Toward Reliable Uptake Metrics in Large Vessel Vasculitis Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Scan Acquisition
2.2. Quantification
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SUV | Standardized uptake value |
SUL | Standardized uptake value normalized to lean body mass |
FDG | 2-[fluorine-18]-fluoro-2-deoxy-D-glucose |
LBM | Lean body mass |
VOI | Volume of interest |
LVV | Large vessel vasculitis |
FBGL | Fasting blood glucose level |
SCV | Superior caval vein |
eGFR | Estimated glomerular filtration rate |
TBR | Target-to-background ratio |
Appendix A
Metric | n | Mean ± SD | Range |
---|---|---|---|
SUVmean | 41 | 1.554 ± 0.270 | 0.940–2.250 |
SUVmax | 41 | 2.308 ± 0.426 | 1.470–3.100 |
SUVpeak | 41 | 2.119 ± 0.382 | 1.320–2.970 |
SULmean | 41 | 1.023 ± 0.151 | 0.660–1.380 |
SULmax | 41 | 1.525 ± 0.223 | 1.060–2.100 |
SULpeak | 41 | 1.402 ± 0.213 | 0.920–1.890 |
References
- Zasadny, K.R.; Wahl, R.L. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: Variations with body weight and a method for correction. Radiology 1993, 189, 847–850. [Google Scholar] [CrossRef]
- Reijrink, M.; de Boer, S.A.; Spoor, D.S.; Lefrandt, J.D.; Heerspink, H.J.L.; Boellaard, R.; Greuter, M.J.; Borra, R.J.; Hillebrands, J.-L.; Slart, R.H.; et al. Visceral adipose tissue volume is associated with premature atherosclerosis in early type 2 diabetes mellitus independent of traditional risk factors. Atherosclerosis 2019, 290, 87–93. [Google Scholar] [CrossRef]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.G.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- Slart, R.H.J.A.; Writing group; Reviewer group; Members of EANM Cardiovascular; Members of EANM Infection & Inflammation; Members of Committees; SNMMI Cardiovascular; Members of Council; PET Interest Group; Members of ASNC; et al. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: Joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1250–1269. [Google Scholar] [CrossRef] [Green Version]
- Lucignani, G.; Paganelli, G.; Bombardieri, E. The use of standardized uptake values for assessing fdg uptake with pet in oncology: A clinical perspective. Nucl. Med. Commun. 2004, 25, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Dashora, H.R.; Rosenblum, J.S.; Quinn, K.A.; Alessi, H.; Novakovich, E.; Saboury, B.; A Ahlman, M.; Grayson, P. Comparing Semi-quantitative and Qualitative Methods of Vascular FDG-PET Activity Measurement in Large-Vessel Vasculitis. J. Nucl. Med 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Angelotti, F.; Capecchi, R.; Giorgetti, A.; Erba, P.A.; Genovesi, D.; Emdin, M.; Barison, A.; Manca, L.; Rocchi, V.; Migliorini, P.; et al. 18-FDG PET for large vessel vasculitis diagnosis and follow-up. Clin. Exp. Rheumatol. 2021, 39, 76–82. [Google Scholar]
- Janes, A.L.F.; Castro, M.F.; Arraes, A.E.D.; Savioli, B.; Sato, E.I.; de Souza, A.W.S. A retrospective cohort study to assess PET-CT findings and clinical outcomes in Takayasu arteritis: Does 18F-fluorodeoxyglucose uptake in arteries predict relapses? Rheumatol. Int. 2020, 40, 1123–1131. [Google Scholar] [CrossRef]
- Malik, D.; Verma, R.; Gupta, V.; Belho, E.S.; Drolia, B.; Seniaray, N.; Mahajan, H. Semiquantitative interpretation criteria for fluorodeoxyglucose-positron emission tomography/computed tomography in large-vessel vasculitis: Pattern recognition and correlation with polymyalgia rheumatica. Indian J. Nucl. Med. 2020, 35, 6. [Google Scholar] [CrossRef] [PubMed]
- Blaak, E. Sex differences in the control of glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 500–504. [Google Scholar] [CrossRef]
- Minamimoto, R.; Takahashi, N.; Inoue, T. FDG-PET of patients with suspected renal failure: Standardized uptake values in normal tissues. Ann. Nucl. Med. 2007, 21, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Van Sleen, Y.; Graver, J.C.; Abdulahad, W.H.; van der Geest, K.; Boots, A.M.H.; Sandovici, M.; Brouwer, E. Leukocyte dynamics reveal a persistent myeloid dominance in giant cell arteritis and polymyalgia rheumatica. Front. Immunol. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Kaalep, A.; Sera, T.; Oyen, W.; Krause, B.J.; Chiti, A.; Liu, Y.; Boellaard, R. EANM/EARL FDG-PET/CT accreditation-summary results from the first 200 accredited imaging systems. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 412–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janmahasatian, S.; Duffull, S.B.; Ash, S.; Ward, L.C.; Byrne, N.M.; Green, B. Quantification of lean bodyweight. Clin. Pharmacokinet. 2005, 44, 1051–1065. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Harky, A.; Fok, M.; Balmforth, D.; Bashir, M. Pathogenesis of large vessel vasculitis: Implications for disease classification and future therapies. Vasc. Med. 2019, 24, 79–88. [Google Scholar] [CrossRef]
- Deurenberg, P.; Weststrate, J.A.; Seidell, J.C. Body mass index as a measure of body fatness: Age-and sex-specific prediction formulas. Br. J. Nutr. 1991, 65, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarikaya, I.; Albatineh, A.N.; Sarikaya, A. Revisiting weight-normalized SUV and lean-body-mass-normalized SUV in PET studies. J. Nucl. Med. Technol. 2020, 48, 163–167. [Google Scholar] [CrossRef]
- Bucerius, J.; Mani, V.; Moncrieff, C.; Machac, J.; Fuster, V.; Farkouh, M.E.; Tawakol, A.; Rudd, J.H.F.; Fayad, Z.A. Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: The impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 369–383. [Google Scholar] [CrossRef] [Green Version]
- Rabkin, Z.; Israel, O.; Keidar, Z. Do hyperglycemia and diabetes affect the incidence of false-negative 18F-FDG PET/CT studies in patients evaluated for infection or inflammation and cancer? A comparative analysis. J. Nucl. Med. 2010, 51, 1015–1020. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, H.; Cortés-Blanco, A.; Pourdehnad, M.; Adam, L.E.; Yamamoto, A.; Martínez-Lázaro, R.; Lee, J.; Loman, J.; Rossman, M.; Alavi, A. Do high glucose levels have differential effect on fdg uptake in inflammatory and malignant disorders? Nucl. Med. Commun. 2001, 22, 1123–1128. [Google Scholar] [CrossRef]
- Rosenblum, J.S.; Quinn, K.A.; Rimland, C.A.; Mehta, N.N.; Ahlman, M.A.; Grayson, P.C. Clinical Factors Associated with Time-Specific Distribution of 18F-Fluorodeoxyglucose in Large-Vessel Vasculitis. Sci. Rep. 2019, 9, 15180. [Google Scholar] [CrossRef]
- Derlin, T.; Habermann, C.R.; Hahne, J.D.; Apostolova, I.; Klutmann, S.; Mester, J.; Buchert, R. Quantification of [18F]-FDG uptake in atherosclerotic plaque: Impact of renal function. Ann. Nucl. Med. 2011, 25, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Toriihara, A.; Kitazume, Y.; Nishida, H.; Kubota, K.; Nakadate, M.; Tateishi, U. Comparison of FDG-PET/CT images between chronic renal failure patients on hemodialysis and controls. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 204–211. [Google Scholar] [PubMed]
- Laffon, E.; Cazeau, A.L.; Monet, A.; de Clermont, H.; Fernandez, P.; Marthan, R.; Ducassou, D. The effect of renal failure on 18F-FDG uptake: A theoretic assessment. J. Nucl. Med. Technol. 2008, 36, 200–202. [Google Scholar] [CrossRef] [Green Version]
- Van den Hoff, J.; Hofheinz, F.; Oehme, L.; Schramm, G.; Langner, J.; Beuthien-Baumann, B.; Steinbach, J.; Kotzerke, J. Dual time point based quantification of metabolic uptake rates in 18F-FDG PET. EJNMMI Res. 2013, 3, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, B.A.; Bashyam, A.; Ramachandran, A.; Gholami, S.; Houshmand, S.; Salavati, A.; Werner, T.; Zaidi, H.; Alavi, A. Quantifying [18F] fluorodeoxyglucose uptake in the arterial wall: The effects of dual time-point imaging and partial volume effect correction. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1414–1422. [Google Scholar] [CrossRef]
All Patients | Female | Male | F vs. M | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Patient Characteristics | n [%] | Mean ± SD | Range | n [%] | Mean ± SD | Range | n [%] | Mean ± SD | Range | p-Value |
Number of patients | 41 | 26 [63.4] | 15 [36.6] | |||||||
Age (years) | 68.6 ± 8.4 | 52–89 | 68.9 ± 8.7 | 52–83 | 68.1 ± 8.1 | 56–83 | 0.7968 | |||
Weight (kg) | 76.6 ± 16.1 | 75.5 ± 18.1 | 78.4 ± 12.1 | 0.5900 | ||||||
BMI (kg/m2) | 26.0 ± 4.8 | 26.8 ± 5.3 | 24.5 ± 3.6 | 0.1354 | ||||||
LBM (kg) | 50.8 ± 10.2 | 45.2 ± 7.4 | 60.5 ± 6.3 | <0.0001 | ||||||
Fat mass (kg) | 25.8 ± 11.3 | 30.4 ± 11.1 | 17.9 ± 6.4 | 0.0003 | ||||||
FBGL (mmol/L) | 6.2 ± 1.2 | 4.6–10.8 | 6.1 ± 1.2 | 4.6–9.2 | 6.4 ± 1.0 | 5.3–9.2 | 0.2332 | |||
eGFR (mL/min/1.73 m2) | 82.7 ± 19.9 | 37–123 | 79.6 ± 18.2 | 37–123 | 88.0 ± 22.1 | 48–123 | 0.1957 | |||
Glucocorticoid naive | 31 [75.6] | 20 [76.9] | 11 [73.3] |
Age | Fat Mass | FBGL | eGFR | |
---|---|---|---|---|
SUVmean | 0.249 (−0.063 to 0.517) | 0.563 *** (0.309 to 0.742) | −0.108 (−0.403 to 0.206) | −0.480 ** (−0.686 to −0.202) |
SULmean | 0.303 (−0.005 to 0.559) | −0.250 (−0.518 to 0.063) | −0.198 (−0.477 to 0.116) | −0.404 * (−0.633 to −0.110) |
SUVpeak | 0.044 (−0.267 to 0.347) | 0.574 **** (0.323 to 0.749) | −0.062 (−0.363 to 0.250) | −0.433 * (−0.653 to −0.144) |
SULpeak | 0.067 (−0.246 to 0.367) | −0.213 (−0.489 to 0.101) | −0.222 (−0.496 to 0.092) | −0.360 * (−0.601 to −0.058) |
SUVmax | 0.141 (−0.175 to 0.430) | 0.652 **** (0.430 to 0.799) | 0.055 (−0.257 to 0.356) | −0.381 * (−0.617 to −0.083) |
SULmax | 0.236 (−0.077 to 0.507) | −0.145 (−0.433 to 0.170) | −0.183 (−0.465 to 0.132) | −0.348 * (−0.592 to −0.045) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Praagh, G.D.; Nienhuis, P.H.; de Jong, D.M.; Reijrink, M.; van der Geest, K.S.M.; Brouwer, E.; Glaudemans, A.W.J.M.; Sinha, B.; Willemsen, A.T.M.; Slart, R.H.J.A. Toward Reliable Uptake Metrics in Large Vessel Vasculitis Studies. Diagnostics 2021, 11, 1986. https://doi.org/10.3390/diagnostics11111986
van Praagh GD, Nienhuis PH, de Jong DM, Reijrink M, van der Geest KSM, Brouwer E, Glaudemans AWJM, Sinha B, Willemsen ATM, Slart RHJA. Toward Reliable Uptake Metrics in Large Vessel Vasculitis Studies. Diagnostics. 2021; 11(11):1986. https://doi.org/10.3390/diagnostics11111986
Chicago/Turabian Stylevan Praagh, Gijs D., Pieter H. Nienhuis, Daniel M. de Jong, Melanie Reijrink, Kornelis S. M. van der Geest, Elisabeth Brouwer, Andor W. J. M. Glaudemans, Bhanu Sinha, Antoon T. M. Willemsen, and Riemer H. J. A. Slart. 2021. "Toward Reliable Uptake Metrics in Large Vessel Vasculitis Studies" Diagnostics 11, no. 11: 1986. https://doi.org/10.3390/diagnostics11111986
APA Stylevan Praagh, G. D., Nienhuis, P. H., de Jong, D. M., Reijrink, M., van der Geest, K. S. M., Brouwer, E., Glaudemans, A. W. J. M., Sinha, B., Willemsen, A. T. M., & Slart, R. H. J. A. (2021). Toward Reliable Uptake Metrics in Large Vessel Vasculitis Studies. Diagnostics, 11(11), 1986. https://doi.org/10.3390/diagnostics11111986