T-Follicular Helper Cells and Their Role in Autoimmune Diseases
Abstract
:1. Introduction
2. Phenotypic Characteristics of Tfh Cells
2.1. Key Markers and Signaling Pathways
Structure of the B-Cell Follicle and Germinal Center
3. Cytokine Production
4. Regulation of Tfh Cells
5. Differences Between Tfh Cells in GCs and Tfh Cells in Peripheral Circulation
6. Tfh Cells in Autoimmune Diseases
6.1. Tfh Cells in Systemic Lupus Erythematosus (SLE) Pathogenesis
6.2. Tfh Cells in Rheumatoid Arthritis (RA)
6.3. Tfh Cells in Anti-Neutrophil Cytoplasmic Antibodies (ANCA)-Associated Vasculitis (AAV)
7. Therapeutic Implications in Humans
7.1. Targeting IL-21 Signaling
7.2. Bcl-6 Inhibitors
7.3. PD-1/PD-L1 Modulation
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qi, J.; Liu, C.; Bai, Z.; Li, X.; Yao, G. T follicular helper cells and T follicular regulatory cells in autoimmune diseases. Front. Immunol. 2023, 14, 1178792. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crotty, S. Follicular helper CD4 T cells (Tfh). Annu. Rev. Immunol. 2011, 29, 621–663. [Google Scholar] [CrossRef]
- Gonzalez-Figueroa, P.; Roco, J.A.; Papa, I.; Núñez Villacís, L.; Stanley, M.; Linterman, M.A.; Dent, A.; Canete, P.F.; Vinuesa, C.G. Follicular regulatory T cells produce neuritin to regulate B cells. Cell 2021, 184, 1775–1789.e19. [Google Scholar] [CrossRef] [PubMed]
- Le Coz, C.; Oldridge, D.A.; Herati, R.S.; De Luna, N.; Garifallou, J.; Cabrera, E.C.; Belman, J.P.; Pueschl, D.; Silva, L.V.; Knox, A.V.C.; et al. Human T follicular helper clones seed the germinal center-resident regulatory pool. Sci. Immunol. 2023, 8, eade8162. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, M.; Zhang, S. T Cells in Fibrosis and Fibrotic Diseases. Front. Immunol. 2020, 11, 1142. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Linterman, M.A.; Rigby, R.J.; Wong, R.K.; Yu, D.; Brink, R.; Cannons, J.L.; Schwartzberg, P.L.; Cook, M.C.; Walters, G.D.; Vinuesa, C.G. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 2011, 208, 897–911. [Google Scholar] [CrossRef] [PubMed]
- Aranburu, A.; Mortari, E.P.; Baban, A.; Giorda, E.; Cascioli, S.; Marcellini, V.; Scarsella, M.; Ceccarelli, S.; Corbelli, S.; Cantarutti, N.; et al. Human B-cell memory is shaped by age- and tissue-specific T-independent and GC-dependent events. Eur. J. Immunol. 2017, 47, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Sowerby, J.M.; Rao, D.A. T cell-B cell interactions in human autoimmune diseases. Curr. Opin. Immunol. 2025, 93, 102539. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rubtsova, K.; Rubtsov, A.V.; Thurman, J.M.; Mennona, J.M.; Kappler, J.W.; Marrack, P. B cells expressing the transcription factor T-bet drive lupus-like autoimmunity. J. Clin. Investig. 2017, 127, 1392–1404. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xing, Y.; Huang, J.; Zhang, Y.; Wang, Y.; Qi, S. Advancing the understanding and management of angioimmunoblastic T-cell lymphoma: Insights into its pathogenesis, clinical features, and emerging therapeutic strategies. Front. Oncol. 2025, 15, 1479179. [Google Scholar] [CrossRef]
- Choi, J.; Crotty, S. Bcl6-Mediated Transcriptional Regulation of Follicular Helper T cells (TFH). Trends Immunol. 2021, 42, 336–349, Epub 2021 Mar 1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnston, R.J.; Poholek, A.C.; DiToro, D.; Yusuf, I.; Eto, D.; Barnett, B.; Dent, A.L.; Craft, J.; Crotty, S. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 2009, 325, 1006–1010. [Google Scholar] [CrossRef]
- Podestà, M.A.; Cavazzoni, C.B.; Hanson, B.L.; Bechu, E.D.; Ralli, G.; Clement, R.L.; Zhang, H.; Chandrakar, P.; Lee, J.M.; Reyes-Robles, T.; et al. Stepwise differentiation of follicular helper T cells reveals distinct developmental and functional states. Nat. Commun. 2023, 14, 7712. [Google Scholar]
- Noack, M.; Miossec, P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun. Rev. 2014, 13, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Xu, B.; Wang, S.; Zhou, M.; Huang, Y.; Guo, C.; Li, M.; Zhao, J.; Sung, S.J.; Gaskin, F.; et al. Tfh cells with NLRP3 inflammasome activation are essential for high-affinity antibody generation, germinal centre formation and autoimmunity. Ann. Rheum. Dis. 2022, 81, 1006–1012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, X.; Chen, X.; Cao, Y.; Liu, C.; Hu, G.; Ganesan, S.; Veres, T.Z.; Fang, D.; Liu, S.; Chung, H.; et al. Optimal CXCR5 Expression during Tfh Maturation Involves the Bhlhe40-Pou2af1 Axis. bioRxiv, 2024; preprint. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, X.; Niu, X. T follicular helper cells in autoimmune diseases. J. Autoimmun. 2023, 134, 102976. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zhao, Z.; Zhao, X.; Bai, X.; Fu, W.; Zheng, L.; Kang, B.; Wang, X.; Zhang, Z.; Dong, C. A novel memory-like Tfh cell subset is precursor to effector Tfh cells in recall immune responses. J. Exp. Med. 2024, 221, e20221927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, D.; Yan, J.; Sun, J.; Liu, B.; Ma, W.; Li, Y.; Shao, X.; Qi, H. BCL6 controls contact-dependent help delivery during follicular T-B cell interactions. Immunity 2021, 54, 2245–2255.e4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C. Germinal Center Reaction. Adv. Exp. Med. Biol. 2020, 1254, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Dong, C. Cytokine Regulation and Function in T Cells. Annu. Rev. Immunol. 2021, 39, 51–76. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Cavazzoni, C.B.; Podestà, M.A.; Bechu, E.D.; Ralli, G.; Chandrakar, P.; Lee, J.M.; Sayin, I.; Tullius, S.G.; Abdi, R.; et al. IL-21-producing effector Tfh cells promote B cell alloimmunity in lymph nodes and kidney allografts. JCI Insight 2023, 8, e169793. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xia, Y.; Sandor, K.; Pai, J.A.; Daniel, B.; Raju, S.; Wu, R.; Hsiung, S.; Qi, Y.; Yangdon, T.; Okamoto, M.; et al. BCL6-dependent TCF-1+ progenitor cells maintain effector and helper CD4+ T cell responses to persistent antigen. Immunity 2022, 55, 1200–1215.e6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Butcher, M.J.; Zhu, J. Recent advances in understanding the Th1/Th2 effector choice. Fac. Rev. 2021, 10, 30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- DiToro, D.; Johnston, R.; Crotty, S. Roles of Bcl6 and Blimp1 in CD4 T follicular helper (Tfh) lineage commitment (99.11). J. Immunol. 2010, 184 (Suppl. S1), 99.11. [Google Scholar] [CrossRef]
- Fonseca, V.R.; Ribeiro, F.; Graca, L. T follicular regulatory (Tfr) cells: Dissecting the complexity of Tfr-cell compartments. Immunol. Rev. 2019, 288, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Su, R.; Wu, R.; Xue, H.; Wang, Y.; Su, R.; Gao, C.; Li, X.; Wang, C. Frontiers of Autoantibodies in Autoimmune Disorders: Crosstalk Between Tfh/Tfr and Regulatory B Cells. Front. Immunol. 2021, 12, 641013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Walker, L.S.K. The link between circulating follicular helper T cells and autoimmunity. Nat. Rev. Immunol. 2022, 22, 567–575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iwamoto, Y.; Ueno, H. Circulating, T Follicular Helper Subsets in Human Blood. Methods Mol. Biol. 2022, 2380, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhu, C.; Ma, B.; Tian, J.; Baidoo, S.E.; Mao, C.; Wu, W.; Chen, J.; Tong, J.; Yang, M.; et al. Increased frequency of circulating follicular helper T cells in peripheral blood from rheumatoid arthritis patients. Int. Immunopharmacol. 2012, 14, 345–352. [Google Scholar]
- Kim, S.J.; Gregg, R.K. Follicular helper T (Tfh) cells and systemic lupus erythematosus. Int. Immunopharmacol. 2014, 20, 116–123. [Google Scholar]
- Simpson, N.; Gatenby, P.A.; Wilson, A.; Malik, S.; Fulcher, D.A.; Tangye, S.G.; Manku, H.; Vyse, T.J.; Roncador, G.; Huttley, G.A.; et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 2010, 62, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Banchereau, J.; Vinuesa, C.G. Circulating T follicular helper cells in human health and disease. J. Clin. Immunol. 2015, 35, 173–181. [Google Scholar] [CrossRef]
- Ma, X.; Nakayamada, S.; Wang, J. Multi-Source Pathways of T Follicular Helper Cell Differentiation. Front. Immunol. 2021, 12, 621105. [Google Scholar] [CrossRef] [PubMed]
- Tenbrock, K.; Rauen, T. T cell dysregulation in SLE. Clin. Immunol. 2022, 239, 109031. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Liao, T.; Chen, Y.; Chen, J.; Liu, Y.; Zhao, J.; Dang, J.; Sun, Q.; Pan, Y. Dihydroartemisinin inhibits follicular helper T and B cells: Implications for systemic lupus erythematosus treatment. Arch. Pharm. Res. 2024, 47, 632–644. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.W.; Jacobs, H.M.; Arkatkar, T.; Dam, E.M.; Scharping, N.E.; Kolhatkar, N.S.; Hou, B.; Buckner, J.H.; Rawlings, D.J. B cell IFN-γ receptor signaling promotes autoimmune germinal centers via cell-intrinsic induction of BCL-6. J. Exp. Med. 2016, 213, 733–750. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ou, Q.; Qiao, X.; Li, Z.; Niu, L.; Lei, F.; Cheng, R.; Xie, T.; Yang, N.; Liu, Y.; Fu, L.; et al. Apoptosis releases hydrogen sulfide to inhibit Th17 cell differentiation. Cell Metab. 2024, 36, 78–89.e5. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, S.; Huang, M.; Zhao, M.; Zhang, W.; Liu, Q.; Song, K.; Wang, X.; Liu, J.; OuYang, Q.; et al. DNA methylation and whole-genome transcription analysis in CD4+ T cells from systemic lupus erythematosus patients with or without renal damage. Clin. Epigenetics 2024, 16, 98. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rasmussen, T.K. Follicular T helper cells and IL-21 in rheumatic diseases. Dan. Med. J. 2016, 63, B5297. [Google Scholar] [PubMed]
- Zhu, X.; Zhu, J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int. J. Mol. Sci. 2020, 21, 8011. [Google Scholar] [CrossRef]
- Schmitt, N.; Liu, Y.; Bentebibel, S.E.; Munagala, I.; Bourdery, L.; Venuprasad, K.; Banchereau, J.; Ueno, H. IL-21-producing CD4+ Tfh cells drive chronic inflammation in systemic lupus erythematosus. Nat. Immunol. 2014, 15, 396–405. [Google Scholar]
- Ji, L.S.; Sun, X.H.; Zhang, X.; Zhou, Z.H.; Yu, Z.; Zhu, X.J.; Huang, L.Y.; Fang, M.; Gao, Y.T.; Li, M.; et al. Mechanism of Follicular Helper T Cell Differentiation Regulated by Transcription Factors. J. Immunol. Res. 2020, 2020, 1826587. [Google Scholar] [CrossRef] [PubMed]
- Bugatti, S.; Manzo, A.; Vitolo, B.; Benaglio, F.; Binda, E.; Scarabelli, M.; Humby, F.; Caporali, R.; Pitzalis, C.; Montecucco, C. Circulating T follicular helper cells in rheumatoid arthritis. Arthritis Rheumatol. 2014, 66, 2285–2293. [Google Scholar]
- Choi, S.W.; Rho, J. The role of Tfh cells in the immunopathogenesis of rheumatoid arthritis. J. Autoimmun. 2017, 77, 104–110. [Google Scholar]
- Samson, M.; Audia, S.; Janikashvili, N.; Ciudad, M.; Trad, M.; Fraszczak, J.; Ornetti, P.; Lakomy, D.; Berthier, S.; Clavel, G.; et al. Follicular helper T cells: A new role in rheumatic diseases. Jt. Bone Spine 2016, 83, 241–246. [Google Scholar]
- Nurieva, R.I.; Dong, C.; McGeachy, M.J.; Hwang, D.; Yang, X.O. Tfh cells represent a distinct lineage differentiated from Th1, Th2, and Th17 cells. Nat. Immunol. 2008, 9, 1074–1085. [Google Scholar]
- Yin, Y.; Zhao, L.; Zhang, F.; Zhang, X. Impact of CD200-Fc on dendritic cells in lupus-prone NZB/WF1 mice. Sci. Rep. 2016, 6, 31874. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, Q.; Xiao, Q.; Zhang, L.; Fu, B.; Li, X.; Huang, Z.; Li, J. Circulating TIGIT±PD1+TPH, TIGIT ± PD1+TFH cells are elevated and their predicting role in systemic lupus erythematosus. Heliyon 2024, 10, e27687. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miao, M.; Xiao, X.; Tian, J.; Zhufeng, Y.; Feng, R.; Zhang, R.; Chen, J.; Zhang, X.; Huang, B.; Jin, Y.; et al. Therapeutic potential of targeting Tfr/Tfh cell balance by low-dose-IL-2 in active SLE: A post hoc analysis from a double-blind RCT study. Arthritis Res. Ther. 2021, 23, 167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, S.; Lu, H.; Xiong, M. Identifying Immune Cell Infiltration and Effective Diagnostic Biomarkers in Rheumatoid Arthritis by Bioinformatics Analysis. Front. Immunol. 2021, 12, 726747. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Floudas, A.; Canavan, M.; McGarry, T.; Mullan, R.; Nagpal, S.; Veale, D.J.; Fearon, U. ACPA Status Correlates with Differential Immune Profile in Patients with Rheumatoid Arthritis. Cells 2021, 10, 647. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lu, J.; Wu, J.; Xia, X.; Peng, H.; Wang, S. Follicular helper T cells: Potential therapeutic targets in rheumatoid arthritis. Cell. Mol. Life Sci. 2021, 78, 5095–5106. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rao, D.A.; Gurish, M.F.; Marshall, J.L.; Slowikowski, K.; Fonseka, C.Y.; Liu, Y.; Donlin, L.T.; Henderson, L.A.; Wei, K.; Mizoguchi, F.; et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 2017, 542, 110–114. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pan, M.; Zhao, H.; Jin, R.; Leung, P.S.C.; Shuai, Z. Targeting immune checkpoints in anti-neutrophil cytoplasmic antibodies associated vasculitis: The potential therapeutic targets in the future. Front. Immunol. 2023, 14, 1156212. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chung, S.A.; Criswell, L.A. Molecular and cellular pathways in ANCA-associated vasculitis. Nat. Rev. Rheumatol. 2021, 17, 532–542. [Google Scholar]
- Schmitt, N. Elevated circulating Tfh-like cells and IL-21 in ANCA vasculitis. J. Clin. Immunol. 2014, 34, 853–861. [Google Scholar]
- Morgan, A.W.; Little, M.A.; Salama, A.D. The role of IL-21 in the pathogenesis of ANCA-associated vasculitis. J. Autoimmun. 2012, 39, 123–130. [Google Scholar]
- Jennette, J.C.; Falk, R.J. Pathogenesis of anti-neutrophil cytoplasmic autoantibody-mediated disease. Nat. Rev. Rheumatol. 2017, 13, 670–680. [Google Scholar]
- Xu, J.; Zhao, H.; Wang, S.; Zheng, M.; Shuai, Z. Elevated Level of Serum Interleukin-21 and Its Influence on Disease Activity in Anti-Neutrophil Cytoplasmic Antibodies Against Myeloperoxidase-Associated Vasculitis. J. Interferon Cytokine Res. 2022, 42, 290–300, Erratum in J. Interferon Cytokine Res. 2023, 43, 188. [Google Scholar] [CrossRef] [PubMed]
- Lodka, D.; Zschummel, M.; Bunse, M.; Rousselle, A.; Sonnemann, J.; Kettritz, R.; Höpken, U.E.; Schreiber, A. CD19-targeting CAR T cells protect from ANCA-induced acute kidney injury. Ann. Rheum. Dis. 2024, 83, 499–507. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herber, D.; Brown, T.P.; Liang, S.; Young, D.A.; Collins, M.; Dunussi-Joannopoulos, K. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J. Immunol. 2007, 178, 3822–3830. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, J.; Chu, Y.; Xue, Y.; Xuan, D.; Zheng, S.; Zou, H. T Follicular Helper Cells and Regulatory B Cells Dynamics in Systemic Lupus Erythematosus. PLoS ONE 2014, 9, e88441. [Google Scholar] [CrossRef]
- Choi, J.Y.; Seth, A.; Kashgarian, M.; Terrillon, S.; Fung, E.; Huang, L.; Wang, L.C.; Craft, J. Disruption of Pathogenic Cellular Networks by IL-21 Blockade Leads to Disease Amelioration in Murine Lupus. J. Immunol. 2017, 198, 2578–2588. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.L.; Metz, D.P.; Chung, J.; Siu, G.; Zhang, M. B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells. J. Immunol. 2009, 182, 1421–1428. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, H.; Zhen, Y.; Sang, X.; Wu, H.; Hu, C.; Ma, Z.; Yu, M.; Yi, H. Imbalance of Circulatory T Follicular Helper and T Follicular Regulatory Cells in Patients with ANCA-Associated Vasculitis. Mediators Inflamm. 2019, 2019, 8421479. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, S.; Zheng, M.J.; Zhou, X.L.; Liu, Y.Q.; Shuai, Z.W. The clinical significance of circulating follicular helper T cells in patients with anti-neutrophil cytoplasmic myeloperoxidase antibody-associated vasculitis. Zhonghua Nei Ke Za Zhi. 2018, 57, 738–742. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Cho, S.K.; Vazquez, T.; Werth, V.P. Litifilimab (BIIB059), a promising investigational drug for cutaneous lupus erythematosus. Expert Opin. Investig. Drugs 2023, 32, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Frampton, J.E. Inebilizumab: First Approval. Drugs 2020, 80, 1259–1264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Furie, R.A.; Bruce, I.N.; Dörner, T.; Leon, M.G.; Leszczyński, P.; Urowitz, M.; Haier, B.; Jimenez, T.; Brittain, C.; Liu, J.; et al. Phase 2, randomized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus. Rheumatology 2021, 60, 5397–5407, Erratum in Rheumatology 2022, 62, 486. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fleischmann, R.; Kremer, J.; Cush, J.; Schulze-Koops, H.; Connell, C.A.; Bradley, J.D.; Gruben, D.; Wallenstein, G.V.; Zwillich, S.H.; Kanik, K.S.; et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 2012, 367, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Orvain, C.; Cauvet, A.; Prudent, A.; Guignabert, C.; Thuillet, R.; Ottaviani, M.; Tu, L.; Duhalde, F.; Nicco, C.; Batteux, F.; et al. Acazicolcept (ALPN-101), a dual ICOS/CD28 antagonist, demonstrates efficacy in systemic sclerosis preclinical mouse models. Arthritis Res. Ther. 2022, 24, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, M.; Lee, F.; Knize, A.; Jacobsen, F.; Yu, S.; Ishida, K.; Miner, K.; Gaida, K.; Whoriskey, J.; Chen, C.; et al. Development of an ICOSL and BAFF bispecific inhibitor AMG 570 for systemic lupus erythematosus treatment. Clin. Exp. Rheumatol. 2019, 37, 906–914. [Google Scholar] [PubMed]
- Luque-Campos, N.; Contreras-López, R.A.; Jose Paredes-Martínez, M.; Torres, M.J.; Bahraoui, S.; Wei, M.; Espinoza, F.; Djouad, F.; Elizondo-Vega, R.J.; Luz-Crawford, P. Mesenchymal Stem Cells Improve Rheumatoid Arthritis Progression by Controlling Memory T Cell Response. Front. Immunol. 2019, 10, 798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xie, M.; Li, C.; She, Z.; Wu, F.; Mao, J.; Hun, M.; Luo, S.; Wan, W.; Tian, J.; Wen, C. Human umbilical cord mesenchymal stem cells derived extracellular vesicles regulate acquired immune response of lupus mouse in vitro. Sci. Rep. 2022, 12, 13101. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Secondary Lymphoid Tfh Cells | Circulating Tfh (cTfh) Cells | |
---|---|---|
(1) Location | GC of lymph nodes, spleen | Peripheral blood |
(2) Phenotype: | ||
-CXCR5 | High | Moderate to high |
-PD-1 | High | Low |
-Bcl-6 | High | Low |
-ICOS | High | Low |
-CD45RO | No | Moderate |
-CXCR3 | Undetermined | |
0 | Undetermined | |
(3) Functions: | Involved in active immune responses, direct interaction with B cells in GC through CD40L | Memory cell repertoire |
B-cell proliferation, class switch, high-affinity B cells | B cells help upon recall | |
Can migrate to GC | ||
Undetermined role in infection and vaccination | Up-regulation of immune response | |
Cytokines produced | IL-21, IL-4, IL-10 | IL-21 |
Study Code | Drug | Target Molecule | Tfh Cells | Phase | Status | References |
---|---|---|---|---|---|---|
NCT03371251 | avizakimab | IL-21 | Inhibit Tfh-cell production | Phase I | active | |
NCT02106897 | BIIB059 (Litifilimab) | Dendritic cell antigen 2 (BDCA2) | Inhibit Tfh-cell differentiation | Phase I | Completed | [68] |
NCT02847598 | BIIB059 (Litifilimab) | Dendritic cell antigen 2 (BDCA2) | Inhibit Tfh-cell differentiation | Phase II | Completed | [68] |
NCT04961567 | BIIB059 (Litifilimab) | Dendritic cell antigen 2 (BDCA2) | Inhibit Tfh-cell differentiation | Phase III | Active | [68] |
NCT06570798 | Inebilizumab | Dnti-CD19 | Inhibit Tfh–B-cell reactions | Phase II | Active | [69] |
NCT04976322 | Dapirolizumab Pegol | Targets CD40L | Inhibit Tfh–B-cell reactions | Phase II | Completed | [70] |
NCT05048238 | Tofacitinib | JAK Inhibitors | Inhibit Tfh-cell differentiation | Phase I | Completed | [71] |
NCT02535689 | Ttofacitinib | JAK Inhibitors | Inhibit Tfh-cell differentiation | Phase I | Completed | [71] |
NCT03312335 | Aldesleukin | Low-dose hrIL-2 | Supress Bcl-6 | Phase II | Completed | |
NCT04835441 | Acazicolcept | ICOS | Inhibit Tfh–B-cell reactions | Phase II | Active | [72] |
NCT04058028 | AMG 570 | ICOS | Inhibit Tfh–B-cell reactions | Phase II | Completed | [73] |
NCT04184258 | Mesenchymal stem cells | Regulate Tfh-cell function | Phase I/II | Completed | [74,75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christodoulou, M.; Moysidou, E.; Lioulios, G.; Stai, S.; Lazarou, C.; Xochelli, A.; Fylaktou, A.; Stangou, M. T-Follicular Helper Cells and Their Role in Autoimmune Diseases. Life 2025, 15, 666. https://doi.org/10.3390/life15040666
Christodoulou M, Moysidou E, Lioulios G, Stai S, Lazarou C, Xochelli A, Fylaktou A, Stangou M. T-Follicular Helper Cells and Their Role in Autoimmune Diseases. Life. 2025; 15(4):666. https://doi.org/10.3390/life15040666
Chicago/Turabian StyleChristodoulou, Michalis, Eleni Moysidou, Georgios Lioulios, Stamatia Stai, Christina Lazarou, Aliki Xochelli, Asimina Fylaktou, and Maria Stangou. 2025. "T-Follicular Helper Cells and Their Role in Autoimmune Diseases" Life 15, no. 4: 666. https://doi.org/10.3390/life15040666
APA StyleChristodoulou, M., Moysidou, E., Lioulios, G., Stai, S., Lazarou, C., Xochelli, A., Fylaktou, A., & Stangou, M. (2025). T-Follicular Helper Cells and Their Role in Autoimmune Diseases. Life, 15(4), 666. https://doi.org/10.3390/life15040666