Feature Point Tracking-Based Localization of Colon Capsule Endoscope
Abstract
:1. Introduction
2. Methodology
2.1. Model for the Shape of the Intestine
- Dark center region: When the endoscopy capsule is aligned with the intestine, each frame comprises an underexposed area in the center. This area is not illuminated by the light-emitting diode (LED) flash and thus is outside the view range of the camera head.
- Tissue: The colored tissue forms the wall of the intestine.
2.2. Capsule Endoscopy Movement Estimation
2.3. Post-Processing of Frame Cleanliness
3. Results
3.1. Data and Parameter Selection
3.2. Results of 42 Patient Study
- T-T
- Figure 5 shows the density of the 25,000 paths estimated, where high densities corresponds to large accumulation of estimated sets of coordinates per unit volume. In the case of T-T, it leads to local patterns of high density. First, the truncated priors estimate a narrow shape of the large intestine compared to the other combinations of priors making the recommended model in the study. This is also seen in the overall path difference, spanning approximative 2–8 cm, well below the other prior combinations (see Figure 6) and in the same order of magnitude as the average radius of the intestine ( cm). Further, as for all cases, the spread of increases as the endoscopy capsules passes the different sections.In Section I, the capsules’ path is initialized, which leads the estimated path to be very localized in space resulting in the high density, as seen in Figure 5. In other words, the paths have not yet deviated from one another, apart from small perturbations. As the endoscopy capsule passes the descending colon (II), the individual path appear to spread out more evenly. When reaching the left colic flexure (III), the density in this area is increased, suggesting that the camera spends a period of time in this section in order to complete the turn into the next section.When passing along the transverse colon (IV), the paths spread out further, as seen in the distribution of in Figure 6. However, in comparison to Section II, the path along the Transverse Colon has areas of high density. This is explained by the endoscopy capsule spending more time overcoming different segments of the transverse colon. This is an important observation as it might hint to the potential ability of the proposed model recreating local structures in the large intestine.Passing Sections V and VI, the local structure is less distinct, while the error increases significantly compared to Section IV with increasing spread of the path difference (see Figure 6).
- T-U
- Adopting a uniform prior for the sample frequency yields the same outcome as in the case of a truncated prior, with the change that the path difference is slightly higher. When comparing the path difference to the one of T-T in Figure 6, the distribution of are comparable in shape to each other, and distinct from the ones using a uniform prior for the radii. Thus, selecting the sample frequency prior has minor impact on the movement estimation.
- U-(T/U)
- Both prior combination do not improve the reconstruction and perform worse by almost a factor of two compared to the favored combinations mentioned above.
4. Validation
4.1. Inter Endoscopy Capsule and Expert Panel Validation
4.2. Intra Endoscopy Capsule Validation
5. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deding, U.; Herp, J.; Havshøj, A.L.; Kobaek-Larsen, M.; Buijs, M.; S. Nadimi, E.; Baatrup, G. Colon Capsule Endoscopy vs CT colonography after incomplete colonoscopy. Application of Artificial Intelligence Algorithms to identify complete colonic investigations. United Eur. Gastroenterol. J. 2020, 8, 782–789. [Google Scholar] [CrossRef]
- Van de Bruaene, C.; De Looze, D.; Hindryckx, P. Small bowel capsule endoscopy: Where are we after almost 15 years of use? World J. Gastrointest. Endosc. 2015, 7, 13–36. [Google Scholar] [CrossRef]
- Dmitry, M.; Igor, Z.; Vladimir, K.; Andrey, S.; Timur, K.; Anastasia, T.; Alexander, K. Review of features and metafeatures allowing recognition of abnormalities in the images of GIT. In Proceedings of the MELECON 2014—2014 17th IEEE Mediterranean Electrotechnical Conference, Beirut, Lebanon, 13–16 April 2014; pp. 231–235. [Google Scholar] [CrossRef]
- Tsakalakis, M.; Bourbakis, N.G. Health care sensor—Based systems for point of care monitoring and diagnostic applications: A brief survey. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 6266–6269. [Google Scholar] [CrossRef]
- Mamonov, A.V.; Figueiredo, I.N.; Figueiredo, P.N.; Tsai, Y.H.R. Automated Polyp Detection in Colon Capsule Endoscopy. IEEE Trans. Med. Imaging 2014, 33, 1488–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Yuen, P.C.; Lai, J. Ulcer detection in wireless capsule endoscopy images. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 45–48. [Google Scholar]
- Karargyris, A.; Bourbakis, N. Identification of polyps in Wireless Capsule Endoscopy videos using Log Gabor filters. In Proceedings of the 2009 IEEE/NIH Life Science Systems and Applications Workshop, Bethesda, MD, USA, 9–10 April 2009; pp. 143–147. [Google Scholar] [CrossRef]
- Jebarani, W.S.L.; Daisy, V.J. Assessment of Crohn’s disease lesions in Wireless Capsule Endoscopy images using SVM based classification. In Proceedings of the 2013 International Conference on Signal Processing, Image Processing Pattern Recognition, Coimbatore, India, 7–8 February 2013; pp. 303–307. [Google Scholar] [CrossRef]
- Bourbakis, N. Detecting abnormal patterns in WCE images. In Proceedings of the Fifth IEEE Symposium on Bioinformatics and Bioengineering (BIBE’05), Minneapolis, MN, USA, 19–21 October 2005; pp. 232–238. [Google Scholar] [CrossRef]
- Karargyris, A.; Bourbakis, N. Wireless Capsule Endoscopy and Endoscopic Imaging: A Survey on Various Methodologies Presented. IEEE Eng. Med. Biol. Mag. 2010, 29, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Jung, Y.S.; Jeong, W.S.; Yang, H.J.; Park, S.K.; Choi, K.; Park, D.I. Miss rate of colorectal neoplastic polyps and risk factors for missed polyps in consecutive colonoscopies. Intest. Res. 2017, 15, 411–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Rijn, J.C.; Reitsma, J.B.; Stoker, J.; Bossuyt, P.M.; van Deventer, S.J.; Dekker, E. Polyp miss rate determined by tandem colonoscopy: A systematic review. Am. J. Gastroenterol. 2006, 101, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Kobaek-Larsen, M.; Kroijer, R.; Dyrvig, A.K.; Buijs, M.M.; Steele, R.J.C.; Qvist, N.; Baatrup, G. Back-to-back colon capsule endoscopy and optical colonoscopy in colorectal cancer screening individuals. Color. Dis. 2018, 20, 479–485. [Google Scholar] [CrossRef]
- Kroijer, R.; Kobaek-Larsen, M.; Qvist, N.; Knudsen, T.; Baatrup, G. Colon capsule endoscopy for colonic surveillance. Color. Dis. 2019, 21, 532–537. [Google Scholar] [CrossRef]
- Farhadi, H.; Atai, J.; Skoglund, M.; Nadimi, E.S.; Pahlavan, K.; Tarokh, V. An adaptive localization technique for wireless capsule endoscopy. In Proceedings of the 2016 10th International Symposium on Medical Information and Communication Technology (ISMICT), Worcester, MA, USA, 20–23 March 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Yu, X.; Wang, G. Positioning algorithm for wireless capsule endoscopy based on RSS. In Proceedings of the 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 16–19 October 2016; pp. 1–3. [Google Scholar] [CrossRef]
- Nadimi, E.S.; Blanes-Vidal, V.; Tarokh, V.; Johansen, P.M. Bayesian-based localization of wireless capsule endoscope using received signal strength. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 5988–5991. [Google Scholar] [CrossRef]
- Umay, I.; Fidan, B. Adaptive Wireless Biomedical Capsule Tracking Based on Magnetic Sensing. Int. J. Wirel. Inf. Netw. 2017, 24, 189–199. [Google Scholar] [CrossRef]
- Wahid, K.; Kabir, S.M.L.; Khan, H.A.; Helal, A.A.; Mukit, M.A.; Mostafa, R. A localization algorithm for capsule endoscopy based on feature point tracking. In Proceedings of the 2016 International Conference on Medical Engineering, Health Informatics and Technology (MediTec), Dhaka, Bangladesh, 17–18 December 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Bao, G.; Pahlavan, K.; Mi, L. Hybrid Localization of Microrobotic Endoscopic Capsule Inside Small Intestine by Data Fusion of Vision and RF Sensors. IEEE Sens. J. 2015, 15, 2669–2678. [Google Scholar] [CrossRef]
- Spyrou, E.; Iakovidis, D.K. Video-based measurements for wireless capsule endoscope tracking. Meas. Sci. Technol. 2014, 25, 015002. [Google Scholar] [CrossRef]
- Bianchi, F.; Masaracchia, A.; Barjuei, E.S.; Menciassi, A.; Arezzo, A.; Koulaouzidis, A.; Stoyanov, D.; Dario, P.; Ciuti, G. Localization strategies for robotic endoscopic capsules: A review. Expert Rev. Med. Devices 2019, 16, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Mateen, H.; Basar, R.; Ahmed, A.U.; Ahmad, M.Y. Localization of Wireless Capsule Endoscope: A Systematic Review. IEEE Sens. J. 2017, 17, 1197–1206. [Google Scholar] [CrossRef]
- Jeong, S.; Kang, J.; Pahlavan, K.; Tarokh, V. Fundamental Limits of TOA/DOA and Inertial Measurement Unit-Based Wireless Capsule Endoscopy Hybrid Localization. Int. J. Wirel. Inf. Netw. 2017, 24, 169–179. [Google Scholar] [CrossRef]
- Nadimi, E.S.; Blanes-Vidal, V.; Harslund, J.L.; Ramezani, M.H.; Kjeldsen, J.; Johansen, P.M.; Thiel, D.; Tarokh, V. In vivo and in situ measurement and modelling of intra-body effective complex permittivity. Health Technol. Lett. 2015, 2, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramezani, M.H.; Blanes-Vidal, V.; Nadimi, E.S. Adaptive Intra-body Channel Modeling of Attenuation Coefficient Using Transmission Line Theory. In Proceedings of the 2015 Conference on Research in Adaptive and Convergent Systems; ACM: New York, NY, USA, 2015; pp. 237–241. [Google Scholar] [CrossRef]
- Ramezani, M.H.; Blanes-Vidal, V.; Nadimi, E.S. An Adaptive Path Loss Channel Model for Wave Propagation in Multilayer Transmission Medium. Prog. Electromagn. Res. PIER 2015, 150, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Koulaouzidis, A.; Iakovidis, D.K.; Yung, D.E.; Mazomenos, E.; Bianchi, F.; Karagyris, A.; Dimas, G.; Stoyanov, D.; Thorlacius, H.; Toth, E.; et al. Novel experimental and software methods for image reconstruction and localization in capsule endoscopy. Endosc. Int. Open 2018, 6, E205–E210. [Google Scholar] [CrossRef] [Green Version]
- Dimas, G.; Iakovidis, D.K.; Karargyris, A.; Ciuti, G.; Koulaouzidis, A. An artificial neural network architecture for non-parametric visual odometry in wireless capsule endoscopy. Meas. Sci. Technol. 2017, 28, 094005. [Google Scholar] [CrossRef]
- Iakovidis, D.K.; Dimas, G.; Karargyris, A.; Ciuti, G.; Bianchi, F.; Koulaouzidis, A.; Toth, E. Robotic validation of visual odometry for wireless capsule endoscopy. In Proceedings of the 2016 IEEE International Conference on Imaging Systems and Techniques (IST), Chania, Greece, 4–6 October 2016; pp. 83–87. [Google Scholar] [CrossRef]
- Dimas, G.; Spyrou, E.; Iakovidis, D.K.; Koulaouzidis, A. Intelligent visual localization of wireless capsule endoscopes enhanced by color information. Comput. Biol. Med. 2017, 89, 429–440. [Google Scholar] [CrossRef]
- Dimas, G.; Iakovidis, D.K.; Ciuti, G.; Karargyris, A.; Koulaouzidis, A. Visual Localization of Wireless Capsule Endoscopes Aided by Artificial Neural Networks. In Proceedings of the 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), Thessaloniki, Greece, 22–24 June 2017; pp. 734–738. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L.V. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- van der Putten, J.; de Groof, J.; van der Sommen, F.; Struyvenberg, M.; Zinger, S.; Curvers, W.; Schoon, E.; Bergman, J.; de With, P.H.N. Informative Frame Classification of Endoscopic Videos Using Convolutional Neural Networks and Hidden Markov Models. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 380–384. [Google Scholar]
- Buijs, M.M.; Ramezani, M.H.; Herp, J.; Kroijer, R.; Kobaek-Larsen, M.; Baatrup, G.; Nadimi, E.S. Assessment of bowel cleansing quality in colon capsule endoscopy using machine learning: A pilot study. Endosc. Int. Open 2018, 6, E1044–E1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmar, R.; Martel, M.; Rostom, A.; Barkun, A.N. Validated Scales for Colon Cleansing: A Systematic Review. Am. J. Gastroenterol. 2016, 111. [Google Scholar] [CrossRef] [PubMed]
- Rosa-Rizzotto, E.; Dupuis, A.; Guido, E.; Caroli, D.; Monica, F.; Canova, D.; Cervellin, E.; Marin, R.; Trovato, C.; Crosta, C.; et al. Clean Colon Software Program (CCSP), Proposal of a standardized Method to quantify Colon Cleansing During Colonoscopy: Preliminary Results. Endosc. Int. Open 2015, 3, E501–E507. [Google Scholar] [CrossRef] [Green Version]
- Navidi, W. Statistics for Engineers and Scientists; McGraw-Hill Education: New York, NY, USA, 2011; Volume 3. [Google Scholar]
- Walpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K. Probability & Statistics for Engineers and Scientists, 9th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Gilroy, A.; MacPherson, B.; Ross, L. Atlas of Anatomy; Thieme Anatomy; Thieme: Leipzig, Germany, 2012. [Google Scholar]
- Ohgo, H.; Imaeda, H.; Yamaoka, M.; Yoneno, K.; Hosoe, N.; Mizukami, T.; Nakamoto, H. Irritable bowel syndrome evaluation using computed tomography colonography. World J. Gastroenterol. 2016, 22, 9394–9399. [Google Scholar] [CrossRef]
- Nadimi, E.S.; Herp, J.; Buijs, M.M.; Blanes-Vidal, V. Texture classification from single uncalibrated images: Random matrix theory approach. In Proceedings of the 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), Tokyo, Japan, 25–28 September 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Yuan, Y.; Meng, M.Q.H. Deep learning for polyp recognition in wireless capsule endoscopy images. Med. Phys. 2017, 44, 1379–1389. [Google Scholar] [CrossRef] [Green Version]
- Brandao, P.; Zisimopoulos, O.; Mazomenos, E.; Ciuti, G.; Bernal, J.; Visentini-Scarzanella, M.; Menciassi, A.; Dario, P.; Koulaouzidis, A.; Arezzo, A.; et al. Towards a Computed-Aided Diagnosis System in Colonoscopy: Automatic Polyp Segmentation Using Convolution Neural Networks. J. Med. Robot. Res. 2018, 3. [Google Scholar] [CrossRef] [Green Version]
- S. Nadimi, E.; Buijs, M.; Herp, J.; Krøijer, R.; Kobaek-Larsen, M.; Nielsen, E.; Duedal Pedersen, C.; Blanes-Vidal, V.; Baatrup, G. Application of Deep Learning for Autonomous Detection and Localization of Colorectal Polyps in Wireless Colon Capsule Endoscopy. Comput. Electr. Eng. 2020, 81. [Google Scholar] [CrossRef]
Cleanliness | Avg. # of Feature Points per Frame | ||||
---|---|---|---|---|---|
per Frame | Speed Intervals [mm/s] | ||||
Good (0) | 131 | 98 | 32 | 29 | 24 |
Fair (1) | 90 | 76 | 25 | 25 | 21 |
Poor (2) | 54 | 28 | - | - | - |
Unacceptable (3) | - | - | - | 186 | 210 |
True (Expert) Label | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Section | II | III | IV | V | VI | |||||||||||||||||
Prior | T-T | T-U | U-T | U-U | T-T | T-U | U-T | U-U | T-T | T-U | U-T | U-U | T-T | T-U | U-T | U-U | T-T | T-U | U-T | U-U | ||
Predicted Label | II | T-T | 0.92 | 0.02 | ||||||||||||||||||
T-U | 0.91 | 0.03 | ||||||||||||||||||||
U-T | 0.86 | 0.05 | ||||||||||||||||||||
U-U | 0.82 | 0.05 | ||||||||||||||||||||
III | T-T | 0.08 | 0.93 | 0.07 | ||||||||||||||||||
T-U | 0.09 | 0.92 | 0.07 | |||||||||||||||||||
U-T | 0.14 | 0.85 | 0.09 | |||||||||||||||||||
U-U | 0.18 | 0.81 | 0.09 | |||||||||||||||||||
IV | T-T | 0.05 | 0.87 | 0.09 | ||||||||||||||||||
T-U | 0.05 | 0.85 | 0.09 | |||||||||||||||||||
U-T | 0.10 | 0.76 | 0.11 | 0.03 | ||||||||||||||||||
U-U | 0.14 | 0.72 | 0.12 | 0.07 | ||||||||||||||||||
V | T-T | 0.06 | 0.82 | 0.24 | ||||||||||||||||||
T-U | 0.08 | 0.78 | 0.26 | |||||||||||||||||||
U-T | 0.15 | 0.65 | 0.33 | |||||||||||||||||||
U-U | 0.19 | 0.63 | 0.33 | |||||||||||||||||||
VI | T-T | 0.09 | 0.76 | |||||||||||||||||||
T-U | 0.13 | 0.74 | ||||||||||||||||||||
U-T | 0.24 | 0.63 | ||||||||||||||||||||
U-U | 0.25 | 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herp, J.; Deding, U.; Buijs, M.M.; Kroijer, R.; Baatrup, G.; Nadimi, E.S. Feature Point Tracking-Based Localization of Colon Capsule Endoscope. Diagnostics 2021, 11, 193. https://doi.org/10.3390/diagnostics11020193
Herp J, Deding U, Buijs MM, Kroijer R, Baatrup G, Nadimi ES. Feature Point Tracking-Based Localization of Colon Capsule Endoscope. Diagnostics. 2021; 11(2):193. https://doi.org/10.3390/diagnostics11020193
Chicago/Turabian StyleHerp, Jürgen, Ulrik Deding, Maria M. Buijs, Rasmus Kroijer, Gunnar Baatrup, and Esmaeil S. Nadimi. 2021. "Feature Point Tracking-Based Localization of Colon Capsule Endoscope" Diagnostics 11, no. 2: 193. https://doi.org/10.3390/diagnostics11020193
APA StyleHerp, J., Deding, U., Buijs, M. M., Kroijer, R., Baatrup, G., & Nadimi, E. S. (2021). Feature Point Tracking-Based Localization of Colon Capsule Endoscope. Diagnostics, 11(2), 193. https://doi.org/10.3390/diagnostics11020193