Can Alveolar-Arterial Difference and Lung Ultrasound Help the Clinical Decision Making in Patients with COVID-19?
Abstract
:1. Introduction
2. Materials and Methods
- AaDO2 = ((FiO2) (Atmospheric pressure − H2O pressure) − (PaCO2/R)) − PaO2.
- We considered standard values for all patients:
- Atmospheric pressure = 760 mmHg
- H2O pressure = 47 mmHg
- Respiratory quotient (R) = 0.8
- Normal values of AaDO2 were considered, according to the following formula:
- Normal AaDO2 = 2.5 + 0.21 × age in years [10]
3. Results
4. Discussion
Study Limitations
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Health Organization. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen (accessed on 11 March 2020).
- Poston, J.T.; Patel, B.K.; Davis, A.M. Management of Critically Ill Adults with COVID-19. J. Am. Med. Assoc. 2020, 323, 1839–1841. [Google Scholar] [CrossRef]
- Mojoli, F.; Bouhemad, B.; Mongodi, S.; Lichtenstein, D. Lung ultrasound for critically ill patients. Am. J. Respir. Crit. Care Med. 2019, 199, 701–714. [Google Scholar] [CrossRef]
- Lichter, Y.; Topilsky, Y.; Taieb, P.; Banai, A.; Hochstadt, A.; Merdler, I.; Oz, A.G.; Vine, J.; Goren, O.; Cohen, B.; et al. Lung ultrasound predicts clinical course and outcomes in COVID-19 patients. Intensive Care Med. 2020, 46, 1873–1883. [Google Scholar] [CrossRef] [PubMed]
- Helmholz, H.F.M., Jr. The abbreviated alveolar air equation. Chest 1979, 75, 748. [Google Scholar] [CrossRef]
- Ferguson, N.D.; Fan, E.; Camporota, L.; Antonelli, M.; Anzueto, A.; Beale, R.; Brochard, L.; Brower, R.; Esteban, A.; Gattinoni, L.; et al. The Berlin definition of ARDS: An expanded rationale, justification, and supplementary material. Intensive Care Med. 2012, 38, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.D.; Massie, M. Role of Alveolar-Arterial Gradient in Partial Pressure of Oxygen and PaO2/Fraction of Inspired Oxygen Ratio Measurements in Assessment of Pulmonary Dysfunction. AANA J. 2019, 87, 214–221. [Google Scholar] [PubMed]
- Secco, G.; DeLorenzo, M.; Zattera, C.; Moore, B.G.; Demitry, L.; Vezzoni, G.; Resta, F.; Barcella, B.; Cappa, G.; Perrone, T.; et al. Lung ultrasound in COVID-19: A useful diagnostic tool. Emerg. Care J. 2020, 16, 35–38. [Google Scholar] [CrossRef]
- Smith, M.J.; Hayward, S.A.; Innes, S.M.; Miller, A.S.C. Point-of-care lung ultrasound in patients with COVID-19—A narrative review. Anaesthesia 2020, 75, 1096–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellemgaard, K. The Alveolar-Arterial Oxygen Difference: Its Size and Components in Normal Man. Acta Physiol. Scand. 1966, 67, 10–20. [Google Scholar] [CrossRef]
- Sharma, S.; Hashmi, M.F.; Burns, B. Alveolar Gas Equation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Statement, P. Ultrasound Guidelines: Emergency, Point-of-Care and Clinical Ultrasound Guidelines in Medicine. Ann. Emerg. Med. 2017, 69, e27–e54. [Google Scholar]
- Volpicelli, G.; International Liaison Committee on Lung Ultrasound (ILC-LUS) for the International Consensus Conference on Lung Ultrasound (ICC-LUS); Elbarbary, M.; Blaivas, M.; Lichtenstein, D.A.; Mathis, G.; Kirkpatrick, A.W.; Melniker, L.; Gargani, L.; Noble, V.E.; et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012, 38, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Secco, G.; GERICO (Gruppo Esteso RIcerca COronarovirus) Lung US Pavia Study Group; Delorenzo, M.; Salinaro, F.; Zattera, C.; Barcella, B.; Resta, F.; Sabena, A.; Vezzoni, G.; Bonzano, M.; et al. Lung ultrasound presentation of COVID-19 patients: Phenotypes and correlations. Intern. Emerg. Med. 2021, 4, 1–11. [Google Scholar] [CrossRef]
- Anderson, K.L.; Fields, J.W.; Panebianco, N.L.; Katherine, Y.; Jenq, K.Y.; Marin, J.; Anthony, J.; Dean, A.J. Inter-Rater Reliability of Quantifying Pleural B-Lines Using Multiple Counting Methods. J. Ultrasound Med. 2013, 32, 115–120. [Google Scholar] [CrossRef]
- Mongodi, S.; Bouhemad, B.; Orlando, A.; Stella, A.; Tavazzi, G.; Via, G.; Iotti, G.A.; Braschi, A.; Mojoli, F. Modified Lung Ultrasound Score for Assessing and Monitoring Pulmonary Aeration. Ultraschall Med. Eur. J. Ultrasound 2017, 38, 530–537. [Google Scholar] [CrossRef]
- Carlino, M.V.; Valenti, N.; Cesaro, F.; Costanzo, A.; Cristiano, G.; Guarino, M.; Sforza, A. Predictors of Intensive Care Unit admission in patients with coronavirus disease 2019 (COVID-19). Monaldi Arch. Chest Dis. 2020, 90. [Google Scholar] [CrossRef] [PubMed]
- Tobin, M.J. Basing Respiratory Management of COVID-19 on Physiological Principles. Am. J. Respir. Crit. Care Med. 2020, 201, 1319–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moammar, M.Q.; Azam, H.M.; Blamoun, I.A.; Rashid, O.A.; Ismail, M.; Khan, M.A.; DeBari, A.V. Alveolar-Arterial Oxygen Gradient, Pneumonia Severity Index and Outcomes in Patients Hospitalized with Community Acquired Pneumonia. Clin. Exp. Pharmacol. Physiol. 2008, 35, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Nicolini, A.; Ferrando, M.; Solidoro, P.; Di Marco, F.; Facchini, F.; Braido, F. Non-invasive ventilation in acute respiratory failure of patients with obesity hypoventilation syndrome. Minerva Med. 2018, 109, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Najafizadeha, K.M.; Araba, B.; Radpeia, S.; Pojhana, A.; Abbasi-Dezfulia, A.; Deneshvara, J.; Faeghia, H.R.; Khoddami-Vishtehb, M.; Azizabadi-Farahanib, G.A.-D. Age and Sex Predict PaO2/FiO2 Ratio in Brain-Dead Donor Lungs. Transpl. Proc. 2009, 41, 2270–2272. [Google Scholar]
- Tobin, M.J.; Laghi, F.; Jubran, A. Why COVID-19 Silent Hypoxemia Is Baffling to Physicians. Am. J. Respir. Crit. Care Med. 2020, 202, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Banzett, R.B.; Similowski, T.B.R. Addressing respiratory discomfort in the ventilated patient. In Principles and Practice of Mechanical Ventilation, 3rd ed.; Tobin, M.J., Ed.; McGraw Hill: New York, NY, USA, 2012; pp. 1265–1280. [Google Scholar]
- Cleverley, J.; Piper, J.; Jones, M.M. The role of chest radiography in confirming COVID-19 pneumonia. BMJ 2020, 370, m2426. [Google Scholar] [CrossRef] [PubMed]
- Hantzidiamantis, P.J.; Amaro, E. Physiology, Alveolar to Arterial Oxygen Gradient. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
Overall (n = 223) | Not Critical Patients (n = 171) | Critical Patients (n = 52) | p Value | |
---|---|---|---|---|
Age (years) | 61 (22–90) | 58 (22–90) | 69.5 (42–89) | p < 0.001 |
SEX (male %) | 61.9% | 57.3% | 76.9% | p = 0.01 |
BMI (kg/m2) | 26.2 (18.6–45.7) | 26.2 (18.7–45.7) | 26.2 (22.9–40.8) | n.s |
Arterial Systolic Pressure (mmHg) | 130 (80–190) | 130 (90–190) | 134 (80–174) | n.s |
Arterial Diastolic Pressure (mmHg) | 80 (50–117) | 80 (50–117) | 80 (50–110) | n.s |
Heart Rate (bpm) | 88 (40–135) | 86 (40–130) | 91 (60–135) | n.s |
Respiratory Rate (/min) | 20 (10–44) | 18.5 (10–44) | 22 (10–40) | p = 0.016 |
CRP (mg/dL) | 5.4 (0.01–41.9) | 3.36 (0.01–29.3) | 14.2 (0.84–41.9) | p < 0.001 |
Hb (g/dL) | 13.9 (8.4–23.5) | 13.8 (10–23.5) | 13.9 (8.4–17.2) | n.s |
Lymphocytes (×103/uL) | 0.9 (0.1–3.9) | 1 (0.1–3.9) | 0.8 (0.2–1.9) | p = 0.001 |
LDH (mU/mL) | 297 (122–2578) | 282 (122–852) | 408 (223–2578) | p < 0.001 |
TnI (ng/mL) | 7 (2.5–885) | 5 (2.5–885) | 14.5 (2.5–218) | n.s |
CPK (mU/mL) | 117 (22–46737) | 97 (22–2130) | 153 (24–46737) | n.s |
Creatinin (mg/dL) | 0.85 (0.37–4.4) | 0.82 (0.37–3.4) | 1.04 (0.56–4.4) | p < 0.001 |
PaO2/FiO2 | 333 (148–586) | 352 (191–586) | 257 (148–375) | p < 0.001 |
AaDO2 | 38.6 (0.5–81) | 34 (0.5–69) | 55 (18–81) | p < 0.001 |
PaCO2 (mmHg) | 33.5 (18.6–52) | 34 (19–43) | 31 (21–52) | p = 0.003 |
PaO2 (mmHg) | 70 (31–123) | 74 (40–123) | 54 (31–79) | p < 0.001 |
LUS Score | 9 (0–24) | 6 (0–19) | 13.5 (4–24) | p < 0.001 |
Comorbidity Overall (n = 223) | Non Critical Patients (n = 171) | Critical Patients (n = 52) |
---|---|---|
Hypertension (45%) | 40.9% | 57.7% |
Diabetes (14.4%) | 9.9% | 28.8% |
CAD (12.6%) | 8.2% | 26.9% |
Asthma (6.3%) | 7.6% | 1.9% |
CKD (4.5%) | 4.1% | 5.8% |
Active Cancer (4.1%) | 35.3% | 5.8% |
Neurological Disease (3.6%) | 1.7% | 9.6% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secco, G.; Salinaro, F.; Bellazzi, C.; La Salvia, M.; Delorenzo, M.; Zattera, C.; Barcella, B.; Resta, F.; Vezzoni, G.; Bonzano, M.; et al. Can Alveolar-Arterial Difference and Lung Ultrasound Help the Clinical Decision Making in Patients with COVID-19? Diagnostics 2021, 11, 761. https://doi.org/10.3390/diagnostics11050761
Secco G, Salinaro F, Bellazzi C, La Salvia M, Delorenzo M, Zattera C, Barcella B, Resta F, Vezzoni G, Bonzano M, et al. Can Alveolar-Arterial Difference and Lung Ultrasound Help the Clinical Decision Making in Patients with COVID-19? Diagnostics. 2021; 11(5):761. https://doi.org/10.3390/diagnostics11050761
Chicago/Turabian StyleSecco, Gianmarco, Francesco Salinaro, Carlo Bellazzi, Marco La Salvia, Marzia Delorenzo, Caterina Zattera, Bruno Barcella, Flavia Resta, Giulia Vezzoni, Marco Bonzano, and et al. 2021. "Can Alveolar-Arterial Difference and Lung Ultrasound Help the Clinical Decision Making in Patients with COVID-19?" Diagnostics 11, no. 5: 761. https://doi.org/10.3390/diagnostics11050761
APA StyleSecco, G., Salinaro, F., Bellazzi, C., La Salvia, M., Delorenzo, M., Zattera, C., Barcella, B., Resta, F., Vezzoni, G., Bonzano, M., Cappa, G., Bruno, R., Casagranda, I., & Perlini, S. (2021). Can Alveolar-Arterial Difference and Lung Ultrasound Help the Clinical Decision Making in Patients with COVID-19? Diagnostics, 11(5), 761. https://doi.org/10.3390/diagnostics11050761