The Role of the Pathologist in the Next-Generation Era of Tumor Molecular Characterization
Abstract
:1. Introduction
2. From the Molecular Alteration to the Targeted Therapy: The Pathologist’s Role
3. The Next-Generation Era of Molecular Diagnostics: Genomics and Beyond
4. The Value of an Integrative Morpho-Molecular Approach
5. Preanalytical and Analytical Challenges in Molecular Pathology
6. Liquid Biopsy, Digital Pathology and Organoids: New Tools from Translational Research
6.1. Liquid Biopsy
6.2. Digital Pathology
6.3. Patients’ Derived Organoids (PDO)
7. Are We Ready for the Molecular Revolution?
8. The Key Role of Pathologists in Fighting the COVID-19 Pandemic: A Lesson from the Past
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watson, J.D.; Crick, F.H.C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nat. Cell Biol. 1974, 248, 765. [Google Scholar] [CrossRef] [PubMed]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A.; Kinzler, K.W. Cancer Genome Landscapes. Science 2013, 339, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.J.R.; McCormick, F. The molecular pathology of cancer. Nat. Rev. Clin. Oncol. 2010, 7, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors. J. Mol. Diagn. 2018, 20, 129–159. [Google Scholar] [CrossRef] [Green Version]
- Sepulveda, A.R.; Hamilton, S.R.; Allegra, C.J.; Grody, W.; Cushman-Vokoun, A.M.; Funkhouser, W.K.; Kopetz, S.E.; Lieu, C.; Lindor, N.M.; Minsky, B.D.; et al. Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology. J. Clin. Oncol. 2017, 35, 1453–1486. [Google Scholar] [CrossRef]
- Remo, A.; Fassan, M.; Lanza, G. Immunohistochemical evaluation of mismatch repair proteins in colorectal carcinoma: The AIFEG/GIPAD proposal. Pathology 2016, 108, 104–109. [Google Scholar]
- Fassan, M.; Scarpa, A.; Remo, A.; De Maglio, G.; Troncone, G.; Marchetti, A.; Doglioni, C.; Ingravallo, G.; Perrone, G.; Parente, P.; et al. Current prognostic and predictive biomarkers for gastrointestinal tumors in clinical practice. Pathology 2020, 112, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Corti, C.; Sajjadi, E.; Fusco, N. Determination of Mismatch Repair Status in Human Cancer and Its Clinical Significance: Does One Size Fit All? Adv. Anat. Pathol. 2019, 26, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nat. Cell Biol. 2000, 406, 747–752. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Q. Prognostic indicators for gastrointestinal stromal tumors: A review. Transl. Oncol. 2020, 13, 100812. [Google Scholar] [CrossRef] [PubMed]
- Hu-Lieskovan, S.; Robert, L.; Moreno, B.H.; Ribas, A. Combining Targeted Therapy with Immunotherapy in BRAF-Mutant Melanoma: Promise and Challenges. J. Clin. Oncol. 2014, 32, 2248–2254. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, A.M.; Simeone, E.; Festino, L.; Vanella, V.; Strudel, M.; Ascierto, P.A. MEK Inhibitors in the Treatment of Metastatic Melanoma and Solid Tumors. Am. J. Clin. Dermatol. 2017, 18, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; Bent, M.V.D.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev. 2019, 80, 101896. [Google Scholar] [CrossRef]
- El-Deiry, W.S.; Goldberg, R.M.; Lenz, H.; Shields, A.F.; Gibney, G.T.; Tan, A.R.; Brown, J.; Eisenberg, B.; Heath, E.I.; Phuphanich, S.; et al. The current state of molecular testing in the treatment of patients with solid tumors, 2019. CA A Cancer J. Clin. 2019, 69, 305–343. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, L.; Seoane, J.; Le Tourneau, C.; Siu, L.; Marais, R.; Michiels, S.; Soria, J.; Campbell, P.; Normanno, N.; Scarpa, A.; et al. The European Society for Medical Oncology (ESMO) Precision Medicine Glossary. Ann. Oncol. 2017, 29, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Fassan, M. Molecular Diagnostics in Pathology: Time for a Next-Generation Pathologist? Arch. Pathol. Lab. Med. 2018, 142, 313–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walk, E.E. The role of pathologists in the era of personalized medicine. Arch. Pathol. Lab. Med. 2009, 133, 605–610. [Google Scholar] [CrossRef] [PubMed]
- FDA. “Novel Drug Dpprovals for 2019”. Available online: https://www.fda.gov/drugs (accessed on 10 November 2020).
- European Medicines Agency. “List of EMA-Approved Medicines”. Available online: https://www.ema.europa.eu/en/medicines (accessed on 10 November 2020).
- Pagni, F.; Guerini-Rocco, E.; Schultheis, A.M.; Grazia, G.; Rijavec, E.; Ghidini, M.; Lopez, G.; Venetis, K.; Croci, G.A.; Malapelle, U.; et al. Targeting Immune-Related Biological Processes in Solid Tumors: We do Need Biomarkers. Int. J. Mol. Sci. 2019, 20, 5452. [Google Scholar] [CrossRef] [Green Version]
- Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150. [Google Scholar] [CrossRef]
- Galuppini, F.; Pozzo, C.A.D.; Deckert, J.; Loupakis, F.; Fassan, M.; Baffa, R. Tumor mutation burden: From comprehensive mutational screening to the clinic. Cancer Cell Int. 2019, 19, 1–10. [Google Scholar] [CrossRef]
- Salto-Tellez, M.; James, J.A.; Hamilton, P.W. Molecular pathology - The value of an integrative approach. Mol. Oncol. 2014, 8, 1163–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, B.S.; Ladanyi, M. Clinical cancer genomics: How soon is now? J. Pathol. 2010, 223, 319–327. [Google Scholar] [CrossRef]
- Moorcraft, S.Y.; Gonzalez, D.; Walker, B.A. Understanding next generation sequencing in oncology: A guide for oncologists. Crit. Rev. Oncol. 2015, 96, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.; Christofides, A.; Banerji, S.; Downes, M.R.; Izevbaye, I.; Lo, B.; Macmillan, A.; McCuaig, J.; Stockley, T.; Yousef, G.M.; et al. A Canadian guideline on the use of next-generation sequencing in oncology. Curr. Oncol. 2019, 26, e241–e254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malone, E.R.; Oliva, M.; Sabatini, P.J.B.; Stockley, T.L.; Siu, L.L. Molecular profiling for precision cancer therapies. Genome Med. 2020, 12, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science 2018, 362, eaar3593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pepe, F.; Pisapia, P.; Gristina, V.; Rocco, D.; Bs, M.M.; Micheli, P.; Iaccarino, A.; Tufano, R.; Bs, G.G.; De Luca, C.; et al. Tumor mutational burden on cytological samples: A pilot study. Cancer Cytopathol. 2020. [Google Scholar] [CrossRef]
- The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nat. Cell Biol. 2020, 578, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [Google Scholar] [CrossRef]
- Guinney, J.; Dienstmann, R.; Wang, X.; De Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef]
- Loupakis, F.; Biason, P.; Prete, A.A.; Cremolini, C.; Pietrantonio, F.; Pella, N.; Dell’Aquila, E.; Sperti, E.; Zichi, C.; Intini, R.; et al. CK7 and consensus molecular subtypes as major prognosticators in V600EBRAF mutated metastatic colorectal cancer. Br. J. Cancer 2019, 121, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Dienstmann, R.; Vermeulen, L.; Guinney, J.; Kopetz, S.; Tejpar, S.; Tabernero, J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat. Rev. Cancer 2017, 17, 79–92. [Google Scholar] [CrossRef]
- Olivier, M.; Asmis, R.; Hawkins, G.A.; Howard, T.D.; Cox, L.A. The Need for Multi-Omics Biomarker Signatures in Precision Medicine. Int. J. Mol. Sci. 2019, 20, 4781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantafio, M.E.G.; Grillone, K.; Caracciolo, D.; Scionti, F.; Arbitrio, M.; Barbieri, V.; Pensabene, L.; Guzzi, P.H.; Di Martino, M.T. From Single Level Analysis to Multi-Omics Integrative Approaches: A Powerful Strategy towards the Precision Oncology. High.-Throughput 2018, 7, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindeman, N.I.; Cagle, P.T.; Aisner, D.L.; Arcila, M.E.; Beasley, M.B.; Bernicker, E.H.; Colasacco, C.; Dacic, S.; Hirsch, F.R.; Kerr, K.; et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment with Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch. Pathol. Lab. Med. 2018, 142, 321–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch. Pathol. Lab. Med. 2018, 142, 1364–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, E.D.; Pantanowitz, L.; Faquin, W.C. The Role of Molecular Testing for the Indeterminate Thyroid FNA. Genes 2019, 10, 736. [Google Scholar] [CrossRef] [Green Version]
- Nikiforova, M.N.; Mercurio, S.; Wald, A.I.; De Moura, M.B.; Callenberg, K.; Santana-Santos, L.; Gooding, W.E.; Yip, L.; Ferris, R.L.; Nikiforov, Y.E. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer 2018, 124, 1682–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sbaraglia, M.; Tos, A.P.D. The pathology of soft tissue sarcomas. La Radiol. Medica 2018, 124, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Sosman, J.A.; Kim, K.B.; Schuchter, L.; Gonzalez, R.; Pavlick, A.C.; Weber, J.S.; McArthur, G.A.; Hutson, T.E.; Moschos, S.J.; Flaherty, K.T.; et al. Survival in BRAF V600–Mutant Advanced Melanoma Treated with Vemurafenib. N. Engl. J. Med. 2012, 366, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E–Mutated Colorectal Cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klauschen, F.; Heim, D.; Stenzinger, A. Histological tumor typing in the age of molecular profiling. Pathol. Res. Pr. 2015, 211, 897–900. [Google Scholar] [CrossRef] [PubMed]
- Hoberger, M.; Laffert, M.; Heim, D.; Klauschen, F. Histomorphological and molecular profiling: Friends not foes! Morpho-molecular analysis reveals agreement between histological and molecular profiling. Histopathology 2019, 75, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, F.; Rigl, C.T.; Anderson, G.G.; Becker, S.H.; Halling, K.C. Tissue handling for genome-wide expression analysis: A review of the issues, evidence, and opportunities. Arch. Pathol. Lab. Med. 2007, 131, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Hafajee, Z.A.M.; Leong, A.S.-Y. Ultra-rapid microwave-stimulated tissue processing with a modified protocol incorporating microwave fixation. Pathology 2004, 36, 325–329. [Google Scholar] [CrossRef]
- A Groenen, P.J.T.; Blokx, W.A.M.; Diepenbroek, C.; Burgers, L.; Visinoni, F.; Wesseling, P.; van Krieken, J.H.J.M. Preparing pathology for personalized medicine: Possibilities for improvement of the pre-analytical phase. Histopathology. 2011, 59, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Evers, D.L.; Fowler, C.B.; Cunningham, B.R.; Mason, J.T.; O’Leary, T.J. The Effect of Formaldehyde Fixation on RNA. J. Mol. Diagn. 2011, 13, 282–288. [Google Scholar] [CrossRef] [PubMed]
- A Cree, I.; Deans, Z.; Ligtenberg, M.J.L.; Normanno, N.; Edsjö, A.; Rouleau, E.; Solé, F.; Thunnissen, E.; Timens, W.; Schuuring, E.; et al. Guidance for laboratories performing molecular pathology for cancer patients. J. Clin. Pathol. 2014, 67, 923–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Luthra, R.; Goswami, R.S.; Singh, R.R.; Roy-Chowdhuri, S. Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies. Cancers 2015, 7, 1699–1715. [Google Scholar] [CrossRef]
- Hunt, J.L.; Finkelstein, S.D. Microdissection techniques for molecular testing in surgical pathology. Arch. Pathol. Lab. Med. 2004, 128, 1372–1378. [Google Scholar] [CrossRef]
- Van Krieken, J.H.J.M.; Jung, A.; Kirchner, T.; Carneiro, F.; Seruca, R.; Bosman, F.T.; Quirke, P.; Fléjou, J.F.; Hansen, T.P.; De Hertogh, G.; et al. KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: Proposal for an European quality assurance program. Virchows Archiv. 2008, 453, 417–431. [Google Scholar] [CrossRef] [Green Version]
- Mafficini, A.; Amato, E.; Fassan, M.; Simbolo, M.; Antonello, D.; Vicentini, C.; Scardoni, M.; Bersani, S.; Gottardi, M.; Rusev, B.; et al. Reporting Tumor Molecular Heterogeneity in Histopathological Diagnosis. PLoS ONE 2014, 9, e104979. [Google Scholar] [CrossRef]
- Simbolo, M.; Mafficini, A.; Agostini, M.; Pedrazzani, C.; Bedin, C.; Urso, E.D.; Nitti, N.; Turri, G.; Scardoni, M.; Fassan, M.; et al. Next-generation sequencing for genetic testing of familial colorectal cancer syndromes. Hered. Cancer Clin. Pr. 2015, 13, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malapelle, U.; Vigliar, E.; Sgariglia, R.; Bellevicine, C.; Colarossi, L.; Vitale, D.; Pallante, P.; Troncone, G. Ion Torrent next-generation sequencing for routine identification of clinically relevant mutations in colorectal cancer patients. J. Clin. Pathol. 2015, 68, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Carbognin, L.; Simbolo, M.; Caliò, A.; Vicentini, C.; Delfino, P.; Sperduti, I.; Fassan, M.; Schettini, F.; Dieci, M.V.; Griguolo, G.; et al. Targeted next-generation sequencing identifies genomic abnormalities potentially driving the prognosis of early-stage invasive lobular breast carcinoma patients stratified according to a validated clinico-pathological model. Breast 2020, 50, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Biase, D.; Fassan, M.; Malapelle, U. Next-Generation Sequencing in Tumor Diagnosis and Treatment. Diagnostics 2020, 10, 962. [Google Scholar] [CrossRef]
- Chen, G.; Mosier, S.; Gocke, C.D.; Lin, M.-T.; Eshleman, J.R. Cytosine Deamination Is a Major Cause of Baseline Noise in Next-Generation Sequencing. Mol. Diagn. Ther. 2014, 18, 587–593. [Google Scholar] [CrossRef] [Green Version]
- McCall, C.M.; Mosier, S.; Thiess, M.; Debeljak, M.; Pallavajjala, A.; Beierl, K.; Deak, K.L.; Datto, M.B.; Gocke, C.D.; Lin, M.-T.; et al. False Positives in Multiplex PCR-Based Next-Generation Sequencing Have Unique Signatures. J. Mol. Diagn. 2014, 16, 541–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endrullat, C.; Glökler, J.; Franke, P.; Frohme, M. Standardization and quality management in next-generation sequencing. Appl. Transl. Genom. 2016, 10, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Heitzer, E.; Haque, I.S.; Roberts, C.E.S.; Speicher, M.R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 2019, 20, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Cescon, D.W.; Bratman, S.V.; Chan, S.M.; Siu, L.L. Circulating tumor DNA and liquid biopsy in oncology. Nat. Rev. Cancer 2020, 1, 276–290. [Google Scholar] [CrossRef]
- Khan, K.H.; Cunningham, D.; Werner, B.; Vlachogiannis, G.; Spiteri, I.; Heide, T.; Mateos, J.F.; Vatsiou, A.; Lampis, A.; Damavandi, M.D.; et al. Longitudinal Liquid Biopsy and Mathematical Modeling of Clonal Evolution Forecast Time to Treatment Failure in the PROSPECT-C Phase II Colorectal Cancer Clinical Trial. Cancer Discov. 2018, 8, 1270–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Laorden, B.; Viros, A.; Girotti, M.R.; Pedersen, M.; Saturno, G.; Zambon, A.; Niculescu-Duvaz, D.; Turajlic, S.; Hayes, A.; Gore, M.; et al. BRAF Inhibitors Induce Metastasis in RAS Mutant or Inhibitor-Resistant Melanoma Cells by Reactivating MEK and ERK Signaling. Sci. Signal. 2014, 7, ra30. [Google Scholar] [CrossRef] [PubMed]
- Ilie, M.; Hofman, V.; Long-Mira, E.; Selva, E.; Vignaud, J.-M.; Padovani, B.; Mouroux, J.; Marquette, C.-H.; Hofman, P. “Sentinel” Circulating Tumor Cells Allow Early Diagnosis of Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease. PLoS ONE 2014, 9, e111597. [Google Scholar] [CrossRef] [Green Version]
- Hofman, P.; Popper, H.H. Pathologists and liquid biopsies: To be or not to be? Virchows Archiv. 2016, 469, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.; Treanor, D. Digital pathology in clinical use: Where are we now and what is holding us back? Histopathology. 2017, 70, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Cheng, H.; Bordeaux, J.; Neumeister, V.; Kumar, S.; Rimm, D.L.; Stern, D.F. Comparison of HER2 and Phospho-HER2 Expression between Biopsy and Resected Breast Cancer Specimens Using a Quantitative Assessment Method. PLoS ONE 2013, 8, e79901. [Google Scholar] [CrossRef] [Green Version]
- Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology—New tools for diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [Google Scholar] [CrossRef]
- Kim, J.; Koo, B.-K.; Knoblich, J.A. Human organoids: Model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 2020, 21, 1–14. [Google Scholar] [CrossRef]
- Drost, J.; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 2018, 18, 407–418. [Google Scholar] [CrossRef]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernández-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018, 359, 920–926. [Google Scholar] [CrossRef] [Green Version]
- Ilyas, M. Next-Generation Sequencing in Diagnostic Pathology. Pathobiology 2017, 84, 292–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, D.M.; Bosenberg, M.W.; Orwant, R.L.; Thurberg, B.L.; Draetta, G.F.; Fletcher, C.D.; Loda, M. Investigative pathology: Leading the post-genomic revolution. Lab. Investig. 2011, 92, 4–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, C.; James, J.; Maxwell, P.; McQuaid, S.; Ervine, A.; Catherwood, M.; Loughrey, M.B.; McGibben, D.; Somerville, J.; McManus, D.T.; et al. Integrating molecular diagnostics into histopathology training: The Belfast model. J. Clin. Pathol. 2014, 67, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Haspel, R.L.; Arnaout, R.; Briere, M.L.; Kantarci, S.; Marchand, M.K.; Tonellato, P.; Connolly, J.; Boguski, M.S.; Saffitz, J.E. A Call to Action. Am. J. Clin. Pathol. 2010, 133, 832–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, C.; Manca, P.; Salgado, R.; Van Dam, P.; Dendooven, A.; Gandia, J.F.; Rutten, A.; Lybaert, W.; Vermeij, J.; Gevaert, T.; et al. Multidisciplinary molecular tumour board: A tool to improve clinical practice and selection accrual for clinical trials in patients with cancer. ESMO Open 2018, 3, e000398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, S.; Arend, R.; Dai, Q.; Levesque, J.A.; Winokur, T.S.; Guo, R.; Heslin, M.J.; Nabell, L.; Nabors, L.B.; Limdi, N.A.; et al. Implementation and utilization of the molecular tumor board to guide precision medicine. Oncotarget 2017, 8, 57845–57854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, S.; Kim, K.H.; Lim, H.J.; Boichard, A.; Nikanjam, M.; Weihe, E.; Kuo, D.J.; Eskander, R.N.; Goodman, A.; Galanina, N.; et al. Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-One strategy. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Heal. 2020, 25, 278–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int. (accessed on 24 November 2020).
- Yi, E.S.; Cecchini, M.J.; Bois, M.C. Pathologists in pursuit of the COVID-19 culprit. Lancet Infect. Dis. 2020, 20, 1102–1103. [Google Scholar] [CrossRef]
- Calabrese, F.; Pezzuto, F.; Fortarezza, F.; Hofman, P.; Kern, I.; Panizo, A.; Von Der Thüsen, J.; Timofeev, S.; Gorkiewicz, G.; Lunardi, F. Pulmonary pathology and COVID-19: Lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Archiv. 2020, 477, 359–372. [Google Scholar] [CrossRef]
- Carsana, L.; Sonzogni, A.; Nasr, A.; Rossi, R.S.; Pellegrinelli, A.; Zerbi, P.; Rech, R.; Colombo, R.; Antinori, S.; Corbellino, M.; et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study. Lancet Infect. Dis. 2020, 20, 1135–1140. [Google Scholar] [CrossRef]
- Menter, T.; Haslbauer, J.D.; Nienhold, R.; Savic, S.; Hopfer, H.; Deigendesch, N.; Frank, S.; Turek, D.; Willi, N.; Pargger, H.; et al. Post-mortem examination of COVID19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings of lungs and other organs suggesting vascular dysfunction. Histopathology 2020, 77, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Falasca, L.; Nardacci, R.; Colombo, D.; Lalle, E.; Di Caro, A.; Nicastri, E.; Antinori, A.; Petrosillo, N.; Marchioni, L.; Biava, G.; et al. Postmortem Findings in Italian Patients With COVID-19: A Descriptive Full Autopsy Study of Cases with and Without Comorbidities. J. Infect. Dis. 2020, 222, 1807–1815. [Google Scholar] [CrossRef]
- Morgagni, G.B. De Sedibus et Causis Morborum per Anatomen Indagatis Libri Quinque. Venetiis: Ex Thypographia Remondiniana, 1st ed.; Remondini: Venice, Italy, 1761. [Google Scholar]
- Zampieri, F.; Zanatta, A.; Thiene, G. An etymological “autopsy” of Morgagni’s title: De sedibus et causis morborum per anatomen indagatis (1761). Hum. Pathol. 2014, 45, 12–16. [Google Scholar] [CrossRef]
- Costache, M.; Lazaroiu, A.M.; Contolenco, A.; Costache, D.; George, S.; Sajin, M.; Patrascu, O.M. Clinical or Postmortem? The Importance of the Autopsy; a Retrospective Study. MAEDICA 2014, 9, 261–265. [Google Scholar] [PubMed]
- Schwartz, D.A.; Herman, C.J. Editorial Response: The Importance of the Autopsy in Emerging and Reemerging Infectious Diseases. Clin. Infect. Dis. 1996, 23, 248–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tumor Types | Genomic Alteration Involved | References |
---|---|---|
Lung non-squamous non-small cell lung cancer (NSCLC) | EGFR (exons 18-21 mutations/deletions and acquired T790M mutation); ALK and ROS1 fusions, MET amplifications and mutations; KRAS mutations; ERBB2 mutations and amplifications; RET fusions; BRAF mutations; NTRK fusions; PD-L1 expression | [4] |
Colorectal adenocarcinoma | KRAS, NRAS and BRAF mutations; microsatellite instability/defective mismatch repair (MSI/dMMR) | [7] |
Breast cancer | ERBB2 amplifications; PIK3CA mutations; ER/PR expression; BRCA1/BRCA2 germline mutations; PD-L1 expression; Oncotype Dx | [9,14] |
GIST | KIT and PDGFRA mutations | [10] |
Melanoma | BRAF, CDKN2A and KIT mutations | [11] |
Pancreatic adenocarcinoma | BRCA1 and BRCA2 mutations (somatic and germline) | [14] |
Brain neoplasms | IDH1/IDH2 mutations; 1p/19q co-deletion; MGMT promoter methylation | [13] |
Gastric cancer | MSI/dMMR; ERBB2 amplifications; PD-L1 expression | [14] |
Prostate cancer | BRCA1 and BRCA2 mutations (somatic and germline); ATM mutations (germline) | [14] |
Endometrial cancer | MSI/dMMR; TP53 mutations; POLE mutations | [14] |
Ovarian cancer | BRCA1 and BRCA2 mutations (somatic and germline); ATM mutations; BRiP1 mutations; CHEK2 mutations; PALB2 mutations; RAD51C/RAD51D mutations | [14] |
Thyroid cancer | BRAF and RAS mutations; hTERT promoter mutations | [15] |
Techniques | Advantages | Disadvantages |
Sanger sequencing | - Low-cost machinery - Widespread on a large scale in all molecular biology laboratories | - Higher turn-around-time in comparison to NGS technologies - Low sensitivity - Limited information on tumor molecular landscape |
MALDI-TOF mass spectrometry sequencing | - Widespread on a large scale in all molecular biology laboratories - Possibility to use specific gene panels - Greater sensitivity than Sanger sequencing | - Lower sensitivity than NGS |
Reverse transcriptase (RT)-PCR | - Great sensitivity in detecting fusion genes - Low turn-around-time - Widespread on a large scale in all molecular biology laboratories | - Alteration-specific primers - RNA-based |
qRT-PCR | - Great diagnostic sensitivity - Low turn-around-time - Widespread on a large scale in all molecular biology laboratories - Reliable for liquid biopsy analysis | - Alteration-specific primers |
Pyrosequencing | - Low-cost machinery - Widespread on a large scale in all molecular biology laboratories - Best performances in studies on methylation | - Limited information on tumor molecular landscape |
Digital droplet PCR (ddPCR) | - High diagnostic sensitivity - Reliable for liquid biopsy analysis | - Limited information on tumor molecular landscape |
Immunohistochemistry | - Low turnaround-time - Widespread on a large scale in all molecular biology laboratories | - More affected by preanalytical artifacts than molecular pathology diagnostics |
Next-generation sequencing (NGS) targeted panels | - Greater sensitivity - Allows lot of targeted fragments to be sequenced in a single run - Faster turnaround time - Lower cost than comprehensive profiling. | - Biostatistical analysis of the results |
Whole-genome sequencing (WGS) | - Identifies meaningful mutations even they occur outside of exons - GC-rich gene sequences appear more accurately captured | - Difficult interpretation of genomic data - Relatively expensive |
Whole-exome sequencing (WES) | - Cost-effective alternative to WGS - Focuses on the most relevant portion of the genome and facilitates the discovery and validation of common and rare variants | - Unable to interrogate many variants that may be important for controlling gene transcriptional regulation or splicing |
Techniques | Advantages | Disadvantages |
Liquid biopsy | - Noninvasive test - Quick result turnarounds | - Low specificity, especially as the list of biomarkers expands with better understanding of the underlying biology of cancers |
Digital pathology | - Improves data and analysis quality - Low storage costs - Easier sharing of histological slides | - Adds time and cost to the typical surgical pathology clinical workflow - Expensive machinery - Need for analysis software and skills for their use |
Patients’ derived organoids (PDO) | - Effective biological model to test the in vitro effect of drugs | - Time- and resource-consuming - Lack of some cellular and molecular background of the natural tissue |
Techniques | Advantages | Disadvantages |
Liquid biopsy | - Noninvasive test - Quick result turnarounds | - Low specificity especially as the list of biomarkers expands with better understanding of the underlying biology of cancers |
Digital pathology | - Improves data and analysis quality - Low storage costs - Easier sharing of histological slides | - Adds time and cost to the typical surgical pathology clinical workflow - Expensive machinery - Need for analysis software and skills for their use |
PDO | - Effective biological model to test the in vitro effect of drugs | - Time- and resource-consuming - Lack of some cellular and molecular background of the natural tissue |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angerilli, V.; Galuppini, F.; Pagni, F.; Fusco, N.; Malapelle, U.; Fassan, M. The Role of the Pathologist in the Next-Generation Era of Tumor Molecular Characterization. Diagnostics 2021, 11, 339. https://doi.org/10.3390/diagnostics11020339
Angerilli V, Galuppini F, Pagni F, Fusco N, Malapelle U, Fassan M. The Role of the Pathologist in the Next-Generation Era of Tumor Molecular Characterization. Diagnostics. 2021; 11(2):339. https://doi.org/10.3390/diagnostics11020339
Chicago/Turabian StyleAngerilli, Valentina, Francesca Galuppini, Fabio Pagni, Nicola Fusco, Umberto Malapelle, and Matteo Fassan. 2021. "The Role of the Pathologist in the Next-Generation Era of Tumor Molecular Characterization" Diagnostics 11, no. 2: 339. https://doi.org/10.3390/diagnostics11020339
APA StyleAngerilli, V., Galuppini, F., Pagni, F., Fusco, N., Malapelle, U., & Fassan, M. (2021). The Role of the Pathologist in the Next-Generation Era of Tumor Molecular Characterization. Diagnostics, 11(2), 339. https://doi.org/10.3390/diagnostics11020339