Integrated Analysis of Long Non-Coding RNAs and mRNAs Reveals Key Trans-Target Genes Associated with Heat Stress Response in Rhododendron delavayi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Heat Stress Treatment
2.2. Total RNA Extraction and Quality Examination
2.3. Library Construction for RNA-Seq
2.4. RNA-Seq Data Analysis
2.5. Analysis of DE-lncRNAs and DEGs
2.6. Function Annotation and Co-Expression Network Construction
2.7. qRT-PCR Analysis of Candidate DE-lncRNAs and DEGs
2.8. Statistical Analysis
3. Results
3.1. Comprehensive Overview of Transcriptome Sequencing (RNA-Seq)
3.2. Identification of lncRNAs and mRNA in R. delavayi Under Heat Stress Treatment
3.3. Identification of DE-lncRNAs and DEGs
3.4. GO and KEGG Enrichment Analysis
3.5. Co-Expression Networks of lncRNAs and Their Cis and Trans-Target Genes
3.6. RT-qPCR Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Apostolova, E.L. Molecular Mechanisms of Plant Defense against Abiotic Stress. Int. J. Mol. Sci. 2023, 24, 10339. [Google Scholar] [CrossRef] [PubMed]
- Haak, D.C.; Fukao, T.; Grene, R.; Hua, Z.; Ivanov, R.; Perrella, G.; Li, S. Multilevel Regulation of Abiotic Stress Responses in Plants. Front. Plant Sci. 2017, 8, 1564. [Google Scholar] [CrossRef]
- Manghwar, H.; Zaman, W. Plant Biotic and Abiotic Stresses. Life 2024, 14, 372. [Google Scholar] [CrossRef]
- Du, B.; Haensch, R.; Alfarraj, S.; Rennenberg, H. Strategies of plants to overcome abiotic and biotic stresses. Biol. Rev. Camb. Philos. Soc. 2024, 99, 1524–1536. [Google Scholar] [CrossRef] [PubMed]
- Gechev, T.; Petrov, V. Reactive Oxygen Species and Abiotic Stress in Plants. Int. J. Mol. Sci. 2020, 21, 7433. [Google Scholar] [CrossRef] [PubMed]
- Balfagon, D.; Zandalinas, S.I.; Mittler, R.; Gomez-Cadenas, A. High temperatures modify plant responses to abiotic stress conditions. Physiol. Plant 2020, 170, 335–344. [Google Scholar] [CrossRef]
- Deng, K.; Li, Z.; Huang, T.; Huang, J. Noncoding RNAs in regulation of plant secondary metabolism. Plant Physiol. Biochem. 2024, 211, 108718. [Google Scholar] [CrossRef]
- Patra, G.K.; Gupta, D.; Rout, G.R.; Panda, S.K. Role of long non coding RNA in plants under abiotic and biotic stresses. Plant Physiol. Biochem. 2023, 194, 96–110. [Google Scholar] [CrossRef]
- Imaduwage, I.; Hewadikaram, M. Predicted roles of long non-coding RNAs in abiotic stress tolerance responses of plants. Mol. Hortic. 2024, 4, 20. [Google Scholar] [CrossRef]
- Yang, H.; Cui, Y.; Feng, Y.; Hu, Y.; Liu, L.; Duan, L. Long Non-Coding RNAs of Plants in Response to Abiotic Stresses and Their Regulating Roles in Promoting Environmental Adaption. Cells 2023, 12, 729. [Google Scholar] [CrossRef]
- Qin, T.; Zhao, H.; Cui, P.; Albesher, N.; Xiong, L. A Nucleus-Localized Long Non-Coding RNA Enhances Drought and Salt Stress Tolerance. Plant Physiol. 2017, 175, 1321–1336. [Google Scholar] [CrossRef] [PubMed]
- Quan, M.; Liu, X.; Xiao, L.; Chen, P.; Song, F.; Lu, W.; Song, Y.; Zhang, D. Transcriptome analysis and association mapping reveal the genetic regulatory network response to cadmium stress in Populus tomentosa. J. Exp. Bot. 2021, 72, 576–591. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhao, H.; Niu, Y.; Wang, Y. Long noncoding RNA from Betula platyphylla, BplncSIR1, confers salt tolerance by regulating BpNAC2 to mediate reactive oxygen species scavenging and stomatal movement. Plant Biotechnol. J. 2024, 22, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zheng, H.; Li, J.; Liu, L.; Zhang, X.; Sui, N. Comparative Transcriptome Analysis Reveals New lncRNAs Responding to Salt Stress in Sweet Sorghum. Front. Bioeng. Biotechnol. 2020, 8, 331. [Google Scholar] [CrossRef]
- Wang, A.; Hu, J.; Gao, C.; Chen, G.; Wang, B.; Lin, C.; Song, L.; Ding, Y.; Zhou, G. Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp. chinensis). Sci. Rep. 2019, 9, 5002. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, Y.; Pu, S.; Zhang, X.; Li, Z.; Chen, J. Third-generation sequencing found LncRNA associated with heat shock protein response to heat stress in Populus qiongdaoensis seedlings. BMC Genom. 2020, 21, 572. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Li, W.; Wang, S.; Hao, L.; Xu, C.; Yu, Y.; Xiang, L.; Li, T.; Jiang, F. A long noncoding RNA HILinc1 enhances pear thermotolerance by stabilizing PbHILT1 transcripts through complementary base pairing. Commun. Biol. 2022, 5, 1134. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Wu, X.; Wen, X.; Li, D.; Zhou, H.; Li, Z.; Liu, B.; Wei, J.; Chen, F.; et al. High-quality evergreen azalea genome reveals tandem duplication-facilitated low-altitude adaptability and floral scent evolution. Plant Biotechnol. J. 2021, 19, 2544–2560. [Google Scholar] [CrossRef]
- Wang, X.-J.; Wei, Y.-F.; Liu, Z.; Yu, T.; Fu, Y.-H.; Song, X.-M. TEGR: A comprehensive Ericaceae Genome Resource database. J. Integr. Agric. 2023, 24, 1140–1151. [Google Scholar] [CrossRef]
- Liu, S.J.; Cai, C.; Cai, H.Y.; Bai, Y.Q.; Wang, D.Y.; Zhang, H.; Peng, J.G.; Xie, L.J. Integrated analysis of transcriptome and small RNAome reveals regulatory network of rapid and long-term response to heat stress in Rhododendron moulmainense. Planta 2024, 259, 104. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Peters, M.; Mueller, R.O. Correlational analysis of ordinal data: From Pearson’s r to Bayesian polychoric correlation. Asia Pac. Educ. Rev. 2010, 11, 459–466. [Google Scholar] [CrossRef]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef] [PubMed]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. Proc. Int. AAAI Conf. Web Soc. Media 2009, 3, 361–362. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, 900. [Google Scholar] [CrossRef]
- Baev, V.; Gisel, A.; Minkov, I. The Fascinating World of Plant Non-Coding RNAs. Int. J. Mol. Sci. 2023, 24, 10341. [Google Scholar] [CrossRef]
- Song, L.; Fang, Y.; Chen, L.; Wang, J.; Chen, X. Role of non-coding RNAs in plant immunity. Plant Commun. 2021, 2, 100180. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-X.; Zhang, J.; Wan, Z.-Y.; Huang, S.-X.; Di, H.-C.; He, Y.; Jin, S.-H. Physiological and transcriptome analyses provide new insights into the mechanism mediating the enhanced tolerance of melatonin-treated rhododendron plants to heat stress. J. Integr. Agric. 2023, 22, 2397–2411. [Google Scholar] [CrossRef]
- He, X.; Guo, S.; Wang, Y.; Wang, L.; Shu, S.; Sun, J. Systematic identification and analysis of heat-stress-responsive lncRNAs, circRNAs and miRNAs with associated co-expression and ceRNA networks in cucumber (Cucumis sativus L.). Physiol. Plant 2020, 168, 736–754. [Google Scholar] [CrossRef]
- Bhatia, G.; Singh, A.; Verma, D.; Sharma, S.; Singh, K. Genome-wide investigation of regulatory roles of lncRNAs in response to heat and drought stress in Brassica juncea (Indian mustard). Environ. Exp. Bot. 2020, 171, 103922. [Google Scholar] [CrossRef]
- Arunkumar, G. LncRNAs: The good, the bad, and the unknown. Biochem. Cell Biol. 2024, 102, 9–27. [Google Scholar] [CrossRef]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, W.; Wang, M.; Zhou, X. The Role of Long Noncoding RNAs in Gene Expression Regulation. Gene Expr. Profiling Cancer 2019, 5, 17. [Google Scholar] [CrossRef]
- Sun, H.F.; Wang, X.N.; Li, Y.N.; Wang, L.L.; Li, Y.Y.; Ma, L.J.; Li, X.M. Long non-coding RNAs modulate glutathione metabolism gene expression and tolerance to Pb stress in root tissue of endophyte-infected rice seedling. Ecotoxicol. Environ. Saf. 2025, 291, 117872. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, S.; Fu, H.; Zhou, C.; Chen, L.; Li, X.; Lin, Y.; Lai, Z.; Guo, Y. Transcriptome and Phytochemical Analyses Provide New Insights Into Long Non-Coding RNAs Modulating Characteristic Secondary Metabolites of Oolong Tea (Camellia sinensis) in Solar-Withering. Front. Plant Sci. 2019, 10, 1638. [Google Scholar] [CrossRef]
- Dong, C.; Peng, X.; Yang, X.; Wang, C.; Yuan, L.; Chen, G.; Tang, X.; Wang, W.; Wu, J.; Zhu, S.; et al. Physiological and Transcriptomic Responses of Bok Choy to Heat Stress. Plants 2024, 13, 1093. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, L.; Rusalepp, L.; Kaurilind, E.; Sulaiman, H.Y.; Pussa, T.; Niinemets, U. Heat priming improved heat tolerance of photosynthesis, enhanced terpenoid and benzenoid emission and phenolics accumulation in Achillea millefolium. Plant Cell Environ. 2021, 44, 2365–2385. [Google Scholar] [CrossRef]
- Wang, H.; Xu, W.; Zhang, X.; Wang, L.; Jia, S.; Zhao, S.; Li, W.; Lu, R.; Ren, A.; Zhang, S. Transcriptomics and metabolomics analyses of Rosa hybrida to identify heat stress response genes and metabolite pathways. BMC Plant Biol. 2024, 24, 874. [Google Scholar] [CrossRef]
- Wu, X.; Ma, Y.; Wang, P.; Wu, J.; Li, N.; Zhang, Z.; Xie, R.; Wang, D.; Nie, H. Transcriptome sequencing and screening of anthocyanin related genes in purple potato tubers (Solanum tuberosum L.). BMC Genom. 2024, 25, 1159. [Google Scholar] [CrossRef]
- Abiko, M.; Akibayashi, K.; Sakata, T.; Kimura, M.; Kihara, M.; Itoh, K.; Asamizu, E.; Sato, S.; Takahashi, H.; Higashitani, A. High-temperature induction of male sterility during barley (Hordeum vulgare L.) anther development is mediated by transcriptional inhibition. Sex. Plant Reprod. 2005, 18, 91–100. [Google Scholar] [CrossRef]
- Dard, A.; Weiss, A.; Bariat, L.; Auverlot, J.; Fontaine, V.; Picault, N.; Pontvianne, F.; Riondet, C.; Reichheld, J.P. Glutathione-mediated thermomorphogenesis and heat stress responses in Arabidopsis thaliana. J. Exp. Bot. 2023, 74, 2707–2725. [Google Scholar] [CrossRef]
- Hewitt, S.; Hernandez-Montes, E.; Dhingra, A.; Keller, M. Impact of heat stress, water stress, and their combined effects on the metabolism and transcriptome of grape berries. Sci. Rep. 2023, 13, 9907. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, W.; Chen, Q.; Zhang, G.; Gao, F.; Zhou, Y. Integrated transcriptomics, proteomics, and metabolomics identified biological processes and metabolic pathways involved in heat stress response in jojoba. Ind. Crops Prod. 2022, 183, 114946. [Google Scholar] [CrossRef]
- Zhao, X.; Li, P.; Liu, X.; Xu, T.; Zhang, Y.; Meng, H.; Xia, T. High temperature increased lignin contents of poplar (Populus spp.) stem via inducing the synthesis caffeate and coniferaldehyde. Front. Genet. 2022, 13, 1007513. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.T.; Zhang, L.L.; Han, J.J.; Zhou, M.; Liu, J.X. Histone H3K4 methyltransferases SDG25 and ATX1 maintain heat-stress gene expression during recovery in Arabidopsis. Plant J. 2021, 105, 1326–1338. [Google Scholar] [CrossRef]
- Qi, J.; Wang, J.; Gong, Z.; Zhou, J.M. Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 2017, 38, 92–100. [Google Scholar] [CrossRef]
Sample | Clean Reads | Mapped Reads | Uniq Mapped Reads | Multiple Mapped Reads | GC (%) | Q30 (%) |
---|---|---|---|---|---|---|
CK1 | 72,796,176 | 65,816,206 (90.41%) | 59,540,530 (81.79%) | 6,275,676 (8.62%) | 44.11 | 94.4 |
CK2 | 66,000,982 | 60,399,258 (91.51%) | 54,745,987 (82.95%) | 5,653,271 (8.57%) | 44.45 | 94.69 |
CK3 | 72,965,128 | 67,690,520 (92.77%) | 62,163,128 (85.20%) | 5,527,392 (7.58%) | 44.39 | 95.1 |
H3-1 | 61,128,826 | 54,812,099 (89.67%) | 50,337,543 (82.35%) | 4,474,556 (7.32%) | 44.68 | 94.28 |
H3-2 | 63,427,652 | 56,640,331 (89.30%) | 52,148,500 (82.22%) | 4,491,831 (7.08%) | 44.53 | 94.55 |
H3-3 | 70,936,282 | 63,721,989 (89.83%) | 58,902,339 (83.04%) | 4,819,650 (6.79%) | 44.44 | 94.3 |
H6-1 | 60,341,510 | 54,375,726 (90.11%) | 50,600,561 (83.86%) | 3,775,165 (6.26%) | 44.27 | 94.28 |
H6-2 | 75,965,538 | 68,870,447 (90.66%) | 63,723,386 (83.88%) | 5,147,061 (6.78%) | 44.34 | 94.24 |
H6-3 | 69,575,994 | 62,557,432 (89.91%) | 57,860,201 (83.16%) | 4,697,231 (6.75%) | 44.9 | 94.62 |
LncRNA | Target Genes | KEGG Pathways | Gene Annotation | Abbr. |
---|---|---|---|---|
MSTRG.2778.3 | Rhdel01G0136300 | RNA polymerase | RNA polymerase subunit | PPABC1 |
MSTRG.48329.1 | Rhdel08G0230700 | Phenylpropanoid synthesis | Cinnamoyl-CoA reductase 1 | CCR |
MSTRG.67867.1 | Rhdel12G0186300 | Phenylpropanoid synthesis | UDP-glucosyltransferas | UGT89B2 |
MSTRG.34368.2 | Rhde106G0000800 | Val, leu, Ile degradation | Trithorax-related proteins | TrxG |
MSTRG.2778.4 | Rhde110G0097800 | Linoleic acid metabolism | Phosphoenolpyruvate carboxylase | PEPC |
MSTRG.34368.1 | Rhde113G0014100 | Val, leu, Ile degradation | Isocitrate dehydrogenase | IDH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Liu, Y.; Zhang, X.; An, L.; Tian, Z. Integrated Analysis of Long Non-Coding RNAs and mRNAs Reveals Key Trans-Target Genes Associated with Heat Stress Response in Rhododendron delavayi. Life 2025, 15, 697. https://doi.org/10.3390/life15050697
Liu C, Liu Y, Zhang X, An L, Tian Z. Integrated Analysis of Long Non-Coding RNAs and mRNAs Reveals Key Trans-Target Genes Associated with Heat Stress Response in Rhododendron delavayi. Life. 2025; 15(5):697. https://doi.org/10.3390/life15050697
Chicago/Turabian StyleLiu, Changming, Yang Liu, Xinyue Zhang, Lujie An, and Zhiguo Tian. 2025. "Integrated Analysis of Long Non-Coding RNAs and mRNAs Reveals Key Trans-Target Genes Associated with Heat Stress Response in Rhododendron delavayi" Life 15, no. 5: 697. https://doi.org/10.3390/life15050697
APA StyleLiu, C., Liu, Y., Zhang, X., An, L., & Tian, Z. (2025). Integrated Analysis of Long Non-Coding RNAs and mRNAs Reveals Key Trans-Target Genes Associated with Heat Stress Response in Rhododendron delavayi. Life, 15(5), 697. https://doi.org/10.3390/life15050697