Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins
Abstract
:1. Introduction
2. flv Genes in Oxygenic Photosynthetic Organisms
2.1. The flv Gene Family and its Organization in Cyanobacterial Genomes
No. of flv's | flv1(a) | flv3(a) | flv2 | flv4 | flv1b | flv3b | Gene organization (flv1(a), flv3(a)) | Gene organization (flv2, flv4) | Gene organization (flv1b, flv3b) | |
---|---|---|---|---|---|---|---|---|---|---|
α-Cyanobacteria (unicellular) | ||||||||||
Cyanobium gracile PCC 6307 | 2 | →flv3-flv1→ | ||||||||
Prochlorococcus marinus AS9601 | 2 | →flv3-flv1→ | ||||||||
Prochlorococcus marinus MED4 | 2 | →flv3-flv1→ | ||||||||
Prochlorococcus marinus MIT 9202 | 2 | →flv3-flv1→ | ||||||||
Prochlorococcus marinus MIT 9211 | 2 | →flv3-flv1→ | ||||||||
Prochlorococcus marinus MIT 9215 | 2 | →flv3-flv1→ | ||||||||
Prochlorococcus marinus MIT 9301 | 2 | →flv3-flv1→ | ||||||||
Prochlorococcus marinus MIT 9303 | 2 | * | ||||||||
Prochlorococcus marinus MIT 9312 | 2 | →flv3-flv1→ | ||||||||
Prochlorococcus marinus MIT9313 | 2 | →flv3-flv1→ | ||||||||
Prochlorococcus marinus NATL1A | 2 | →flv3-flv1→ | ||||||||
Prochlorococcus marinus NATL2A | 2 | →flv3-flv1→ | ||||||||
Prochlorococcus marinus SS120 | 2 | →flv3-flv1→ | ||||||||
Synechococcus BL107 | 2 | →flv3-flv1→ | ||||||||
Synechococcus CB0101 | 2 | * | ||||||||
Synechococcus CB0205 | 2 | →flv3-6 ORF's flv1→ | ||||||||
Synechococcus CC9311 | 2 | →flv3-flv1→ | ||||||||
Synechococcus CC9605 | 2 | →flv3-WP_011365453-flv1→ | ||||||||
Synechococcus CC9902 | 2 | →flv3-2 ORF's-flv1→ | ||||||||
Synechococcus RCC307 | 2 | →flv3-flv1→ | ||||||||
Synechococcus RS9916 | 2 | →flv3-WP_007099263-flv1→ | ||||||||
Synechococcus RS9917 | 2 | →flv3-flv1→ | ||||||||
Synechococcus WH 7805 | 2 | →flv3-flv1→ | ||||||||
Synechococcus WH 8102 | 2 | →flv3-flv1→ | ||||||||
Synechococcus WH 8109 | 2 | →flv3-flv1→ | ||||||||
Synechococcus WH 5701 | 2 | →flv-WP_00617255-flv1→ | ||||||||
Synechococcus WH 7803 | 2 | →flv3-flv1→ | ||||||||
β-Cyanobacteria (unicellular) | ||||||||||
Acaryochloris marina MBIC11017 | 2 | →flv3-AM1_1385-flv1→ | ||||||||
Chroococcidiopsis thermalis PCC 7203 | 2 | →flv3-2 ORF's-flv1→ | ||||||||
Cyanobacterium aponinum PCC 10605 | 2 | * | ||||||||
Cyanobacterium stanieri PCC 7202 | 2 | * | ||||||||
Cyanobacterium UCYN-A | 0 | * | ||||||||
Cyanothece CCY 0110 | 4 | * | →flv4-WP_008278275-flv2→ | |||||||
Cyanothece PCC 7424 | 4 | * | →flv4-PCC7424_0480-flv2→ | |||||||
Cyanothece PCC 7425 | 2 | →flv3-WP_012627311-flv1→ | ||||||||
Cyanothece PCC 7822 | 4 | * | →flv4-Cyan7822_3509-flv2→ | |||||||
Cyanothece PCC 8801 | 4 | * | →flv4-PCC8801_3605-flv2→ | |||||||
Cyanothece PCC 8802 | 4 | * | →flv4-Cyan8802_2509-flv2→ | |||||||
Crocosphaera watsonii WH 8501 | 2 | * | ||||||||
Dactylococcopsis salina PCC 8305 | 2 | →flv3-flv1→ | ||||||||
Gloeobacter kilaueensis JS1 | 2 | →flv3-flv1→ | ||||||||
Gloeobacter violaceus PCC 7421 | 2 | →flv3-flv1→ | ||||||||
Gloeocapsa PCC 7428 | 2 | →flv3-flv1→ | ||||||||
Halothece PCC 7418 | 4 | * | →flv4-PCC7418_1461-flv2→ | |||||||
Microcystis aeruginosa NIES-843 | 4 | * | →flv4-YP_001660097-flv2→ | |||||||
Microcystis aeruginosa PCC 7806 | 4 | * | →flv4-IPF_2587-flv2→ | |||||||
Pleurocapsa PCC 7327 | 4 | →flv3-Ple7327_0831-flv1→ | →flv4-Ple7327_3773-flv2→ | |||||||
Stanieria cyanosphaera PCC 7437 | 4 | * | →flv4-Sta7437_3860-flv2→ | |||||||
Synechococcus PCC 7335 | 4 | * | * | |||||||
Synechococcus PCC 7002 | 2 | * | ||||||||
Synechococcus PCC 6312 | 2 | * | ||||||||
Synechococcus PCC 7502 | 2 | * | ||||||||
Synechococcus JA-3-3Ab | 2 | * | ||||||||
Synechococcus JA-2-3B'a(2-13) | 2 | * | ||||||||
Synechococcus elongatus PCC 7942 | 2 | →flv3-flv1→ | ||||||||
Synechococcus elongatus PCC 6301 | 2 | →flv3-flv1→ | ||||||||
Synechocystis PCC 6803 | 4 | * | →flv4-sll0218-flv2→ | |||||||
Synechocystis PCC 6714 | 2 | →flv3-2 ORF's-flv1→ | ||||||||
Thermosynechococcus NK55a | 2 | * | ||||||||
Thermosynechococcus elongatus BP-1 | 2 | * | ||||||||
β-Cyanobacteria (filamentous) | ||||||||||
Anabaena 90 | 4 | →flv3-WP_015078091-flv1→ | →flv3b-flv1b→ | |||||||
Anabaena PCC 7120 | 6 | →flv3a-all3892,all3893,all3894-flv1a→ | →flv4-all4445-flv2→ | →flv3b-flv1b→ | ||||||
Anabaena cylindrica PCC 7122 | 4 | →flv3-flv1→ | →flv3b-flv1b→ | |||||||
Anabaena variabilis ATCC 29413 | 6 | →flv3a-flv1a→ | →flv4-Ava_1370-flv2→ | →flv3b-flv1b→ | ||||||
Arthrospira platensis NIES-39 | 2 | →flv3-flv1→ | ||||||||
Calothrix 336/3 | 4 | →flv3-Cal336_3958-flv1→ | →flv3b–flv1b→ | |||||||
Calothrix PCC 6303 | 4 | →flv3-flv1→ | →flv3b-flv1b→ | |||||||
Calothrix PCC 7507 | 6 | →flv3a-flv1a→ | →flv4-Cal7507_5629-flv2→ | →flv3b-flv1b→ | ||||||
Chamaesiphon minutus PCC 6605 | 2 | →flv3-2 ORF's-flv1→ | ||||||||
Chloroflexus aurantiacus J-10-fl | 0 | |||||||||
Cylindrospermopsis raciborskii CS-505 | 4 | →flv3-flv1→ | →flv3b-flv1b→ | |||||||
Cylindrospermum stagnale PCC 7417 | 4 | →flv3-flv1→ | →flv3b-flv1b→ | |||||||
Crinalium epipsammum PCC 9333 | 2 | →flv3-YP_007142380-flv1→ | ||||||||
Geitlerinema PCC 7407 | 2 | →flv3-flv1→ | ||||||||
Geminocystis herdmanii PCC 6308 | 0 | |||||||||
Leptolyngbya PCC 7376 | 4 | * | →flv4-Lepto7376_3457-flv2→ | |||||||
Lyngbya majuscula 3L | 2 | →flv3-flv1→ | ||||||||
Lyngbya PCC 8106 | 2 | →flv3-WP_009783639-flv1→ | ||||||||
Microcoleus chthonoplastes PCC 7420 | 4 | * | * | |||||||
Microcoleus PCC 7113 | 4 | →flv3-3 ORF's-flv1→ | →flv4-5 ORF's-flv2→ | |||||||
Microcoleus vaginatus FGP-2 | 2 | →flv3-EGK88546-flv1→ | ||||||||
Nodularia spumigena CCY 9414 ** | 6 | * | →flv4-flv2→ | →flv3b-flv1b→ | ||||||
Nostoc PCC 7107 | 6 | →flv3a-10 ORF's-flv1a→ | →flv4-WP_015113616-flv2→ | →flv3b-flv1b→ | ||||||
Nostoc PCC 7524 | 6 | →flv3a-6 ORF's-flv1a→ | →flv4-Nos7524_2687-flv2→ | →flv3b-flv1b→ | ||||||
Nostoc punctiforme ATCC 29133 | 5 | →flv3a-flv1a→ | →Npun_R0592-flv2→ | →flv3b-flv1b→ | ||||||
Nostoc azollae 0708 | 4 | →flv3-flv1→ | →flv3b-flv1b→ | |||||||
Oscillatoria PCC 6506 | 2 | * | ||||||||
Oscillatoria acuminata PCC 6304 | 2 | →flv3-flv1→ | ||||||||
Oscillatoria nigroviridis PCC 7112 | 2 | →flv3-Osc7112_2977-flv1→ | ||||||||
Oscillatoriales JSC-1 | 2 | * | ||||||||
Planktothrix agardhii NIVA-CYA 126/8 | 2 | →flv3-flv1→ | ||||||||
Pseudanabaena sp. PCC 7367 | 4 | →flv3-flv1→ | →flv4-Pse7367_3922-flv2→ | |||||||
Raphidiopsis brookii D9 | 2 | →flv3-flv1→ | ||||||||
Rivularia PCC 7116 | 6 | →flv3a-flv1a→ | →flv4-Riv7116_6032-flv2→ | →flv3b-flv1b→ | ||||||
Trichodesmium erythraeum IMS101 | 2 | * | ||||||||
Photosynthetic protozoa | ||||||||||
Paulinella chromatophora | 2 | →flv3-flv1→ | ||||||||
Green algae | ||||||||||
Chlamydomonas reinhardtii | 2 | * | ||||||||
Chlorella variabilis | 2 | * | ||||||||
Micromonas pusilla CCMP1545 | 2 | * | ||||||||
Micromonas RCC299 | 2 | * | ||||||||
Ostreococcus lucimarinus CCE9901 | 2 | →flv3-XP_001416099-flv1→ | ||||||||
Ostreococcus tauri | 2 (+2)# | →flv3-3 ORF's-flv1→ | ||||||||
Volvox carteri f. nagariensis | 2 | * | ||||||||
Land plants | ||||||||||
Dysgonomonas mossii DSM 22836 | 1 | |||||||||
Physcomitrella patens subsp. patens | 2 | * | ||||||||
Selaginella moellendorffii | 2 | * | ||||||||
Arabidopsis thaliana | 0 | |||||||||
Picea sitchensis*** | 1 | |||||||||
Symbiodinium ## | ||||||||||
Symbiodinium Avir (clade A1) | 2 | * | ||||||||
Symbiodinium FlAp1 (clade B1) | 2 | * | ||||||||
Symbiodinium Mf1.5b (clade B1) | 2 | * | ||||||||
Symbiodinium Pd44b ( clade F1) | 2 | * |
2.2. Expression and Regulation of flv Genes
Conditions | Log2 fold change | Database | Data accession | References | |||||
---|---|---|---|---|---|---|---|---|---|
flv1 | flv3 | flv2 | flv4 | ||||||
From darkness (12h) to light (4h) | 1.64 | KEGG | ex0001365/70 & ex0000868/73 | [30] Kucho et al., 2005 | |||||
From darkness (12h) to light (12h) | 0.98 | 0.53 | KEGG | ex0001377/82 & ex0000880/5 | [30] Kucho et al., 2005 | ||||
From darkness (12h) to light (24h) | −0.89 | KEGG | ex0001395/400 & ex0000898/903 | [30] Kucho et al., 2005 | |||||
From darkness (12h) to light (28h) | −0.67 | KEGG | ex0001401/6 & ex0000904/09 | [30] Kucho et al., 2005 | |||||
From darkness (12h) to light (32h) | −0.76 | KEGG | ex0001407/12 & ex0000910/5 | [30] Kucho et al., 2005 | |||||
From darkness (12h) to light (44h) | −0.90 | KEGG | ex0001425/30 & ex0000928/33 | [30] Kucho et al., 2005 | |||||
From light to darkness (30 min) | −0.81 | −2.64 | −1.62 | GEO | GSE45667 | [31] Lehmann et al., 2013 | |||
From light to darkness (5.5 h) | −2.88 | −2.03 | GEO | GSE45667 | [31] Lehmann et al., 2013 | ||||
From light to darkness (11.5h) | −0.68 | −2.78 | −1.85 | GEO | GSE45667 | [31] Lehmann et al., 2013 | |||
From light to darkness (1h) | −079 | GEO | GSE16162 | [22] Mitschke et al., 2011 | |||||
From darkness to light (30 min) | −0.68 | −3.54 | −2.85 | GEO | GSE45667 | [31] Lehmann et al., 2013 | |||
From darkness to light (5.5h) | −0.88 | −3.30 | −2.56 | GEO | GSE45667 | [31] Lehmann et al., 2013 | |||
HL_15min | 0.54 | 0.70 | ArrayExpress | E-TABM-333 | [32] Singh et al., 2008 | ||||
HL_1h | 0.93 | 1.00 | ArrayExpress | E-TABM-333 | [32] Singh et al., 2008 | ||||
HL_2h | 2.04 | 2.40 | ArrayExpress | E-TABM-333 | [32] Singh et al., 2008 | ||||
HL_3h | 0.64 | 0.81 | ArrayExpress | E-TABM-333 | [32] Singh et al., 2008 | ||||
HL_4h | 1.26 | 1.47 | ArrayExpress | E-TABM-333 | [32] Singh et al., 2008 | ||||
HL(2)_15min | 2.91 | 2.42 | KEGG | ex0000140/3 & ex0000160/1 | [33] Hihara et al., 2001 | ||||
HL(2)_1h | 0.55 | KEGG | ex0000144/7 & ex0000152/3 | [33] Hihara et al., 2001 | |||||
HL | 1.40 | 0.94 | GEO | GSE16162 | [22] Mitschke et al., 2011 | ||||
3h illumination with red and blue light | −3.42 | −2.22 | ArrayExpress | E-TABM-339 | [34] Singh et al., 2009 | ||||
6h illumination with red and blue light | 1.14 | 0.74 | ArrayExpress | E-TABM-339 | [35] Singh et al., 2009 | ||||
Methyl viologen_high light | −0.93 | 1.28 | 1.36 | KEGG | ex0001349,54,55 | [36] Kobayashi et al., 2004 | |||
Methyl viologen_moderate light | 1.12 | KEGG | ex0001441/4 | [36] Kobayashi et al., 2004 | |||||
15 min treatment with 3mM H2O2 | 0.72 | −2.12 | 0.50 | GEO | GSE3703 | [37] Houot et al., 2007 | |||
30 min treatment with 3mM H2O2 | 1.28 | 0.73 | 0.70 | GEO | GSE3703 | [37] Houot et al., 2007 | |||
22C_20min | −0.66 | KEGG | ex0000002/3_ex0000012/3_14/5 | [38] Suzuki et al., 2001 | |||||
24C_20min | −1.20 | −0.55 | KEGG | ex0001878/9 | [39] Prakash et al., 2010 | ||||
24C_60min | −0.86 | −0.66 | KEGG | ex0001880/1 | [39] Prakash et al., 2010 | ||||
24C_180min | −1.15 | −0.93 | KEGG | ex0001882/3 | [39] Prakash et al., 2010 | ||||
22C_20min_(2) | 1.17 | −1.28 | KEGG | ex0001839/40 | [40] Panichkin et al., 2006 | ||||
heat_30min | 0.59 | 0.66 | 0.62 | GEO | GSE21133 | [41] Rowland et al., 2010 | |||
heat_1h | 0.68 | 0.67 | 0.81 | GEO | GSE21133 | [41] Rowland et al., 2010 | |||
heat_2h | 0.69 | 0.59 | 0.76 | GEO | GSE21133 | [41] Rowland et al., 2010 | |||
heat_4h | 0.57 | 0.76 | GEO | GSE21133 | [41] Rowland et al., 2010 | ||||
heat_8h | 0.60 | 0.60 | 0.75 | GEO | GSE21133 | [41] Rowland et al., 2010 | |||
Ci_depletion | 1.39 | 3.07 | 1.80 | GEO | GSE16162 | [22] Mitschke et al., 2011 | |||
CO2_limitation_1h | −0.55 | GEO | GSE1695 | [42] Wang et al., 2004 | |||||
CO2_limitation_3h | 0.66 | −0.56 | GEO | GSE1695 | [42] Wang et al., 2004 | ||||
CO2_limitation_3.3h | 1.29 | 7.26 | 5.70 | GEO | GSE1695 | [42] Wang et al., 2004 | |||
CO2_limitation_6h | 2.00 | 7.16 | 5.62 | GEO | GSE1695 | [42] Wang et al., 2004 | |||
CO2_limitation_12h | 2.15 | 6.95 | 5.61 | GEO | GSE1695 | [42] Wang et al., 2004 | |||
CO2_limitation_24h | 2.44 | 6.88 | 6.51 | [43] Eisenhut et al., 2007 | |||||
high_CO2_24h_vs_low_CO2_3h | −1.00 | −3.77 | −3.27 | GEO | GSE31672 | [44] Hackenberg et al., 2012 | |||
high_CO2_vs_low_CO2_24h | −2.29 | −5.09 | −4.32 | GEO | GSE31672 | [44] Hackenberg et al., 2012 | |||
Cd_15min | 1.07 | GEO | GSE3682 | [37] Houot et al., 2007 | |||||
Cd_1.5h | −0.67 | GEO | GSE3682 | [37] Houot et al., 2007 | |||||
Cd_3h | 0.81 | −1.05 | GEO | GSE3682 | [37] Houot et al., 2007 | ||||
Cd_5h | 0.79 | 1.34 | GEO | GSE3682 | [37] Houot et al., 2007 | ||||
Cd_6h | 0,71 | 1,64 | GEO | GSE3682 | [37] Houot et al., 2007 | ||||
Cd_16h | GEO | GSE3682 | [37] Houot et al., 2007 | ||||||
Zn_excess_240min | −0.53 | 2.39 | 1.56 | GEO | GSE3716 | [37] Houot et al., 2007 | |||
shift from 2mM to 0.5 μM Fe- 96h | −0.58 | −1.77 | −0.94 | GEO | GSE3717 | [37] Houot et al., 2007 | |||
shift from 1mM to 0.5 μM Fe- 96h | 0.79 | 1.88 | 1.64 | GEO | GSE3717 | [37] Houot et al., 2007 | |||
Fe depletion 3h | −1.10 | −5.67 | −6.02 | GEO | GSE39804 | [45] Hernández-Prieto et al., 2012 | |||
Fe depletion 12h | −1.18 | −6.14 | −5.80 | GEO | GSE39804 | [45] Hernández-Prieto et al., 2012 | |||
Fe depletion 24h | −0.80 | −3.23 | −3.19 | GEO | GSE39804 | [45] Hernández-Prieto et al., 2012 | |||
Fe depletion 48h | −1.17 | −5.83 | −6.28 | GEO | GSE39804 | [45] Hernández-Prieto et al., 2012 | |||
Fe depletion 72h | −0.89 | −6.04 | −6.08 | GEO | GSE39804 | [45] Hernández-Prieto et al., 2012 | |||
Fe_high_4h | 1.19 | −0.62 | GEO | GSE3715 | [37] Houot et al., 2007 | ||||
Novobiocin | −1.13 | KEGG | ex0001825/6 | [46] Prakash et al., 2009 | |||||
Novobiocin + heat stress | −1.50 | −1.87 | KEGG | ex0001831/34 | [46] Prakash et al., 2009 | ||||
Novobiocin + low temperature | −1.03 | −0.72 | KEGG | ex0001827/30 | [46] Prakash et al., 2009 | ||||
Novobiocim treatment + salt stress | 1.12 | −1.10 | KEGG | ex0001835/38 | [46] Prakash et al., 2009 | ||||
NaCl | −0.71 | KEGG | ex0001687/90 | [47] Shoumskaya et al., 2005 | |||||
0.5 M NaCl | −0.77 | −3.66 | −3.37 | GEO | GSE37482 | [48] Dickson et al., 2012 | |||
Micro-oxic | 0.58 | 1.14 | 1.82 | GEO | GSE24882 | [49] Summerfield et al., 2011 | |||
Cells encapsulated in silico gel | −2.68 | −0.92 | GEO | GSE37482 | [48] Dickson et al., 2012 | ||||
Acid stress | −0.49 | −0.49 | [50] Ohta et al., 2005 |
Conditions | Expression | Strain | Technique | Reference | |||
---|---|---|---|---|---|---|---|
Flv1 (A) or B* | Flv3 (A) or B* | Flv2 | Flv4 | ||||
CO2 limitation 72 h | ↑ 2.41 | ↑ 1.64 | Synechocystis 6803 | iTRAQ shortgun | [51] Battchikova et al., 2010 | ||
684 mM NaCl 5 days | ↑ 5.6 | Synechocystis 6803 | 2D gel proteomics | [52] Fulda et al., 2006 | |||
Chemoheterotrophic growth | ↓ ~3.4 | Synechocystis 6803 | 2D gel proteomics | [53] Kurian et al., 2006 | |||
Diazotrophic: ammonium | *↑ 2.2 | * ↑ 1.6 | *↑ 1.8 | Anabaena 7120 | iTRAQ shortgun | [28] Ow et al., 2008 | |
Heterocystis: vegetative cells | *↑ 1.8 | *↑ 3.8 | 0.80 | Anabaena 7120 | iTRAQ shortgun | [28] Ow et al., 2008 | |
Diazotrophic: ammonium | *↑ 2.46 | Nostoc punctiforme | iTRAQ shortgun | [29] Ow et al., 2009 | |||
Heterocyst: diazotrophic | *↑ 3.44 | *↑ 2.20 | Nostoc punctiforme | iTRAQ shortgun | [29] Ow et al., 2009 |
2.2.1. The flv4-flv2 Operon Is Regulated by NdhR and Antisense-RNA
3. FDPs and Their Physiological Roles in Oxygenic Photosynthetic Organisms
3.1. The Role of Flv1and Flv3
3.1.1. Mehler and “Mehler-like” Reactions
3.1.2. Flv1 and Flv3 Proteins are Crucial for the Survival of Cyanobacteria under Fluctuating Light Intensities
3.1.3. Cooperation of the FDP Mediated Mehler-Like Reaction and the Photorespiratory Pathway in Cyanobacteria
3.2. Flavodiiron Proteins in Filamentous Heterocystous Cyanobacteria
3.3. The Role of Flv2–Flv4
3.3.1. An Alternative Electron Transfer Route from PSII to the Flv2/Flv4 Heterodimer
3.3.2. Phycobilisomes and flv4-2 Mediated Photoprotection
3.4. Do Cyanobacterial FDPs Function as a Homodimer or Heterodimer?
4. Significance of FDPs During Evolution
5. Concluding Remarks
Acknowledgment
Authors Contribution
Conflicts of interest
References
- Wasserfallen, A.; Ragettli, S.; Jouanneau, Y.; Leisinger, T. A family of flavoproteins in the domains Archaea and Bacteria. Eur. J. Biochem. 1998, 254, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Allahverdiyeva, Y.; Eisenhut, M.; Aro, E.M. Flavodiiron proteins in oxygenic photosynthetic organisms: Photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803. PLoS One 2009, 4. [Google Scholar] [CrossRef] [PubMed]
- Peltier, G.; Tolleter, D.; Billon, E.; Cournac, L. Auxiliary electron transport pathways in chloroplasts of microalgae. Photosynth. Res. 2010, 106, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, V.L.; Vicente, J.B.; Saraiva, L.M.; Teixeira, M. Flavodiiron proteins and their role in cyanobacteria. In Bioenergetic Process of Cyanobacteria; Peschek, G.A., Obinger, C., Renger, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 631–653. [Google Scholar]
- Vicente, J.B.; Carrondo, M.A.; Teixeira, M.; Frazao, C. Structural studies on flavodiiron proteins. Methods Enzymol. 2008, 437, 3–19. [Google Scholar] [PubMed]
- Di Matteo, A.; Scandurra, F.M.; Testa, F.; Forte, E.; Sarti, P.; Brunori, M.; Giuffre, A. The O2-scavenging flavodiiron protein in the human parasite Giardia intestinalis. J. Biol. Chem. 2008, 283, 4061–4068. [Google Scholar] [CrossRef] [PubMed]
- Frazao, C.; Silva, G.; Gomes, C.M.; Matias, P.; Coelho, R.; Sieker, L.; Macedo, S.; Liu, M.Y.; Oliveira, S.; Teixeira, M.; et al. Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nat. Struct. Biol. 2000, 7, 1041–1045. [Google Scholar] [CrossRef]
- Seedorf, H.; Hagemeier, C.H.; Shima, S.; Thauer, R.K.; Warkentin, E.; Ermler, U. Structure of coenzyme F420H2 oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O. FEBS J. 2007, 274, 1588–1599. [Google Scholar] [CrossRef] [PubMed]
- Silaghi-Dumitrescu, R.; Kurtz, D.M., Jr.; Ljungdahl, L.G.; Lanzilotta, W.N. X-ray crystal structures of Moorella thermoacetica FprA. Novel diiron site structure and mechanistic insights into a scavenging nitric oxide reductase. Biochemistry 2005, 44, 6492–6501. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.; Oliveira, S.; LeGall, J.; Xavier, A.; Rodrigues-Pousada, C. Analysis of the Desulfovibrio gigas transcriptional unit containing rubredoxin (rd) and rubredoxin-oxygen oxidoreductase (roo) genes and upstream ORFs. Biochem. Biophys. Res. Commun. 2001, 280, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.M.; Helmick, R.A.; Gardner, P.R. Flavorubredoxin, an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J. Biol. Chem. 2002, 277, 8172–8177. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.M.; Giuffre, A.; Forte, E.; Vicente, J.B.; Saraiva, L.M.; Brunori, M.; Teixeira, M. A novel type of nitric-oxide reductase. Escherichia coli flavorubredoxin. J. Biol. Chem. 2002, 277, 25273–25276. [Google Scholar] [CrossRef] [PubMed]
- Seedorf, H.; Dreisbach, A.; Hedderich, R.; Shima, S.; Thauer, R.K. F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch. Microbiol. 2004, 182, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Silaghi-Dumitrescu, R.; Ng, K.Y.; Viswanathan, R.; Kurtz, D.M., Jr. A flavo-diiron protein from Desulfovibrio vulgaris with oxidase and nitric oxide reductase activities. Evidence for an in vivo nitric oxide scavenging function. Biochemistry 2005, 44, 3572–3579. [Google Scholar] [CrossRef] [PubMed]
- Zarzycki, J.; Axen, S.D.; Kinney, J.N.; Kerfeld, C.A. Cyanobacterial-based approaches to improving photosynthesis in plants. J. Exp. Bot. 2013, 64, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Badger, M.R.; Hanson, G.D.; Price, G.D. Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct. Plant Biol. 2002, 29, 161–173. [Google Scholar] [CrossRef]
- Whitehead, L.; Long, B.M.; Price, G.D.; Badge, M.R. Comparing the in vivo function of α-carboxysomes and β-carboxysomes in two model cyanobacteria. Plant Physiol. 2014, 165, 398–411. [Google Scholar] [CrossRef] [PubMed]
- Ermakova, M.; Battchikova, N.; Richaud, P.; Leino, H.; Kosourov, S.; Isojarvi, J.; Peltier, G.; Flores, E.; Cournac, L.; Allahverdiyeva, Y.; et al. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120. Proc. Natl. Acad. Sci. USA. 2014, 111, 11205–11210. [Google Scholar] [CrossRef]
- Mitschke, J.; Vioque, A.; Haas, F.; Hess, W.R.; Muro-Pastor, A.M. Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC 7120. Proc. Natl. Acad. Sci. USA. 2011, 108, 20130–20135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, T.; Archibald, J.M. Evolving a photosynthetic organelle. BMC Biol. 2012, 10. [Google Scholar] [CrossRef]
- Roberty, S.; Bailleul, B.; Berne, N.; Franck, F.; Cardol, P. PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol. 2014, 204, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Mitschke, J.; Georg, J.; Scholz, I.; Sharma, C.M.; Dienst, D.; Bantscheff, J.; Voss, B.; Steglich, C.; Wilde, A.; Vogel, J.; Hess, W.R. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. USA. 2011, 108, 2124–2129. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, V.L.; Saraiva, L.M.; Teixeira, M. Gene expression study of the flavodiiron proteins from the cyanobacterium Synechocystis sp. PCC 6803. Biochem. Soc. Trans. 2011, 39, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Ermakova, M.; Battchikova, N.; Allahverdiyeva, Y.; Aro, E.M. Novel heterocyst-specific flavodiiron proteins in Anabaena sp. PCC 7120. FEBS Lett. 2013, 587, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Picossi, S.; Flores, E.; Herrero, A. ChIP analysis unravels an exceptionally wide distribution of DNA binding sites for the NtcA transcription factor in a heterocyst-forming cyanobacterium. BMC Genomics 2014, 15. [Google Scholar] [CrossRef] [PubMed]
- Flaherty, B.L.; van Nieuwerburgh, F.; Head, S.R.; Golden, J.W. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation. BMC Genomics 2011, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ermakova, M.; Battchikova, N.; Richaud, P.; Hagemann, M.; Allahverdiyeva, Y.; Aro, E.M. Characterization of Flavodiiron protein Flv3(a)-mediated photoprotection in cyanobacteria. Manuscript under preparation.
- Ow, S.Y.; Cardona, T.; Taton, A.; Magnuson, A.; Lindblad, P.; Stensjo, K.; Wright, P.C. Quantitative shotgun proteomics of enriched heterocysts from Nostoc sp. PCC 7120 using 8-plex isobaric peptide tags. J. Proteome Res. 2008, 7, 1615–1628. [Google Scholar] [CrossRef] [PubMed]
- Ow, S.Y.; Noirel, J.; Cardona, T.; Taton, A.; Lindblad, P.; Stensjo, K.; Wright, P.C. Quantitative overview of N2 fixation in Nostoc punctiforme ATCC 29133 through cellular enrichments and iTRAQ shotgun proteomics. J. Proteome Res. 2009, 8, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Kucho, K.; Okamoto, K.; Tsuchiya, Y.; Nomura, S.; Nango, M.; Kanehisa, M.; Ishiura, M. Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 2005, 187, 2190–2199. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, R.; Machne, R.; Georg, J.; Benary, M.; Axmann, I.; Steuer, R. How cyanobacteria pose new problems to old methods: challenges in microarray time series analysis. BMC Bioinf. 2013, 14. [Google Scholar] [CrossRef]
- Singh, A.K.; Elvitigala, T.; Bhattacharyya-Pakrasi, M.; Aurora, R.; Ghosh, B.; Pakrasi, H.B. Integration of carbon and nitrogen metabolism with energy production is crucial to light acclimation in the cyanobacterium Synechocystis. Plant Physiol. 2008, 148, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Hihara, Y.; Kamei, A.; Kanehisa, M.; Kaplan, A.; Ikeuchi, M. DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 2001, 13, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Ehira, S.; Ohmori, M.; Sato, N. Genome-wide expression analysis of the responses to nitrogen deprivation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 2003, 10, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Bhattacharyya-Pakrasi, M.; Elvitigala, T.; Ghosh, B.; Aurora, R.; Pakrasi, H.B. A systems-level analysis of the effects of light quality on the metabolism of a cyanobacterium. Plant Physiol. 2009, 151, 1596–1608. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Ishizuka, T.; Katayama, M.; Kanehisa, M.; Bhattacharyya-Pakrasi, M.; Pakrasi, H.B.; Ikeuchi, M. Response to oxidative stress involves a novel peroxiredoxin gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 2004, 45, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Houot, L.; Floutier, M.; Marteyn, B.; Michaut, M.; Picciocchi, A.; Legrain, P.; Aude, J.C.; Cassier-Chauvat, C.; Chauvat, F. Cadmium triggers an integrated reprogramming of the metabolism of Synechocystis PCC 6803, under the control of the Slr1738 regulator. BMC Genomics 2007, 8. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, I.; Kanesaki, Y.; Mikami, K.; Kanehisa, M.; Murata, N. Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol. Microbiol. 2001, 40, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.S.; Krishna, P.S.; Sirisha, K.; Kanesaki, Y.; Suzuki, I.; Shivaji, S.; Murata, N. An RNA helicase, CrhR, regulates the low-temperature-inducible expression of heat-shock genes groES, groEL1 and groEL2 in Synechocystis sp. PCC 6803. Microbiology 2010, 156, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Panichkin, V.B.; Arakawa-Kobayashi, S.; Kanaseki, T.; Suzuki, I.; Los, D.A.; Shestakov, S.V.; Murata, N. Serine/threonine protein kinase SpkA in Synechocystis sp. strain PCC 6803 is a regulator of expression of three putative pilA operons, formation of thick pili, and cell motility. J. Bacteriol. 2006, 188, 7696–7699. [Google Scholar] [CrossRef] [PubMed]
- Rowland, J.G.; Pang, X.; Suzuki, I.; Murata, N.; Simon, W.J.; Slabas, A.R. Identification of components associated with thermal acclimation of photosystem II in Synechocystis sp. PCC 6803. PLoS One 2010, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.L.; Postier, B.L.; Burnap, R.L. Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J. Biol. Chem. 2004, 279, 5739–5751. [Google Scholar] [CrossRef] [PubMed]
- Eisenhut, M.; von Wobeser, E.A.; Jonas, L.; Schubert, H.; Ibelings, B.W.; Bauwe, H.; Matthijs, H.C.; Hagemann, M. Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol. 2007, 144, 1946–1959. [Google Scholar] [CrossRef] [PubMed]
- Hackenberg, C.; Huege, J.; Engelhardt, A.; Wittink, F.; Laue, M.; Matthijs, H.C.; Kopka, J.; Bauwe, H.; Hagemann, M. Low-carbon acclimation in carboxysome-less and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Microbiology 2012, 158, 398–413. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Prieto, M.A.; Schon, V.; Georg, J.; Barreira, L.; Varela, J.; Hess, W.R.; Futschik, M.E. Iron deprivation in Synechocystis: Inference of pathways, non-coding RNAs, and regulatory elements from comprehensive expression profiling. G3 (Bethesda) 2012, 2, 1475–1495. [Google Scholar] [CrossRef]
- Prakash, J.S.; Sinetova, M.; Zorina, A.; Kupriyanova, E.; Suzuki, I.; Murata, N.; Los, D.A. DNA supercoiling regulates the stress-inducible expression of genes in the cyanobacterium Synechocystis. Mol. Biosyst 2009, 5, 1904–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoumskaya, M.A.; Paithoonrangsarid, K.; Kanesaki, Y.; Los, D.A.; Zinchenko, V.V.; Tanticharoen, M.; Suzuki, I.; Murata, N. Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis. J. Biol. Chem. 2005, 280, 21531–21538. [Google Scholar] [CrossRef] [PubMed]
- Dickson, D.J.; Luterra, M.D.; Ely, R.L. Transcriptomic responses of Synechocystis sp. PCC 6803 encapsulated in silica gel. Appl. Microbiol. Biotechnol. 2012, 96, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Summerfield, T.C.; Nagarajan, S.; Sherman, L.A. Gene expression under low-oxygen conditions in the cyanobacterium Synechocystis sp. PCC 6803 demonstrates Hik31-dependent and -independent responses. Microbiology 2011, 157, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Ohta, H.; Shibata, Y.; Haseyama, Y.; Yoshino, Y.; Suzuki, T.; Kagasawa, T.; Kamei, A.; Ikeuchi, M.; Enami, I. Identification of genes expressed in response to acid stress in Synechocystis sp. PCC 6803 using DNA microarrays. Photos. Res 2005, 84, 225–230. [Google Scholar] [CrossRef]
- Battchikova, N.; Vainonen, J.P.; Vorontsova, N.; Keranen, M.; Carmel, D.; Aro, E.M. Dynamic changes in the proteome of Synechocystis 6803 in response to CO2 limitation revealed by quantitative proteomics. J. Proteome Res. 2010, 9, 5896–5912. [Google Scholar] [CrossRef] [PubMed]
- Fulda, S.; Mikkat, S.; Huang, F.; Huckaut, J.; Marin, K.; Norling, B.; Hagemann, M. Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 2006, 6, 2733–2745. [Google Scholar] [CrossRef] [PubMed]
- Kurian, D.; Jansen, T.; Maenpaa, P. Proteomic analysis of heterotrophy in Synechocystis sp. PCC 6803. Proteomics 2006, 6, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Eisenhut, M.; Georg, J.; Klahn, S.; Sakurai, I.; Mustila, H.; Zhang, P.; Hess, W.R.; Aro, E.M. The antisense RNA As1_flv4 in the Cyanobacterium Synechocystis sp. PCC 6803 prevents premature expression of the flv4-2 operon upon shift in inorganic carbon supply. J. Biol. Chem. 2012, 287, 33153–33162. [Google Scholar] [CrossRef] [PubMed]
- Vicente, J.B.; Gomes, C.M.; Wasserfallen, A.; Teixeira, M. Module fusion in an A-type flavoprotein from the cyanobacterium Synechocystis condenses a multiple-component pathway in a single polypeptide chain. Biochem. Biophys. Res. Commun. 2002, 294, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Noctor, G. Redox Regulation in Photosynthetic Organisms: Signaling, Acclimation, and Practical Implications. Antioxid. Redox Signal. 2008, 11, 861–905. [Google Scholar] [CrossRef]
- Mehler, A.H. Studies on reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. Biophys. 1951, 33, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Mehler, A.H.; Brown, A.H. Studies on reactions of illuminated chloroplasts: III. Simultaneous photoproduction and consumption of oxygen studied with oxygen isotopes. Arch. Biochem. Biophys. 1952, 38, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Asada, K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dsissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 601–639. [Google Scholar] [CrossRef] [PubMed]
- Asada, K. The water-water cycle as alternative photon and electron sinks. Philos. Trans. R. Soc. Lond. B 2000, 355, 1419–1431. [Google Scholar] [CrossRef]
- Foyer, C.H.; Noctor, G. Oxygen processing in photosynthesis: Regulation and signalling. New Phytol. 2000, 146, 359–388. [Google Scholar] [CrossRef]
- Drábková, M.; Matthijs, H.C.P.; Admiraal, W.; Maršálek, B. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica 2007, 45, 363–369. [Google Scholar] [CrossRef]
- Matthijs, H.C.; Visser, P.M.; Reeze, B.; Meeuse, J.; Slot, P.C.; Wijn, G.; Talens, R.; Huisman, J. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Res. 2012, 46, 1460–1472. [Google Scholar] [CrossRef] [PubMed]
- Helman, Y.; Tchernov, D.; Reinhold, L.; Shibata, M.; Ogawa, T.; Schwarz, R.; Ohad, I.; Kaplan, A. Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr. Biol. 2003, 13, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Helman, Y.; Barkan, E.; Eisenstadt, D.; Luz, B.; Kaplan, A. Fractionation of the three stable oxygen isotopes by oxygen-producing and oxygen-consuming reactions in photosynthetic organisms. Plant Physiol. 2005, 138, 2292–2298. [Google Scholar] [CrossRef] [PubMed]
- Allahverdiyeva, Y.; Ermakova, M.; Eisenhut, M.; Zhang, P.; Richaud, P.; Hagemann, M.; Cournac, L.; Aro, E.M. Interplay between flavodiiron proteins and photorespiration in Synechocystis sp. PCC 6803. J. Biol. Chem. 2011, 286, 24007–24014. [Google Scholar] [CrossRef] [PubMed]
- Allahverdiyeva, Y.; Mustila, H.; Ermakova, M.; Bersanini, L.; Richaud, P.; Ajlani, G.; Battchikova, N.; Cournac, L.; Aro, E.M. Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. Proc. Natl. Acad. Sci. USA 2013, 110, 4111–4116. [Google Scholar] [CrossRef] [PubMed]
- Schuurmans, R.M.; Schuurmans, J.M.; Bekker, M.; Kromkamp, J.C.; Matthijs, H.C.; Hellingwerf, K.J. The redox potential of the plastoquinone pool of the cyanobacterium Synechocystis species strain PCC 6803 is under strict homeostatic control. Plant Physiol. 2014, 165, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Badger, M.R.; Price, G.D. CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution. J. Exp. Bot. 2003, 54, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.; Reinhold, L. CO2 concentrating mechanisms in photosynthetic microorganisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 539–570. [Google Scholar] [CrossRef] [PubMed]
- Bauwe, H.; Hagemann, M.; Fernie, A.R. Photorespiration: Players, partners and origin. Trends Plant Sci. 2010, 15, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Eisenhut, M.; Kahlon, S.; Hasse, D.; Ewald, R.; Lieman-Hurwitz, J.; Ogawa, T.; Ruth, W.; Bauwe, H.; Kaplan, A.; Hagemann, M. The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol. 2006, 142, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Eisenhut, M.; Huege, J.; Schwarz, D.; Bauwe, H.; Kopka, J.; Hagemann, M. Metabolome phenotyping of inorganic carbon limitation in cells of the wild type and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol. 2008, 148, 2109–2120. [Google Scholar] [CrossRef] [PubMed]
- Huege, J.; Goetze, J.; Schwarz, D.; Bauwe, H.; Hagemann, M.; Kopka, J. Modulation of the major paths of carbon in photorespiratory mutants of Synechocystis. PLoS One 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Wildner, G.F.; Henkel, J. Specific inhibition of the oxygenase activity of ribulose—1,5-bisphosphate carboxylase. Biochem. Biophys. Res. Commun. 1976, 69, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Hackenberg, C.; Engelhardt, A.; Matthijs, H.C.; Wittink, F.; Bauwe, H.; Kaplan, A.; Hagemann, M. Photorespiratory 2-phosphoglycolate metabolism and photoreduction of O2 cooperate in high-light acclimation of Synechocystis sp. strain PCC 6803. Planta 2009, 230, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Milligan, A.J.; Berman-Frank, I.; Gerchman, Y.; Dismukes, G.C.; Falkowski, P.G. Light-dependent oxygen consumption in nitrogen-fixing cyanobacteria plays a key role in nitrogenase protection1. J. Phycol. 2007, 43, 845–852. [Google Scholar] [CrossRef]
- Zhang, P.; Eisenhut, M.; Brandt, A.M.; Carmel, D.; Silen, H.M.; Vass, I.; Allahverdiyeva, Y.; Salminen, T.A.; Aro, E.M. Operon flv4-flv2 provides cyanobacterial photosystem II with flexibility of electron transfer. Plant Cell 2012, 24, 1952–1971. [Google Scholar] [CrossRef] [PubMed]
- Bersanini, L.; Battchikova, N.; Jokel, M.; Rehman, A.; Vass, I.; Allahverdiyeva, Y.; Aro, E.M. Flavodiiron protein Flv2/Flv4-related photoprotective mechanism dissipates excitation pressure of PSII in cooperation with phycobilisomes in cyanobacteria. Plant Physiol. 2014, 164, 805–818. [Google Scholar] [CrossRef] [PubMed]
- Chukhutsina, V.; Bersanini, L.; Aro, E.; van Amerongen, H. Cyanobacterial flv4-2 operon-encoded proteins optimize light harvesting and charge separation in photosystem II. Mol. Plant 2014, in press. [Google Scholar]
- Wildschut, J.D.; Lang, R.M.; Voordouw, J.K.; Voordouw, G. Rubredoxin:oxygen oxidoreductase enhances survival of Desulfovibrio vulgaris hildenborough under microaerophilic conditions. J. Bacteriol. 2006, 188, 6253–6260. [Google Scholar] [CrossRef] [PubMed]
- Smutna, T.; Goncalves, V.L.; Saraiva, L.M.; Tachezy, J.; Teixeira, M.; Hrdy, I. Flavodiiron protein from Trichomonas vaginalis hydrogenosomes: The terminal oxygen reductase. Eukaryot. Cell. 2009, 8, 47–55. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allahverdiyeva, Y.; Isojärvi, J.; Zhang, P.; Aro, E.-M. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins. Life 2015, 5, 716-743. https://doi.org/10.3390/life5010716
Allahverdiyeva Y, Isojärvi J, Zhang P, Aro E-M. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins. Life. 2015; 5(1):716-743. https://doi.org/10.3390/life5010716
Chicago/Turabian StyleAllahverdiyeva, Yagut, Janne Isojärvi, Pengpeng Zhang, and Eva-Mari Aro. 2015. "Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins" Life 5, no. 1: 716-743. https://doi.org/10.3390/life5010716
APA StyleAllahverdiyeva, Y., Isojärvi, J., Zhang, P., & Aro, E.-M. (2015). Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins. Life, 5(1), 716-743. https://doi.org/10.3390/life5010716