Rapid Automated Screening for SARS-CoV-2 B.1.617 Lineage Variants (Delta/Kappa) through a Versatile Toolset of qPCR-Based SNP Detection
Abstract
:1. Introduction
2. Material and Methods
2.1. Assay Design Principles
2.2. SNP Assays
2.3. PCR Setup for Proof-of-Concept SNP Experiments
2.4. Multiplex Assay for Detection of the B.1.617 Lineages: Setup and LoD
2.5. Evaluation of Clinical Performance of the SCOV2-617VOC-UCT Multiplex Assay
3. Results
3.1. RT-PCR Assays with Competitive LNA-Probes Are Highly Specific for Individual Spike-Gene SNPs
3.2. Analytical Performance of the SCOV-617VOC-UCT on the Cobas6800 System
3.3. Clinical Evaluation of the SCOV2-617VOC-UCT
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Washburne, A.D.; et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021, 372, eabg3055. [Google Scholar] [CrossRef]
- Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E.J.; Msomi, N.; et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv 2020. [Google Scholar] [CrossRef]
- Faria, N.R.; Mellan, T.A.; Whittaker, C.; Claro, I.M.; Candido, D.d.S.; Mishra, S.; Crispim, M.A.E.; Sales, F.C.S.; Hawryluk, I.; McCrone, J.T.; et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021, 372, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Bernal, J.L.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 variant. medRxiv 2021. [Google Scholar] [CrossRef]
- Funk, T.; Pharris, A.; Spiteri, G.; Bundle, N.; Melidou, A.; Carr, M.; Gonzalez, G.; Garcia-Leon, A.; Crispie, F.; O’Connor, L.; et al. Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: Data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Eurosurveillance 2021, 26, 2100348. [Google Scholar] [CrossRef]
- Jangra, S.; Ye, C.; Rathnasinghe, R.; Stadlbauer, D.; Alshammary, H.; Amoako, A.A.; Awawda, M.H.; Beach, K.F.; Bermúdez-González, M.C.; Chernet, R.L.; et al. SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2021. [Google Scholar] [CrossRef]
- Shang, E.; Axelsen, P.H. The Potential for SARS-CoV-2 to Evade Both Natural and Vaccine-induced Immunity. bioRxiv 2020. [Google Scholar] [CrossRef]
- Kevadiya, B.D.; Machhi, J.; Herskovitz, J.; Oleynikov, M.D.; Blomberg, W.R.; Bajwa, N.; Soni, D.; Das, S.; Hasan, M.; Patel, M.; et al. Diagnostics for SARS-CoV-2 infections. Nat. Mater. 2021, 20, 593–605. [Google Scholar] [CrossRef]
- Kováčová, V.; Boršová, K.; Paul, E.D.; Radvánszka, M.; Hajdu, R.; Čabanová, V.; Sláviková, M.; Ličková, M.; Lukáčiková, Ľ.; Belák, A.; et al. Surveillance of SARS-CoV-2 lineage B.1.1.7 in Slovakia using a novel, multiplexed RT-qPCR assay. medRxiv 2021. [Google Scholar] [CrossRef]
- Vega-Magaña, N.; Sánchez-Sánchez, R.; Hernández-Bello, J.; Venancio-Landeros, A.A.; Peña-Rodríguez, M.; Vega-Zepeda, R.A.; Galindo-Ornelas, B.; Díaz-Sánchez, M.; García-Chagollán, M.; Macedo-Ojeda, G.; et al. RT-qPCR Assays for Rapid Detection of the N501Y, 69-70del, K417N, and E484K SARS-CoV-2 Mutations: A Screening Strategy to Identify Variants with Clinical Impact. Front. Cell. Infect. Microbiol. 2021, 11, 434. [Google Scholar] [CrossRef]
- Ratcliff, J.; Nguyen, D.; Fish, M.; Rhynne, J.; Jennings, A.; Williams, S.; Al-Beidh, F.; Bonsall, D.; Evans, A.; Golubchik, T.; et al. Virological and serological characterization of critically ill patients with COVID-19 in the UK: A special focus on variant detection. medRxiv 2021. [Google Scholar] [CrossRef]
- Lemmermann, N.; Lieb, B.; Laufs, T.; Renzaho, A.; Runkel, S.; Kohnen, W.; Linke, M.; Gerber, S.; Schweiger, S.; Michel, A.; et al. SARS-CoV-2 genome surveillance in Mainz, Germany, reveals convergent origin of the N501Y spike mutation in a hospital setting. medRxiv 2021. [Google Scholar] [CrossRef]
- Bier, C.; Edelmann, A.; Theil, K.; Schwarzer, R.; Deichner, M.; Gessner, A.; Hiergeist, A.; Rentschler, U.; Gohl, P.; Kuchta, A.; et al. Multi-site Evaluation of SARS-CoV-2 Spike Mutation Detection Using a Multiplex Real-time RT-PCR Assay. medRxiv 2021. [Google Scholar] [CrossRef]
- Vogels, C.B.F.; Breban, M.I.; Ott, I.M.; Alpert, T.; Petrone, M.E.; Watkins, A.E.; Kalinich, C.C.; Earnest, R.; Rothman, J.E.; Goes de Jesus, J.; et al. Multiplex qPCR discriminates variants of concern to enhance global surveillance of SARS-CoV-2. PLoS Biol. 2021, 19, e3001236. [Google Scholar] [CrossRef]
- Sandoval Torrientes, M.; Castelló Abietar, C.; Boga Riveiro, J.; Álvarez-Argüelles, M.E.; Rojo-Alba, S.; Abreu Salinas, F.; Costales González, I.; Pérez Martínez, Z.; Martín Rodríguez, G.; Gómez de Oña, J.; et al. A novel single nucleotide polymorphism assay for the detection of N501Y SARS-CoV-2 variants. J. Virol. Methods 2021, 294, 114143. [Google Scholar] [CrossRef]
- Johnson, M.P.; Haupt, L.M.; Griffiths, L.R. Locked nucleic acid (LNA) single nucleotide polymorphism (SNP) genotype analysis and validation using real-time PCR. Nucleic Acids Res. 2004, 32, e55. [Google Scholar] [CrossRef]
- You, Y.; Moreira, B.G.; Behlke, M.A.; Owczarzy, R. Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res. 2006, 34, e60. [Google Scholar] [CrossRef] [Green Version]
- Braasch, D.A.; Corey, D.R. Locked nucleic acid (LNA): Fine-tuning the recognition of DNA and RNA. Chem. Biol. 2001, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nörz, D.; Grunwald, M.; Olearo, F.; Fischer, N.; Aepfelbacher, M.; Pfefferle, S.; Lütgehetmann, M. Evaluation of a fully automated high-throughput SARS-CoV-2 multiplex qPCR assay with built-in screening functionality for del-HV69/70- and N501Y variants such as B.1.1.7. J. Clin. Virol. 2021, 141, 104894. [Google Scholar] [CrossRef]
- Pfefferle, S.; Huang, J.; Nörz, D.; Indenbirken, D.; Lütgehetmann, M.; Oestereich, L.; Günther, T.; Grundhoff, A.; Aepfelbacher, M.; Fischer, N. Complete Genome Sequence of a SARS-CoV-2 Strain Isolated in Northern Germany. Microbiol. Resour. Announc. 2020, 9, e00520. [Google Scholar] [CrossRef]
- Nörz, D.; Frontzek, A.; Eigner, U.; Oestereich, L.; Fischer, N.; Aepfelbacher, M.; Pfefferle, S.; Lütgehetmann, M. Pushing beyond specifications: Evaluation of linearity and clinical performance of a fully automated SARS-CoV-2 RT-PCR assay for reliable quantification in blood and other materials outside recommendations. medRxiv 2020. [Google Scholar] [CrossRef]
- Public Health England. SARS-CoV-2 Variants of Concern and Variants under Investigation in England; Technical Briefing 10; Public Health England: London, UK, 2021.
- Kemp, S.; Harvey, W.; Lytras, S.; Carabelli, A.; Robertson, D.; Gupta, R. Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion H69/V70. bioRxiv 2021. [Google Scholar] [CrossRef]
- McCarthy, K.R.; Rennick, L.J.; Nambulli, S.; Robinson-McCarthy, L.R.; Bain, W.G.; Haidar, G.; Duprex, W.P. Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. Science 2021, 371, 1139–1142. [Google Scholar] [CrossRef] [PubMed]
- Lasek-Nesselquist, E.; Pata, J.; Schneider, E.; George, K.S. A tale of three SARS-CoV-2 variants with independently acquired P681H mutations in New York State. medRxiv 2021. [Google Scholar] [CrossRef]
- Gorbalenya, A.E.; Enjuanes, L.; Ziebuhr, J.; Snijder, E.J. Nidovirales: Evolving the largest RNA virus genome. Virus Res. 2006, 117, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Robson, F.; Khan, K.S.; Le, T.K.; Paris, C.; Demirbag, S.; Barfuss, P.; Rocchi, P.; Ng, W.-L. Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Mol. Cell 2020, 79, 710–727. [Google Scholar] [CrossRef]
- Brown, K.A.; Gubbay, J.; Hopkins, J.; Patel, S.; Buchan, S.A.; Daneman, N.; Goneau, L.W. S-Gene Target Failure as a Marker of Variant B.1.1.7 Among SARS-CoV-2 Isolates in the Greater Toronto Area, December 2020 to March 2021. JAMA 2021, 325, 2115–2116. [Google Scholar] [CrossRef]
- Borges, V.; Sousa, C.; Menezes, L.; Gonçalves, A.M.; Picão, M.; Almeida, J.P.; Vieita, M.; Santos, R.; Silva, A.R.; Costa, M.; et al. Tracking SARS-CoV-2 lineage B.1.1.7 dissemination: Insights from nationwide spike gene target failure (SGTF) and spike gene late detection (SGTL) data, Portugal, week 49 2020 to week 3 2021. Eurosurveillance 2021, 26, 2100131. [Google Scholar] [CrossRef]
- Eigner, U.; Norz, D.; Reucher, S.; Furrer, J.; Sun, J.; Chu, K.; Kolb, M.; Hefner, N.; Pfefferle, S.; Lutgehetmann, M. Detection of C. difficile toxin as a model assay for performing fully automated high-throughput RT-PCR on clinical stool samples. J. Microbiol. Methods 2020, 172, 105882. [Google Scholar] [CrossRef] [PubMed]
Oligo Type | Oligo Name | Sequence 5′-3′ | Final Concentration [nM] |
---|---|---|---|
Primers | L452R fwd | GAT T(+C)T AAG GTT GGT GG(2OMe-U) AAT | 400 |
L452R rev | TTT CAG TTG AAA TAT CT(+C) TC(2OMe-U) C | 400 | |
E484K/Q fwd | CTA TCA GGC CGG TAG (OMe-C)A | 400 | |
E484K/Q rev | GTT GGA AAC CAT ATG ATT GTA AA(OMe-G) G | 400 | |
P681R fwd | TGC AGG TAT ATG CGC TAG T(OMe-U)A | 400 | |
P681R rev | GTG ACA TAG TGT AGG CAA TGA (OMe-U)G | 400 | |
RBD-universal rev | AGT TGC TGG TGC ATG TA(OMe-G) AA | 400 | |
Probes | L452R-probe | Atto425- T(+T)A C(+C)(+G) (+G)TA TAG ATT (+G)TT TA(+G) -BHQ1 | 75 |
E484K-probe | YakYellow- AT(+G) GTG T(+T)(+A) (+A)AG (+G)TT -BHQ1 | 75 | |
E484Q-probe | Atto620- AT(+G) GTG T(+T)(+C) (+A)AG (+G)TT -BHQ2 | 75 | |
P681R-probe | FAM- A(+T)T CT(+C) (+G)(+T)C GGC G -BHQ1 | 75 | |
Blockers | L452WT blocker | T(+T)A C(+C)(+T) (+G)TA TAG ATT (+G)TT TA(+G) -C3-Spacer | 75 |
E484WT blocker | AT(+G) GTG T(+T)(+G) (+A)AG (+G)TT -C3-Spacer | 75 | |
P681WT blocker | TAA (+T)TC T(+C)(+C) (+T)CG GCG -C3-Spacer | 75 | |
P681H blocker | TAA (+T)TC T(+C)(+A) (+T)CG G(+C)G -C3-Spacer | 75 |
Software Settings | |||||
---|---|---|---|---|---|
Sample Type | Swab (400 µL) | ||||
Channels | 1: L452R | 2: P681R | 3: E484K | 4: E484Q | 5: IC |
RFI | 1.3 | 2.8 | 1.3 | 2 | 2 |
PCR cycling conditions | |||||
UNG incubation | Pre-PCR step | 1st measurement | 2nd measurement | Cooling | |
No. of cycles | Predefined | 1 | 5 | 45 | Predefined |
No. of steps | 3 | 2 | 2 | ||
Temperature | 55 °C; 60 °C; 65 °C | 95 °C; 55 °C | 91 °C; 58 °C | ||
Hold time | 120 s; 360 s; 240 s | 5 s; 30 s | 5 s; 25 s | ||
Data acquisition | None | End of each cycle | End of each cycle |
SARS-CoV-2 B.1.617.1 Lineage (Kappa) | ||||
---|---|---|---|---|
Step | IU/mL | L452R: pos/rep | P681R: pos/rep | E484Q: pos/rep |
1 | 2000.00 | 8/8 | 8/8 | 8/8 |
2 | 1000.00 | 8/8 | 8/8 | 8/8 |
3 | 500.00 | 8/8 | 8/8 | 8/8 |
4 | 250.00 | 8/8 | 8/8 | 8/8 |
5 | 125.00 | 7/8 | 7/8 | 8/8 |
6 | 62.50 | 3/8 | 7/8 | 7/8 |
7 | 31.25 | 5/8 | 4/8 | 7/8 |
Clinical Sample Set—Included Lineages. | ||
---|---|---|
SNP Set | Lineage | Number |
L452R | B.1.617.1 | 7 |
B.1.617.2 | 67 | |
C.36 | 3 | |
C.16 | 1 | |
P681R | B.1.617.1 | 7 |
B.1.617.2 | 67 | |
A.23.1 | 3 | |
E484K | B.1.351 | 7 |
B.1.1.28 P.1 | 4 | |
B.1.1.318 | 3 | |
B.1.525 | 2 | |
B.1.1.523 | 1 | |
E484Q | B.1.617.1 | 7 |
Negative for tested SNPs | B.1.1.7 | 69 |
B.1.177 | 17 | |
B.1.177.86 | 2 | |
B.1.177.81 | 1 | |
B.1.221 | 1 | |
B.1.1.29 | 1 | |
B.1.243 | 1 | |
B.1.1.244 | 1 | |
B.1.160 | 1 | |
B.1.258 | 1 |
Target | Result | SNP Positive | SNP Negative | Agreement |
---|---|---|---|---|
L452R | Positive | 78 | 0 | 100% |
Negative | 0 | 116 | 100% | |
P681R | Positive | 77 | 0 | 100% |
Negative | 0 | 117 | 100% | |
E484K | Positive | 17 | 0 | 100% |
Negative | 0 | 177 | 100% | |
E484Q | Positive | 7 | 0 | 100% |
Negative | 0 | 187 | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nörz, D.; Grunwald, M.; Tang, H.T.; Olearo, F.; Günther, T.; Robitaille, A.; Fischer, N.; Grundhoff, A.; Aepfelbacher, M.; Pfefferle, S.; et al. Rapid Automated Screening for SARS-CoV-2 B.1.617 Lineage Variants (Delta/Kappa) through a Versatile Toolset of qPCR-Based SNP Detection. Diagnostics 2021, 11, 1818. https://doi.org/10.3390/diagnostics11101818
Nörz D, Grunwald M, Tang HT, Olearo F, Günther T, Robitaille A, Fischer N, Grundhoff A, Aepfelbacher M, Pfefferle S, et al. Rapid Automated Screening for SARS-CoV-2 B.1.617 Lineage Variants (Delta/Kappa) through a Versatile Toolset of qPCR-Based SNP Detection. Diagnostics. 2021; 11(10):1818. https://doi.org/10.3390/diagnostics11101818
Chicago/Turabian StyleNörz, Dominik, Moritz Grunwald, Hui Ting Tang, Flaminia Olearo, Thomas Günther, Alexis Robitaille, Nicole Fischer, Adam Grundhoff, Martin Aepfelbacher, Susanne Pfefferle, and et al. 2021. "Rapid Automated Screening for SARS-CoV-2 B.1.617 Lineage Variants (Delta/Kappa) through a Versatile Toolset of qPCR-Based SNP Detection" Diagnostics 11, no. 10: 1818. https://doi.org/10.3390/diagnostics11101818
APA StyleNörz, D., Grunwald, M., Tang, H. T., Olearo, F., Günther, T., Robitaille, A., Fischer, N., Grundhoff, A., Aepfelbacher, M., Pfefferle, S., & Lütgehetmann, M. (2021). Rapid Automated Screening for SARS-CoV-2 B.1.617 Lineage Variants (Delta/Kappa) through a Versatile Toolset of qPCR-Based SNP Detection. Diagnostics, 11(10), 1818. https://doi.org/10.3390/diagnostics11101818