 4.8 | 95.2 ± 6.8 | 83.8 ± 4.1 | 89.8 ± 6.6 |
p value | - | 0.117 | 0.753 | 0.327 |
TSAT (%) | 28.9 ± 1.8 | 48.8 ± 4.1 | 42.6 ± 2.9 | 32.8 ± 1.9 |
p value | - | <0.001 | <0.001 | 0.125 |
Ferritin (ng/mL) | 192.4 ± 33.8 | 208.7 ± 36.2 | 197.8 ± 30.7 | 206.5 ± 30.5 |
p value | - | 0.002 | 0.673 | 0.273 |
BUN (mg/dL) | 25.4 ± 1.5 | 25.1 ± 1.2 | 24.5 ± 1.2 | 24.7 ± 1.5 |
p value | - | 0.748 | 0.199 | 0.440 |
Serum creatine (mg/dL) | 1.26 ± 0.10 | 1.25 ± 0.08 | 1.22 ± 0.08 | 1.23 ± 0.08 |
p value | - | 0.753 | 0.289 | 0.498 |
eGFR (mL/dL/1.73 m2) | 47.3 ± 2.9 | 46.0 ± 2.8 | 47.2 ± 2.8 | 46.5 ± 2.7 |
p value | - | 0.090 | 0.905 | 0.471 |
AST (U/L) | 25.7 ± 2.0 | 26.3 ± 1.8 | 24.8 ± 1.7 | 27.3 ± 2.9 |
p value | - | 0.493 | 0.299 | 0.374 |
ALT (U/L) | 18.5 ± 2.2 | 18.6 ± 1.8 | 17.5 ± 1.7 | 20.3 ± 2.8 |
p value | - | 0.906 | 0.240 | 0.223 |
hs-CRP (mg/dL) | 0.33 ± 0.06 | 0.25 ± 0.05 | 0.34 ± 0.06 | 0.43 ± 0.15 |
p value | - | 0.113 | 0.842 | 0.388 |
Oxidized LDL (U/L) | 56.2 ± 2.9 | - | 51.3 ± 2.5 | 53.9 ± 2.5 |
p value | - | - | 0.050 | 0.425 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sezai, A.; Sekino, H.; Taoka, M.; Obata, K.; Kanno, S.; Tanaka, M. A Prospective Clinical Study of Ferric Citrate Hydrate for Chronic Heart Failure with Iron Deficiency Anemia. Life 2025, 15, 598. https://doi.org/10.3390/life15040598
Sezai A, Sekino H, Taoka M, Obata K, Kanno S, Tanaka M. A Prospective Clinical Study of Ferric Citrate Hydrate for Chronic Heart Failure with Iron Deficiency Anemia. Life. 2025; 15(4):598. https://doi.org/10.3390/life15040598
Chicago/Turabian StyleSezai, Akira, Hisakuni Sekino, Makoto Taoka, Kazuaki Obata, Sakie Kanno, and Masashi Tanaka. 2025. "A Prospective Clinical Study of Ferric Citrate Hydrate for Chronic Heart Failure with Iron Deficiency Anemia" Life 15, no. 4: 598. https://doi.org/10.3390/life15040598
APA StyleSezai, A., Sekino, H., Taoka, M., Obata, K., Kanno, S., & Tanaka, M. (2025). A Prospective Clinical Study of Ferric Citrate Hydrate for Chronic Heart Failure with Iron Deficiency Anemia. Life, 15(4), 598. https://doi.org/10.3390/life15040598