Enhancing Volume Precision in Breast Reconstruction: A BMI-Based Model for Predicting Flap Weight in Profunda Artery Perforator Flaps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Operating Technique
2.3. Data Collection and Processing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer#:~:text=Scope%20of%20the%20problem,the%20world’s%20most%20prevalent%20cancer (accessed on 23 July 2024).
- Aitzetmüller-Klietz, M.L.; Yang, S.; Wiebringhaus, P.; Wellenbrock, S.; Öztürk, M.; Kückelhaus, M.; Hirsch, T.; Aitzetmüller-Klietz, M.M. Complication Rates after Breast Surgery with the Motiva Smooth Silk Surface Silicone Gel Implants-A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 1881. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nelson, J.A.; Allen, R.J., Jr.; Polanco, T.; Shamsunder, M.; Patel, A.R.; McCarthy, C.M.; Matros, E.; Dayan, J.H.; Disa, J.J.; Cordeiro, P.G.; et al. Long-term Patient-reported Outcomes Following Postmastectomy Breast Reconstruction: An 8-year Examination of 3268 Patients. Ann. Surg. 2019, 270, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Rozen, W.M.; Ashton, M.W. Improving outcomes in autologous breast reconstruction. Aesthetic Plast. Surg. 2009, 33, 327–335. [Google Scholar] [CrossRef]
- Allen, R.J.; Mehrara, B.J. Breast Reconstruction. In Plastic Surgery-Principles and Practice; Elsevier Health Sciences: Amsterdam, The Netherlands, 2021; pp. 535–564. [Google Scholar]
- Varnava, C.; Bogusch, M.; Wellenbrock, S.; Hirsch, T.; Wiebringhaus, P.; Kueckelhaus, M. Mastopexy Strategies for Ptotic Breasts in Patients Choosing Autologous Reconstruction Following Prophylactic Mastectomy. J. Clin. Med. 2023, 12, 3082. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, Z.H.; Chu, C.K.; Asaad, M.; Liu, J.; Selber, J.C.; Butler, C.E.; Largo, R.D. Comparing Donor Site Morbidity for Autologous Breast Reconstruction: Thigh vs. Abdomen. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4215. [Google Scholar] [CrossRef] [PubMed]
- Minkhorst, K.; Castanov, V.; Li, E.A.; Farrokhi, K.; Jaszkul, K.M.; AlGhanim, K.; DeLyzer, T.; Simpson, A.M. Alternatives to the Gold Standard: A Systematic Review of Profunda Artery Perforator and Lumbar Artery Perforator Flaps for Breast Reconstruction. Ann. Plast. Surg. 2024, 92, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Varnava, C.; Klietz, M.L.; Hirsch, T.; Wiebringhaus, P.; Kueckelhaus, M. Comparison of surgical and patient-reported outcomes between 85 profunda artery perforator flaps and 122 deep inferior epigastric perforator flaps as first-choice treatment for breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2023, 80, 168–177. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, C. Clinical Outcomes Following Profunda Artery Perforator Flap Breast Reconstruction: A Systematic Review and Meta-Analysis. Aesthetic Plast. Surg. 2024, 49, 1349–1368. [Google Scholar] [CrossRef] [PubMed]
- Varnava, C.; Kueckelhaus, M.; Wellenbrock, S.; Hirsch, T.; Wiebringhaus, P. One versus two vein anastomoses in breast reconstruction with a profunda artery perforator flap-does it make a difference. Microsurgery 2024, 44, e31179. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.; Nagarkar, P.; Teotia, S.; Haddock, N.T. The Profunda Artery Perforator Flap: Investigating the Perforasome Using Three-Dimensional Computed Tomographic Angiography. Plast. Reconstr. Surg. 2015, 136, 915–919. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, K.; Graziano, F.D.; Nelson, J.A.; Allen, R.J., Jr. Alternative donor sites in autologous breast reconstruction: A clinical practice review of the PAP flap. Gland. Surg. 2023, 12, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lim, S.Y.; Pyon, J.K.; Bang, S.I.; Oh, K.S.; Mun, G.H. Preoperative computed tomographic angiography of both donor and recipient sites for microsurgical breast reconstruction. Plast. Reconstr. Surg. 2012, 130, 11e–20e. [Google Scholar] [CrossRef]
- Wilting, F.N.H.; Hameeteman, M.; Tielemans, H.J.P.; Ulrich, D.J.O.; Hummelink, S. Three-dimensional evaluation of breast volume changes following autologous free flap breast reconstruction over six months. Breast 2020, 50, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Mun, G.H.; Wiraatmadja, E.S.; Lim, S.-Y.; Pyon, J.-K.; Oh, K.S.; Lee, J.E.; Nam, S.J.; Bang, S.-I. Preoperative magnetic resonance imaging-based breast volumetry for immediate breast reconstruction. Aesthetic Plast. Surg. 2015, 39, 369–376. [Google Scholar] [CrossRef]
- Yang, S.; Klietz, M.L.; Hirsch, T.; Wiebringhaus, P.; Aitzetmüller, M.M. Breast Reconstruction-Developing a Volumetric Outcome Algorithm. Aesthetic Plast. Surg. 2022, 46, 2078–2084. [Google Scholar] [CrossRef]
- Yang, S.; Klietz, M.L.; Hirsch, T.; Wiebringhaus, P.; Aitzetmüller, M.M. Volumetry in Breast Reconstruction: Always New, Always Better? Aesthetic Plast. Surg. 2022, 46, 2067–2069. [Google Scholar] [CrossRef]
- Laporta, R.; Longo, B.; Sorotos, M.; Pagnoni, M.; di Pompeo, F.S. Breast reconstruction with delayed fat-graft-augmented DIEP flap in patients with insufficient donor-site volume. Aesthetic Plast. Surg. 2015, 39, 339–349. [Google Scholar] [CrossRef]
- Doornaert, M.; Colle, J.; De Maere, E.; Declercq, H.; Blondeel, P. Autologous fat grafting: Latest insights. Ann. Med. Surg. 2018, 37, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Shamoun, F.; Asaad, M.; Hanson, S.E. Oncologic Safety of Autologous Fat Grafting in Breast Reconstruction. Clin. Breast Cancer 2021, 21, 271–277. [Google Scholar] [CrossRef]
- Tian, D.; Chu, Y.; Zhang, G.; Huang, D.; Huang, J.; Zeng, J. The prognosis outcomes of autologous fat transfer for breast reconstruction after breast cancer surgery: A systematic review and meta-analysis of cohort studies. Gland. Surg. 2022, 11, 1180–1191. [Google Scholar] [CrossRef]
- Gorji, S.; Varnava, C.; Aitzetmüller, M.; Klietz, M.L.; Hirsch, T.; Wiebringhaus, P. Der stacked PAP-Lappen zur unilateralen Brustrekonstruktion–ein Fallbericht [Stacked PAP flap for unilateral breast reconstruction: A case report]. Handchir. Mikrochir. Plast. Chir. 2023, 55, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Momeni, A.; Kanchwala, S. Hybrid Prepectoral Breast Reconstruction: A Surgical Approach that Combines the Benefits of Autologous and Implant-Based Reconstruction. Plast. Reconstr. Surg. 2018, 142, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Atzeni, M.; Salzillo, R.; Haywood, R.; Persichetti, P.; Figus, A. Breast reconstruction using the profunda artery perforator (PAP) flap: Technical refinements and evolution, outcomes, and patient satisfaction based on 116 consecutive flaps. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 1617–1624. [Google Scholar] [CrossRef] [PubMed]
- Jo, T.; Jeon, D.N.; Han, H.H. The PAP Flap Breast Reconstruction: A Practical Option for Slim Patients. J. Reconstr. Microsurg. 2022, 38, 27–33. [Google Scholar] [CrossRef]
- Morandi, E.M.; Winkelmann, S.; Pülzl, P.; Augustin, A.; Wachter, T.; Bauer, T.; Egle, D.; Brunner, C.; Dolores, W. Long-Term Outcome Analysis and Technical Refinements after Autologous Breast Reconstruction with PAP Flap: What We Have Learnt. Breast Care 2022, 17, 50–459. [Google Scholar] [CrossRef]
- Chu, C.K.; Largo, R.D.; Lee, Z.H.; Adelman, D.M.; Egro, F.; Winocour, S.; Reece, E.M.; Selber, J.C.; Butler, C.E. Introduction of the L-PAP Flap: Bipedicled, Conjoined, and Stacked Thigh-Based Flaps for Autologous Breast Reconstruction. Plast. Reconstr. Surg. 2023, 152, 1005e–1010e. [Google Scholar] [CrossRef] [PubMed]
- Citron, I.; Borges, A.; Belgaumwala, T.; Din, A.H.; Rose, V. Stack, PAP and Bury: Technical refinements from a case series of 56 profunda artery perforator flaps for breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2024, 91, 372–379. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | Value |
---|---|
Age, yr | |
Mean ± SD | 46.4 ± 11.9 |
Range | 17–77 |
Sex (n) | |
Male | 0 |
Female | 96 |
BMI (body mass index) | |
Mean ± SD (kg/m2) | 23.0 ± 3.6 |
Range | 17–39 |
Comorbidities (%) | |
ASA class | |
1 | 20.8 |
2 | 79.2 |
3 | 0 |
Hypertension | 7.3 |
Diabetes mellitus | 0 |
Smoker (active) | 9.4 |
Type of flap (n) | |
Unilateral PAP | 78 |
Bilateral PAP | 34 |
Stacked PAP | 2 |
Ischemia Time, Min | Value |
---|---|
Mean | 57.7 ± 33.7 |
Range | 19–223 |
Flap Weight, g | 304.2 ± 100.2 |
Pedicle Length, cm | |
Mean | 10.4 ± 1.4 |
Range | 7–14 |
Flap Complications (%) | |
Anastomosis revision rate | 2.6 |
Flap loss | 2.6 |
Survival rate | 97.4 |
Donor Site Complications (%) | |
Delayed wound healing | 37.7 |
Seroma | 7.9 |
Infection | 7.0 |
Wound dehiscence | 5.3 |
Lipotransfer (%) | 24.8 |
Inpatient Stay Length (d) | |
Mean | 6.7 ± 2.2 |
Range | 3–17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varnava, C.; Gorji, S.; Wellenbrock, S.; Hirsch, T.; Kückelhaus, M.; Wiebringhaus, P. Enhancing Volume Precision in Breast Reconstruction: A BMI-Based Model for Predicting Flap Weight in Profunda Artery Perforator Flaps. Life 2025, 15, 667. https://doi.org/10.3390/life15040667
Varnava C, Gorji S, Wellenbrock S, Hirsch T, Kückelhaus M, Wiebringhaus P. Enhancing Volume Precision in Breast Reconstruction: A BMI-Based Model for Predicting Flap Weight in Profunda Artery Perforator Flaps. Life. 2025; 15(4):667. https://doi.org/10.3390/life15040667
Chicago/Turabian StyleVarnava, Charalampos, Shaghayegh Gorji, Sascha Wellenbrock, Tobias Hirsch, Maximilian Kückelhaus, and Philipp Wiebringhaus. 2025. "Enhancing Volume Precision in Breast Reconstruction: A BMI-Based Model for Predicting Flap Weight in Profunda Artery Perforator Flaps" Life 15, no. 4: 667. https://doi.org/10.3390/life15040667
APA StyleVarnava, C., Gorji, S., Wellenbrock, S., Hirsch, T., Kückelhaus, M., & Wiebringhaus, P. (2025). Enhancing Volume Precision in Breast Reconstruction: A BMI-Based Model for Predicting Flap Weight in Profunda Artery Perforator Flaps. Life, 15(4), 667. https://doi.org/10.3390/life15040667