Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid
Abstract
:1. Introduction
2. Flow of Forensic Examinations Using Biological Samples
3. Saliva Identification
4. Semen Identification
5. Vaginal Fluid Identification
6. Discussion
Funding
Conflicts of Interest
References
- Hares, D.R. Expanding the CODIS core loci in the United States. Forensic. Sci. Int. Genet. 2012, 6, e52–e54. [Google Scholar] [CrossRef]
- Fujii, K.; Watahiki, H.; Mita, Y.; Iwashima, Y.; Kitayama, T.; Nakahara, H.; Mizuno, N.; Sekiguchi, K. Allele frequencies for 21 autosomal short tandem repeat loci obtained using GlobalFiler in a sample of 1501 individuals from the Japanese population. Leg. Med. 2015, 17, 306–308. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Takahashi, K.; Kasai, K. Allele Frequencies of 15 loci using AmpFlSTR Identifiler Kit in Japanese population. J. Forensic Sci. 2005, 50, 718–719. [Google Scholar] [CrossRef]
- Sekiguchi, K.; Imaizumi, K.; Fujii, K.; Mizuno, N.; Ogawa, Y.; Akutsu, T.; Nakahara, H.; Kitayama, T.; Kasai, K. Mitochondrial DNA population data of HV1 and HV2 sequences from Japanese individuals. Leg. Med. 2008, 10, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Mulero, J.J.; Chang, C.W.; Calandro, L.M.; Green, R.L.; Li, Y.; Johnson, C.L.; Hennessy, L.K. Development and validation of the AmpFlSTR Yfiler PCR amplification kit: A male specific, single amplification 17 Y-STR multiplex system. J. Forensic Sci. 2006, 51, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Ikegaya, H.; Hirayama, K.; Motani, H.; Iwase, H.; Kaneko, H.; Fukushima, H.; Akutsu, T.; Sakurada, K. A novel method for ABO genotyping using a DNA chip. J. Forensic Sci. 2011, 56, S183–S187. [Google Scholar] [CrossRef] [PubMed]
- Børsting, C.; Morling, N. Next generation sequencing and its applications in forensic genetics. Forensic Sci. Int. Genet. 2015, 18, 788–789. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef] [Green Version]
- Adler, O.; Adler, O. Über das Verhalten gewisser organisvher Verbindung gegenüber Blut mit besonderer Berücksichtigung des Nachweises von blut. Hoppe-Seylers Z. Physiol. Chem. 1904, 41, 59–67. [Google Scholar] [CrossRef]
- Specht, W. Die Chemiluminescenz des Hämins, ein Hilfsmittel zur Auffindung und Erkennung forensisch wichtiger Blutspuren. Dtsch. Z. Gesamte Gerichtl. Med. 1937, 28, 225–234. [Google Scholar]
- Holland, V.R.; Saunders, B.C.; Rose, F.L.; Walpole, A.L. A safer substitute for benzidine in the detection of blood. Tetrahedron 1974, 30, 3299–3302. [Google Scholar] [CrossRef]
- Akutsu, T.; Matsumura, K.; Tanaka, Y.; Watanabe, K.; Sakurada, K. Applicability of ‘OC-Hemocatch S’for the forensic identification of human blood. Jpn. J. Forensic Sci. Technol. 2014, 19, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Asano, M.; Oya, M.; Hayakawa, M. Identification of menstrual blood stains by the electrophoretic pattern of lactate dehydrogenase isozymes. Forensic Sci. 1972, 1, 327–332. [Google Scholar] [CrossRef]
- Whitehead, P.H.; Divall, G.B. Assay of “soluble fibrinogen” in blood stain extracts as an aid to identification of menstrual blood in forensic science: Preliminary findings. Clin. Chem. 1973, 19, 762–765. [Google Scholar] [CrossRef]
- Miyaishi, S.; Kitao, T.; Yamamoto, Y.; Ishizu, H.; Matsumoto, T.; Mizutani, Y.; Heinekann, A.; Püschel, K. Identification of menstrual blood by the simultaneous determination of FDE-D Dimer and myoglobin contents. Jpn. J. Legal Med. 1996, 50, 400–403. [Google Scholar]
- Bauer, M.; Patzelt, D. Evaluation of mRNA markers for the identification of menstrual blood. J. Forensic Sci. 2002, 47, 1–5. [Google Scholar] [CrossRef]
- Akutsu, T.; Watanabe, K.; Motani, H.; Iwase, H.; Sakurada, K. Evaluation of latex agglutination tests for fibrin-fibrinogen degradation products in the forensic identification of menstrual blood. Leg. Med. 2012, 14, 51–54. [Google Scholar] [CrossRef]
- Vallejo, G. Human chorionic gonadotropin detection by means of enzyme immunoassay: A useful method in forensic pregnancy diagnosis in bloodstains. J. Forensic Sci. 1990, 35, 293–300. [Google Scholar] [CrossRef]
- Vergote, G.; Heyndrickx, B.; Paredes, M. Forensic determination of pregnancy hormones in human bloodstains. J. Forensic Sci. Soc. 1991, 31, 409–419. [Google Scholar] [CrossRef]
- Gauvin, J.; Zubakov, D.; von Rhee-Binkhorst, J.; Kloosterman, A.; Steegers, E.; Kayser, M. Forensic pregnancy diagnostics with placental mRNA markers. Int. J. Legal Med. 2010, 124, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Wraxall, B.G. The identification of foetal haemoglobin in bloodstains. J. Forensic Sci. Soc. 1972, 12, 457–458. [Google Scholar] [CrossRef]
- Katsumata, Y.; Sato, K.; Tamaki, K.; Tsutsumi, H.; Oya, M. Identification of Fetal Bloodstains by Enzyme-Linked Immunosorbent Assay for Human Alpha-Fetoprotein. J. Forensic Sci. 1985, 30, 1210–1215. [Google Scholar] [CrossRef]
- Sakurada, K.; Sakai, I.; Sekiguchi, K.; Shiraishi, T.; Ikegaya, H.; Yoshida, K. Usefulness of a latex agglutination assay for FDP D-dimer to demonstrate the presence of postmortem blood. Int. J. Legal Med. 2005, 119, 167–171. [Google Scholar] [CrossRef]
- Coombs, R.R.A.; Dodd, B. Possible application of the principle of mixed agglutination in the identification of blood stains. Med. Sci. Law. 1961, 1, 359–377. [Google Scholar] [CrossRef]
- Pereira, M. ABO and Lewis typing of semen, saliva and other body fluids. Haematologia 1984, 17, 317–322. [Google Scholar]
- Miyasaka, S.; Yoshino, M.; Sato, H.; Miyake, B.; Seta, S. The ABO blood grouping of a minute hair sample by the immunohistochemical technique. Forensic Sci. Int. 1987, 31, 85–98. [Google Scholar] [CrossRef]
- Kipps, A.E.; Whitehead, P.H. The significance of amylase in forensic investigations of body fluids. Forensic Sci. 1975, 6, 137–144. [Google Scholar] [CrossRef]
- Akutsu, T.; Watanabe, K.; Fujinami, Y.; Sakurada, K. Applicability of ELISA detection of statherin for forensic identification of saliva. Int. J. Legal Med. 2010, 124, 493–498. [Google Scholar] [CrossRef]
- Chauncey, H.H.; Henriques, B.L.; Tanzer, J.M. Comparative enzyme activity of saliva from the sheep, hog, dog, rabbit, rat, and human. Arch. Oral. Boil. 1963, 8, 615–627. [Google Scholar] [CrossRef]
- Li, R. Determination of amylase activity. In Forensic Biology; CRC Press: Boca Raton, FL, USA, 2008; p. 139. [Google Scholar]
- Miwa, J. Medico-legal studies on the human saliva (Part 3)—A basic study concerning the qualitative salivary test by blue starch agarose plate method. Nihon Univ. Dent. J. 1982, 56, 413–419. [Google Scholar]
- Sakurada, K. Current examination of objects related to biological samples: Focusing on saliva identification. Acta Crim. Japon. 2017, 83, 150–157. [Google Scholar]
- Miller, D.W.; Hodges, J.C. Validation of Abacus SALIgAE Test for Forensic Identification of Saliva. Available online: https://www.semanticscholar.org/paper/Validation-of-Abacus-SALIgAE®-Test-for-the-Forensic-Miller-Hodges/4362b9f046cf783757e72b22b4e1dd8e3108c06a (accessed on 2 August 2020).
- Li, R. Precipitation-based assays. In Forensic Biology; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Sakurada, K.; Akutsu, T.; Watanabe, K.; Fujinami, Y.; Yoshino, M. Expression of statherin mRNA and protein in nasal and vaginal secretions. Leg. Med. 2011, 13, 309–313. [Google Scholar] [CrossRef]
- Old, J.B.; Schweers, B.A.; Boonlayangoor, P.W.; Reich, K.A. Developmental Validation of RSID™-Saliva: A Lateral Flow Immunochromatographic Strip Test for the Forensic Detection of Saliva. J. Forensic Sci. 2009, 54, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Juusola, J.; Ballantyne, J. Messenger ENA profiling: A prototype method to supplant conventional methods for body fluid identification. Forensic Sci. Int. 2003, 135, 85–96. [Google Scholar] [CrossRef]
- Juusola, J.; Ballantyne, J. Multiplex mRNA profiling for the identification of body fluids. Forensic Sci. Int. 2005, 152, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nussbaumer, C.; Gharehbaghi-Schnell, E.; Korschineck, I. Messenger RNA profiling: A novel method for body fluid identification by Real-Time PCR. Forensic Sci. Int. 2006, 157, 181–186. [Google Scholar] [CrossRef]
- Sakurada, K.; Ikegaya, H.; Fukushima, H.; Akutsu, T.; Watanabe, K.; Yoshino, M. Evaluation of mRNA-based approach for identification of saliva and semen. Leg. Med. 2009, 11, 125–128. [Google Scholar] [CrossRef]
- Sakurada, K.; Akutsu, T.; Watanabe, K.; Miyasaka, S.; Kasai, K. Identification of body fluid stains using real-time RT-PCR: Discrimination between salivary, nasal, and vaginal secretions. Jpn. J. Forensic Sci. Tech. 2013, 18, 1–11. [Google Scholar] [CrossRef]
- Watanabe, K.; Iwashima, Y.; Akutsu, T.; Sekiguchi, K.; Sakurada, K. Evaluation of a co-extraction method for real-time PCR-based body fluid identification and DNA typing. Leg. Med. 2014, 16, 56–59. [Google Scholar] [CrossRef]
- Akutsu, T.; Kitayama, T.; Watanabe, K.; Sakurada, K. Comparison of automated and manual purification of total RNA for mRNA-based identification of body fluids. Forensic Sci. Int. Genet. 2015, 14, 11–17. [Google Scholar] [CrossRef]
- Watanabe, K.; Akutsu, T.; Takamura, A.; Sakurada, K. Practical evaluation of an RNA-based saliva identification method. Sci. Justice 2017, 57, 404–408. [Google Scholar] [CrossRef] [PubMed]
- Hanson, E.K.; Lubenow, H.; Ballantyne, J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal. Biochem. 2009, 387, 303–314. [Google Scholar] [CrossRef]
- Zubakov, D.; Boersma, A.W.; Choi, Y.; van Kuijk, P.F.; Wiemer, E.A.; Kayser, M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int. J. Legal Med. 2010, 124, 217–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courts, C.; Madea, B. Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. J. Forensic Sci. 2011, 56, 1464–1470. [Google Scholar] [CrossRef]
- Sauer, E.; Reinke, A.K.; Courts, C. Differentiation of five body fluids from forensic samples by expression analysis of four microRNAs using quantitative PCR. Forensic Sci. Int. Genet. 2016, 22, 89–99. [Google Scholar] [CrossRef]
- Sirker, M.; Fimmers, R.; Schneider, P.M.; Gomes, I. Evaluating the forensic application of 19 target microRNAs as biomarkers in body fluid and tissue identification. Forensic Sci. Int. Genet. 2017, 27, 41–49. [Google Scholar] [CrossRef]
- Mayes, C.; Seashols-Williams, S.; Hughes-Stamm, S. A capillary electrophoresis method for identifying forensically relevant body fluids using miRNAs. Leg. Med. 2018, 30, 1–4. [Google Scholar] [CrossRef]
- Frumkin, D.; Wasserstrom, A.; Budowle, B.; Davidson, A. DNA methylation-based forensic tissue identification. Forensic Sci. Int. Genet. 2011, 5, 517–524. [Google Scholar] [CrossRef]
- Lee, H.Y.; Park, M.J.; Choi, A.; An, J.H.; Yang, W.I.; Shin, K.J. Potential forensic application of DNA methylation profiling to body fluid identification. Int. J. Legal Med. 2012, 126, 55–62. [Google Scholar] [CrossRef]
- Park, J.; Kwon, O.; Kim, J.H.; Yoo, H.; Lee, H.; Woo, K.; Kim, S.; Lee, S.; Kim, Y. Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Sci. Int. Genet. 2014, 13, 147–153. [Google Scholar] [CrossRef]
- Lee, H.Y.; An, J.H.; Jung, S.E.; Oh, Y.N.; Lee, E.Y.; Choi, A.; Yang, W.I.; Shin, K.J. Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers. Forensic Sci. Int. Genet. 2015, 17, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.S.; Antunes, J.; Balamurugan, K.; Duncan, G.; Alho, C.S.; McCord, B. Developmental validation studies of epigenetic DNA methylation markers for the detection of blood, semen and saliva samples. Forensic Sci. Int. Genet. 2016, 23, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Tsai, L.C.; Lee, J.C.; Su, C.W.; Tzen, J.T.; Linacre, A.; Hsieh, H.M. Novel identification of biofluids using a multiplex methylation sensitive restriction enzyme-PCR system. Forensic Sci. Int. Genet. 2016, 25, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, H.; Ohmori, T.; Hara, M.; Takada, A.; Shojo, H.; Adachi, N.; Saito, K. A Simple identification method of saliva by detecting streptococcus salivarius using loop-mediated isothermal amplification. J. Forensic Sci. 2011, 56, S158–S161. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.; Shin, K.; Yang, W.; Lee, H. Body fluid identification by integrated analysis of DNA methylation and body fluid-specific microbial DNA. Int. J. Legal Med. 2014, 128, 33–41. [Google Scholar] [CrossRef]
- Ohta, J.; Sakurada, K. Oral gram-positive bacterial DNA-based identification of saliva from highly degraded samples. Forensic Sci. Int. Genet. 2019, 42, 103–112. [Google Scholar] [CrossRef]
- Ohta, J.; Noda, N.; Minegishi, S.; Sakurada, K. Application of DNA repair for streptococcus salivarius DNA-based identification of saliva from ultraviolet-exposed samples. Forensic Sci. Int. 2020, 306, 110077. [Google Scholar] [CrossRef]
- Kutscher, W.; Wolbergs, H. Prostataphosphatase. Z. Physiol. Chem. 1935, 236, 237–240. [Google Scholar] [CrossRef]
- Li, R. Analytical techniques for identifying semen. In Forensic Biology; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Corin, G.; Stockis, E. Recherche des taches spermatique sur le linge. Arch. Anthropol. Crim. Med. Leg. 1908, 23, 852–864. [Google Scholar]
- Baecchi, B. Neue Methode zum Nachweis der Spermatozoen in Zeugflecken. Dtsch. Med. Wochenschr. 1909, 35, 1105–1106. [Google Scholar] [CrossRef] [Green Version]
- Gluckman, J. The study of seminal stains by means of ultrasonic apparatus. J. Forensic Med. 1968, 15, 144–147. [Google Scholar] [PubMed]
- Oppitz, E. Eine neue Färbemethode zum Nachweis der Spermien bei Sittlichkeitsdelikten. Arch. Kriminol. 1969, 144, 145–148. [Google Scholar]
- Miller, K.; Old, J.; Fischer, B.; Schweers, B.; Stipinaite, S.; Reich, K. Developmental Validation of the SPERM HY-LITER™ Kit for the Identification of Human Spermatozoa in Forensic Samples. J. Forensic Sci. 2011, 56, 853–865. [Google Scholar]
- Sensabaugh, G.F. Isolation and characterization of a semen-specific protein from human seminal plasma: A potential new marker for semen identification. J. Forensic Sci. 1978, 23, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Hochmeister, M.N.; Budowle, B.; Rudin, O.; Gehrig, C.; Borer, U.; Thali, M.; Dirnhofer, R. Evaluation of prostate-specific antigen (PSA) membrane test assays for the forensic identification of seminal fluid. J. Forensic Sci. 1999, 44, 1057–1060. [Google Scholar] [CrossRef] [PubMed]
- Pollen, J.F.; Dreillinger, A. Immunohistochemical identification of prostatic acid phosphatase and prostate-specific antigen in female periurethral glands. Urology 1984, 5, 303–304. [Google Scholar]
- Wernet, N.; Albrech, M.; Sesterhenn, I.; Goebbels, R.; Bonkhoff, H.; Seitz, G.; Inniger, R.; Remberger, K. The female prostate: Localization, morphology, immunohistochemical characteristics and significance. Eur. Urol. 1992, 22, 64–69. [Google Scholar] [CrossRef]
- Breul, J.; Pickl, U.; Hartung, R. Prostate-specific antigen in urine. Eur. Urol. 1994, 26, 18–21. [Google Scholar] [CrossRef]
- Mannello, F.; Condemi, L.; Cardinali, A.; Bianchi, G.; Gazzanelli, G. High concentration of prostate-specific antigen in urine of women receiving oral contraceptive. Clin. Chem. 1998, 44, 181–183. [Google Scholar] [CrossRef] [Green Version]
- Lilja, H.; Abrahamsson, P.A.; Lundwall, A. Semenogelin, the predominant protein in human semen. Primary structure and identification of closely related proteins in the male accessory sex glands and on the spermatozoa. J. Biol. Chem. 1989, 264, 1894–1900. [Google Scholar]
- Old, J.; Schweers, B.A.; Boonlayangoor, P.W.; Fischer, B.; Miller, K.W.P.; Reich, K. Developmental Validation of RSID™-Semen: A Lateral Flow Immunochromatographic Strip Test for the Forensic Detection of Human Semen. J. Forensic Sci. 2012, 57, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Akutsu, T.; Sakurada, K. Development of a real-time PCR-based method for analyzing semen-specific unmethylated DNA regions and methylation status in aged body fluid stains. J. Forensic Sci. 2016, 61, S208–S212. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taniguchi, K.; Akutsu, T. Development of a DNA methylation-based semen-specific SNP typing method: A new approach for genotyping from a mixture of body fluids. Forensic Sci. Int. Genet. 2018, 37, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Papanicolaou, G.N. A new procedure for staining vaginal smears. Science 1942, 95, 438–439. [Google Scholar] [CrossRef]
- Thomas, F.; Van Hecke, W. The demonstration of recent sexual intercourse in the male by the lugol method. Med. Sci. Law 1963, 3, 169–171. [Google Scholar]
- Jones Jr, E.L.; Leon, J.A. Lugol’s test reexamined again: Buccal cells. J. Forensic Sci. 2004, 49, 64–67. [Google Scholar]
- Rothwell, T.J.; Harvey, K.J. The limitation of the Lugol’s iodine staining technique for the identification of vaginal epithelial cells. J. Forensic Sci. Soc. 1978, 18, 181–184. [Google Scholar] [CrossRef]
- Hausmann, R.; Pregler, C.; Schellmann, B. The value of the Lugol’s iodine staining technique for the identification of vaginal epithelial cells. Int. J. Legal Med. 1994, 106, 298–301. [Google Scholar] [CrossRef]
- Fleming, R.I.; Harbison, S. The use of bacteria for the identification of vaginal secretions. Forensic Sci. Int. Genet. 2010, 4, 311–315. [Google Scholar] [CrossRef]
- Giampaoli, S.; Berti, A.; Valeriani, F.; Gianfranceschi, G.; Piccolella, A.; Buggiotti, L.; Rapone, C.; Valentini, A.; Ripani, L.; Romano Spica, V. Molecular identification of vaginal fluid by microbial signature. Forensic Sci. Int. Genet. 2012, 6, 559–564. [Google Scholar] [CrossRef]
- Akutsu, T.; Motani, H.; Watanabe, K.; Iwase, H.; Sakurada, K. Detection of bacterial 16S ribosomal RNA genes for forensic identification of vaginal fluid. Leg. Med. 2012, 14, 160–162. [Google Scholar] [CrossRef]
- Benschop, C.C.; Quaak, F.C.; Boon, M.E.; Sijen, T.; Kuiper, I. Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context? Int. J. Legal Med. 2012, 126, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, E.N.; Liland, K.H.; Gill, P.; Snipen, L. Optimizing body fluid recognition from microbial taxonomic profiles. Forensic Sci. Int. Genet. 2018, 37, 13–20. [Google Scholar] [CrossRef]
- Fredricks, D.N.; Fiedler, T.L.; Thomas, K.K.; Mitchell, C.M.; Marrazzo, J.M. Changes in vaginal bacterial concentrations with intravaginal metronidazole therapy for bacterial vaginosis as assessed by quantitative PCR. J. Clin. Microbiol. 2009, 47, 721–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torcia, M.G. Interplay among Vaginal Microbiome, Immune Response and Sexually Transmitted Viral Infections. Int. J. Mol. Sci. 2019, 20, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, E.K.; Ballantyne, J. Highly specific mRNA biomarkers for the identification of vaginal secretions in sexual assault investigations. Sci. Justice 2013, 53, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.; Hanson, E.; Anjos, M.J.; Ballantyne, K.N.; Banemann, R.; Bhoelai, B.; Borges, E.; Carvalho, M.; Courts, C.; De Cock, G.; et al. RNA/DNA co-analysis from human menstrual blood and vaginal secretion stains: Results of a fourth and fifth collaborative EDNAP exercise. Forensic Sci. Int. Genet. 2014, 8, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Akutsu, T.; Watanabe, K.; Takayama, A.; Sakurada, K. Quantitative evaluation of candidate and development of a multiplex RT-PCR assay for the forensic identification of vaginal fluid. Forensic Sci. Int. Genet. 2017, 6, e211–e213. [Google Scholar] [CrossRef] [Green Version]
- Akutsu, T.; Yokota, I.; Watanabe, K.; Sakurada, K. Development of a multiplex RT-PCR assay and statistical evaluation of its use in forensic identification of vaginal fluid. Leg. Med. 2020, 45, 101715. [Google Scholar] [CrossRef]
- Sakurada, K.; Motani, H.; Akutsu, T.; Ikegaya, H.; Iwase, H. Identification of vaginal stains by detection of 17β-estradiol. Can. Soc. Forensic Sci. J. 2008, 41, 13–19. [Google Scholar] [CrossRef]
- Igoh, A.; Doi, Y.; Sakurada, K. Identification and evaluation of potential forensic marker proteins in vaginal fluid by liquid chromatography/mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 7135–7144. [Google Scholar] [CrossRef] [PubMed]
- Sirker, M.; Schneider, P.M.; Gomes, I. A 17-month time course study of human RNA and DNA degradation in body fluids under dry and humid environmental conditions. Int. J. Legal Med. 2016, 130, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Mayes, C.; Houston, R.; Seashols-Williams, S.; LaRue, B.; Hughes-Stamm, S. The stability and persistence of blood and semen mRNA and miRNA targets for body fluid identification in environmentally challenged and laundered samples. Leg. Med. 2019, 38, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naue, J.; Hoefsloot, H.C.J.; Kloosterman, A.D.; Verschure, P.J. Forensic DNA methylation profiling from minimal traces: How low can we go? Forensic Sci. Int. Genet. 2018, 33, 17–23. [Google Scholar] [CrossRef]
- Parker, C.; Hanson, E.; Ballantyne, J. Optimization of dried stain co-extraction methods for efficient recovery of high quality DNA and RNA for forensic analysis. Forensic Sci. Int. Genet. Suppl. Ser. 2011, 3, e309–e310. [Google Scholar] [CrossRef]
- Omelia, E.J.; Uchimoto, M.L.; Williams, G. Quantitative PCR analysis of blood- and saliva-specific microRNA markers following solid-phase DNA extraction. Anal. Biochem. 2013, 435, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Schweighardt, A.J.; Tate, C.M.; Scott, K.A.; Harper, K.A.; Robertson, J.M. Evaluation of commercial kits for dual extraction of DNA and RNA from human body fluids. J. Forensic Sci. 2015, 60, 157–165. [Google Scholar] [CrossRef]
- Lewis, C.A.; Layne, T.R.; Seashols-Williams, S.J. Detection of microRNAs in DNA extractions for forensic biological source identification. J. Forensic Sci. 2019, 64, 1823–1830. [Google Scholar] [CrossRef]
- Watanabe, K.; Akutsu, K. Evaluation of a co-extraction kit for mRNA, miRNA and DNA methylation-based body fluid identification. Leg. Med. 2020, 42, 101630. [Google Scholar] [CrossRef]
- Wickenheiser, R.A. Trace DNA: A review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact. J. Forensic Sci. 2010, 47, 442–450. [Google Scholar]
- Oorschot, R.A.H.V.; Ballantyne, K.N.; Mitchell, R.J. Forensic trace DNA: A review. Invest. Genet. 2010, 1, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akutsu, T.; Watanabe, K.; Takamura, A.; Sakurada, K. Evaluation of skin- or sweat-characteristic mRNAs for inferring the human origin of touched contact traces. Leg. Med. 2018, 33, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Ruan, T.; Barash, M.; Gunn, P.; Bruce, D. Investigation of DNA transfer onto clothing during regular daily activities. Int. J. Legal Med. 2018, 132, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Akutsu, T.; Ikegaya, H.; Watanabe, K.; Miyasaka, S. Immunohistochemical staining of skin-expressed proteins to identify exfoliated epidermal cells for forensic purposes. Forensic Sci. Int. 2019, 303, 109940. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Salerno, M.; Bertozzi, G.; Messina, G.; Ricci, P.; Ledda, C.; Rapisarda, V.; Cantatore, S.; Turillazzi, E.; Pomara, C. Touch DNA: Impact of handling time on touch deposit and evaluation of different recovery techniques: An experimental study. Sci. Rep. 2019, 9, 9542. [Google Scholar] [CrossRef] [Green Version]
- Neckovic, A.; van Oorschot, R.A.H.; Szkuta, B.; Durdle, A. Investigation of direct and indirect transfer of microbiomes between individuals. Forensic Sci. Int. Genet. 2020, 45, 102212. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I. Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic Sci. Int. 2008, 181, e1–e5. [Google Scholar] [CrossRef]
- Takamura, A.; Watanabe, K.; Akutsu, T.; Ozawa, T. Soft and robust identification of body fluid using fourier transform infrared spectroscopy and chemometric strategies for forensic analysis. Sci. Rep. 2018, 8, 8459. [Google Scholar] [CrossRef]
Body Fluid | Enzymatic | Serological | Microscopic | Molecular Biological | Micro-Biological | Other |
---|---|---|---|---|---|---|
Saliva | Colorimetry Phadebas® SALIgAE® Blue starch agarose plate method [30,31,32,33] | Immunodiffusion Immunoelectrophoresis ELISA Immunochromatography RSIDTM-Saliva [28,34,35,36] | mRNA microRNA DNA methylation [37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56] | Oral bacteria [57,58,59,60] | ||
Semen | Acid phosphatase test [61,62] | Immunodiffusion Immunoelectrophoresis Immunochromatography SPERM HY-LITERTM SERATEC®PSA Semiquant RSIDTM-Semen [34,67,68,69,70,71,72,73,74,75] | Baecchi staining Corin-Stockis staining Oppitz staining Hematoxylin & eosin staining [62,63,64,65,66] | mRNA microRNA DNA methylation [37,38,39,40,45,46,48,49,50,51,52,53,54,55,56,76,77] | ||
Vaginal fluid | Immunodiffusion Immunoelectrophoresis [34] | Papanicolaou staining Lugol’s staining [79,80,81,82] | mRNA microRNA DNA methylation [35,38,41,45,46,48,49,52,53,54,55,90,91,92,93] | Vaginal bacteria [83,84,85,86,87,88,89] | GC-MS LC-MS [94,95] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakurada, K.; Watanabe, K.; Akutsu, T. Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid. Diagnostics 2020, 10, 693. https://doi.org/10.3390/diagnostics10090693
Sakurada K, Watanabe K, Akutsu T. Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid. Diagnostics. 2020; 10(9):693. https://doi.org/10.3390/diagnostics10090693
Chicago/Turabian StyleSakurada, Koichi, Ken Watanabe, and Tomoko Akutsu. 2020. "Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid" Diagnostics 10, no. 9: 693. https://doi.org/10.3390/diagnostics10090693
APA StyleSakurada, K., Watanabe, K., & Akutsu, T. (2020). Current Methods for Body Fluid Identification Related to Sexual Crime: Focusing on Saliva, Semen, and Vaginal Fluid. Diagnostics, 10(9), 693. https://doi.org/10.3390/diagnostics10090693