Group and Shuffle Convolutional Neural Networks with Pyramid Pooling Module for Automated Pterygium Segmentation
Abstract
:1. Introduction
2. Related Works
2.1. Automated Pterygium Screening
2.2. Convolutional Neural Networks-Based Semantic Segmentation
3. Methods
3.1. FC-DenseNet
3.2. Group-PPM-Net
4. Experimental Results and Discussion
4.1. Dataset
4.2. Experimental Setup
4.3. Performance Metrics
4.4. Performance Benchmark with the State-of-the-Art CNN Segmentation Models
4.5. Ablation Study of the Group-PPM-Net
5. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
PPM | Pyramid Pooling Module |
CNN | Convolutional Neural Networks |
ILSVRC | ImageNet Large Scale Visual Recognition Challenge |
ASPP | Atrous Spatial Pyramid Pooling |
ReLU | Rectified Linear Unit |
GIMP2 | GNU Image Manipulation Program 2 |
FC-DenseNet | Fully Convolutional Dense Network |
FCN | Fully Convolutional Network |
PSP-Net | Pyramid Scene Parsing Network |
SegNet | Semantic Pixel-Wise Segmentation Network |
TD | Transition Down |
TU | Transition Up |
References
- Zulkifley, M.A.; Abdani, S.R.; Zulkifley, N.H. Pterygium-net: A deep learning approach to pterygium detection and localization. Multimed. Tools Appl. 2019, 78, 34563–34584. [Google Scholar] [CrossRef]
- Abdani, S.R.; Zulkifley, M.A.; Hussain, A. Compact convolutional neural networks for pterygium classification using transfer learning. In Proceedings of the IEEE International Conference on Signal and Image Processing Applications, Kuala Lumpur, Malaysia, 17–19 September 2019; pp. 140–143. [Google Scholar]
- Zhou, W.; Zhu, Y.; Zhang, B.; Qiu, W.; Yao, Y. The role of ultraviolet radiation in the pathogenesis of pterygia (review). Mol. Med. Rep. 2016, 14, 3–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekelj, S.; Dekaris, J.; Kondza-Krstonijevic, E.; Gabric, N.; Predovic, J.; Mitrovic, S. Ultraviolet light and pterygium. Coll. Antropol. 2007, 31, 45–47. [Google Scholar] [PubMed]
- Hashemi, H.; Khabazkhoob, M.; Yekta, A.; Jafarzadehpour, E.; Ostadimoghaddam, H.; Kangari, H. The prevalence and determinants of pterygium in rural areas. J. Curr. Ophthalmol. 2016, 29, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca, E.C.; Rocha, E.M.; Arruda, G.V. Comparison among adjuvant treatments for primary pterygium: A network meta-analysis. Br. J. Ophthalmol. 2018, 102, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Twelker, J.D.; Bailey, I.L.; Mannis, M.J.; Satariano, W.A. Evaluating pterygium severity: A survey of corneal specialists. Cornea 2000, 19, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Bochkovskiy, A.; Wang, C.; Liao, H.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Jegou, S.; Drozdzal, M.; Vazquez, D.; Romero, A.; Bengio, Y. The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1175–1183. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In NIPS’12: Proceedings of the 25th International Conference on Neural Information Processing Systems—Volume 1; Curran Associates Inc.: New York, NY, USA, 2012; pp. 1097–1105. [Google Scholar]
- Lee, T.K.; Baddar, W.J.; Kim, S.T.; Ro, Y.M. Convolution with logarithmic filter groups for efficient shallow cnn. In MultiMedia Modeling; Schoeffmann, K., Chalidabhongse, T.H., Ngo, C.W., Aramvith, S., O’Connor, N.E., Ho, Y.-S., Gabbouj, M., Elgammal, A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 117–129. [Google Scholar]
- Mesquita, R.G.; Figueiredo, E.M.N. An algorithm for measuring pterygium’s progress in already diagnosed eyes. In Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 733–736. [Google Scholar]
- Hanifah, U.; Daru Kusuma, P.; Setianingsih, C. Detection of pterygium disease using forward chaining and viola jones algorithm. In Proceedings of the 2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), Bandung, Indonesia, 5–7 December 2018; pp. 50–56. [Google Scholar]
- Minami, K.; Miyata, K.; Otani, A.; Tokunaga, T.; Tokuda, S.; Amano, S. Detection of increase in corneal irregularity due to pterygium using fourier series harmonic analyses with multiple diameters. Jpn. J. Ophthalmol. 2018, 62, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wong, D.W.K.; Aryaputera, A.W.; Sun, Y.; Cheng, C.; Cheung, C.; Wong, T.Y. Automatic pterygium detection on cornea images to enhance computer-aided cortical cataract grading system. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 4434–4437. [Google Scholar]
- Mohd Radzi, H.; Khairidzan, M.K.; Mohd Zulfaezal, C.A.; Azrin, E.A. Corneo-pterygium total area measurements utilising image analysis method. J. Optom. 2019, 12, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Lopez, Y.P.; Aguilera, L.R. Automatic classification of pterygium-non pterygium images using deep learning. In VipIMAGE 2019; Tavares, J.M.R.S., Jorge, R.M.N., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 391–400. [Google Scholar]
- Muad, A.M.; Zaki, S.K.M.; Jasim, S.A. Optimizing hopfield neural network for super-resolution mapping. J. Kejuruter. 2020, 32, 91–97. [Google Scholar]
- Abdani, S.R.; Zulkifley, M.A.; Moubark, A.M. Pterygium tissues segmentation using densely connected deeplab. In Proceedings of the 2020 IEEE 10th Symposium on Computer Applications Industrial Electronics (ISCAIE), Penang, Malaysia, 18–19 April 2020; pp. 229–232. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition; Technical Report; University of Oxford: Oxford, UK, 2014. [Google Scholar]
- Zulkifley, M.A.; Trigoni, N. Multiple-model fully convolutional neural networks for single object tracking on thermal infrared video. IEEE Access 2018, 6, 42790–42799. [Google Scholar] [CrossRef]
- Rochan, M.; Ye, L.; Wang, Y. Video summarization using fully convolutional sequence networks. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 347–363. [Google Scholar]
- Zulkifley, M.A.; Mohamed, N.A.; Zulkifley, N.H. Squat angle assessment through tracking body movements. IEEE Access 2019, 7, 48635–48644. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Chen, L.-C.; Yang, Y.; Wang, J.; Xu, W.; Yuille, A.L. Attention to scale: Scale-aware semantic image segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3640–3649. [Google Scholar]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1520–1528. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Cao, D.; Yin, H.; Chen, J.; Tang, F.; Peng, M.; Li, R.; Xie, H.; Wei, X.; Zhao, Y.; Sun, G. Clinical analysis of 10 pregnant women with covid-19 in wuhan, china: A retrospective study. Int. J. Infect. Dis. 2020, 95, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Ghosh, P.; Davis, L.S.; Goldstein, T. Stacked u-nets: A no-frills approach to natural image segmentation. arXiv 2018, arXiv:1804.10343. [Google Scholar]
- Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Computer Vision–ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 833–851. [Google Scholar]
- Tai, S.-K.; Dewi, C.; Chen, R.-C.; Liu, Y.-T.; Jiang, X.; Yu, H. Deep learning for traffic sign recognition based on spatial pyramid pooling with scale analysis. Appl. Sci. 2020, 10, 6997. [Google Scholar] [CrossRef]
- Jose, A.; Lopez, R.D.; Heisterklaus, I.; Wien, M. Pyramid Pooling of Convolutional Feature Maps for Image Retrieval. In Proceedings of the 2018 25th International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 480–484. [Google Scholar]
- Abdani, S.R.; Zulkifley, M.A.; Siham, M.N.; Abiddin, N.Z.; Aziz, N.A.A. Paddy Fields Segmentation using Fully Convolutional Network with Pyramid Pooling Module. In Proceedings of the 2020 IEEE 5th International Symposium on Telecommunication Technologies (ISTT), Shah Alam, Malaysia, 9–11 November 2020; pp. 30–34. [Google Scholar]
- Zhu, R.; Mao, X.; Zhu, Q.; Li, N.; Yang, Y. Text detection based on convolutional neural networks with spatial pyramid pooling. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 1032–1036. [Google Scholar]
- Ioannou, Y. A Tutorial on Filter Groups (Grouped Convolution). 2017. Available online: https://blog.yani.io/filter-group-tutorial/ (accessed on 23 May 2021).
- Bernard, O.; Lalande, A.; Zotti, C.; Cervenansky, F.; Yang, X.; Heng, P.A.; Cetin, I.; Lekadir, K.; Camara, O.; Ballester, M.A.G.; et al. Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? IEEE Trans. Med. Imaging 2018, 37, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Dewi, C.; Chen, R.C.; Liu, Y.T.; Tai, S.K. Synthetic Data generation using DCGAN for improved traffic sign recognition. Neural Comput. Appl. 2021, 1–16. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
Method | Image/Second | Parameters | ||||
---|---|---|---|---|---|---|
DeepLab V3+ [36] | 0.7683 | 0.5575 | 64.6621 | 0.2077 | 2.4778 | 41,051,088 |
Stacked U-Net [34] | 0.8046 | 0.6420 | 41.4411 | 0.608 | 3.7186 | 3,035,650 |
PSP-Net [10] | 0.8884 | 0.7824 | 35.1803 | 0.6882 | 2.3976 | 27,838,400 |
FCN [26] | 0.9047 | 0.8110 | 15.2212 | 0.6909 | 2.5622 | 134,393,428 |
FC-DenseNet [9] | 0.9117 | 0.8239 | 13.2491 | 0.7512 | 2.7242 | 14,594,658 |
U-Net [31] | 0.9128 | 0.8251 | 13.9372 | 0.7255 | 4.0951 | 31,032,834 |
DeepLab V2 [35] | 0.9169 | 0.8327 | 22.5102 | 0.7158 | 2.5927 | 71,419,720 |
SegNet [30] | 0.9185 | 0.8354 | 14.6579 | 0.7386 | 3.9844 | 29,444,166 |
Group-PPM-Net | 0.9329 | 0.8632 | 11.9989 | 0.7946 | 2.6295 | 13,219,138 |
Method | Image/Second | ||||
---|---|---|---|---|---|
FC-DenseNet | 0.9117 | 0.8239 | 13.2491 | 0.7512 | 2.7242 |
FC-DenseNet + Group | 0.8623 | 0.7508 | 18.3827 | 0.6826 | 2.7023 |
FC-DenseNet + Shuffle | 0.6774 | 0.7269 | 27.2436 | 0.6294 | 2.6866 |
FC-DenseNet + PPM | 0.9190 | 0.8402 | 11.4322 | 0.7795 | 2.6215 |
FC-DenseNet + Group + PPM | 0.8504 | 0.7324 | 19.2126 | 0.669 | 2.6844 |
FC-DenseNet + Shuffle + PPM | 0.9099 | 0.8243 | 14.7687 | 0.7556 | 2.6789 |
FC-DenseNet + Group + Shuffle | 0.9186 | 0.8348 | 14.1382 | 0.7368 | 2.6635 |
Group-PPM-Net (Encoder) | 0.9330 | 0.8640 | 11.5474 | 0.7966 | 2.6108 |
Group-PPM-Net (Decoder) | 0.9327 | 0.8626 | 10.3480 | 0.7949 | 2.6269 |
Group-PPM-Net (Both sides) | 0.9329 | 0.8632 | 11.9989 | 0.7946 | 2.5823 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdani, S.R.; Zulkifley, M.A.; Zulkifley, N.H. Group and Shuffle Convolutional Neural Networks with Pyramid Pooling Module for Automated Pterygium Segmentation. Diagnostics 2021, 11, 1104. https://doi.org/10.3390/diagnostics11061104
Abdani SR, Zulkifley MA, Zulkifley NH. Group and Shuffle Convolutional Neural Networks with Pyramid Pooling Module for Automated Pterygium Segmentation. Diagnostics. 2021; 11(6):1104. https://doi.org/10.3390/diagnostics11061104
Chicago/Turabian StyleAbdani, Siti Raihanah, Mohd Asyraf Zulkifley, and Nuraisyah Hani Zulkifley. 2021. "Group and Shuffle Convolutional Neural Networks with Pyramid Pooling Module for Automated Pterygium Segmentation" Diagnostics 11, no. 6: 1104. https://doi.org/10.3390/diagnostics11061104
APA StyleAbdani, S. R., Zulkifley, M. A., & Zulkifley, N. H. (2021). Group and Shuffle Convolutional Neural Networks with Pyramid Pooling Module for Automated Pterygium Segmentation. Diagnostics, 11(6), 1104. https://doi.org/10.3390/diagnostics11061104