The Pathophysiology and the Management of Radiocontrast-Induced Nephropathy
Abstract
:1. Introduction
2. Terminology and Definition
3. Risk Factors
4. Pathophysiology
5. Management
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hou, S.H.; Bushinsky, D.A.; Wish, J.B.; Cohen, J.J.; Harrington, J.T. Hospital-acquired renal insufficiency: A prospective study. Am. J. Med. 1983, 74, 243–248. [Google Scholar] [CrossRef]
- Nash, K.; Hafeez, A.; Hou, S. Hospital-acquired renal insufficiency. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2002, 39, 930–936. [Google Scholar] [CrossRef]
- Abe, M.; Morimoto, T.; Akao, M.; Furukawa, Y.; Nakagawa, Y.; Shizuta, S.; Ehara, N.; Taniguchi, R.; Doi, T.; Nishiyama, K.; et al. Relation of contrast-induced nephropathy to long-term mortality after percutaneous coronary intervention. Am. J. Cardiol. 2014, 114, 362–368. [Google Scholar] [CrossRef]
- Azzalini, L.; Kalra, S. Contrast-Induced Acute Kidney Injury-Definitions, Epidemiology, and Implications. Interv. Cardiol. Clin. 2020, 9, 299–309. [Google Scholar] [CrossRef]
- Haveman, J.W.; Gansevoort, R.T.; Bongaerts, A.H.; Nijsten, M.W. Low incidence of nephropathy in surgical ICU patients receiving intravenous contrast: A retrospective analysis. Intensive Care Med. 2006, 32, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Kooiman, J.; Pasha, S.M.; Zondag, W.; Sijpkens, Y.W.; van der Molen, A.J.; Huisman, M.V.; Dekkers, O.M. Meta-analysis: Serum creatinine changes following contrast enhanced CT imaging. Eur. J. Radiol. 2012, 81, 2554–2561. [Google Scholar] [CrossRef] [PubMed]
- Chousterman, B.G.; Bouadma, L.; Moutereau, S.; Loric, S.; Alvarez-Gonzalez, A.; Mekontso-Dessap, A.; Laissy, J.P.; Rahmouni, A.; Katsahian, S.; Brochard, L.; et al. Prevention of contrast-induced nephropathy by N-acetylcysteine in critically ill patients: Different definitions, different results. J. Crit. Care 2013, 28, 701–709. [Google Scholar] [CrossRef]
- ACR_Committee_on_Drugs_Contrast_Media. In ACR Manual on Contrast Media; American College of Radiology: Reston, VA, USA, 2021; Volume 128.
- Andreucci, M.; Solomon, R.; Tasanarong, A. Side effects of radiographic contrast media: Pathogenesis, risk factors, and prevention. BioMed Res. Int. 2014, 2014, 741018. [Google Scholar] [CrossRef]
- van der Molen, A.J.; Reimer, P.; Dekkers, I.A.; Bongartz, G.; Bellin, M.F.; Bertolotto, M.; Clement, O.; Heinz-Peer, G.; Stacul, F.; Webb, J.A.W.; et al. Post-contrast acute kidney injury—Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur. Radiol. 2018, 28, 2845–2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidney Disease: Improving_Global_Outcomes_(KDIGO)_Acute_Kidney_Injury_Work_Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury: Section 2: AKI definition. Kidney Int. Suppl. 2012, 2, 19–36. [Google Scholar] [CrossRef] [Green Version]
- Ad-hoc Working Group of ERBP; Fliser, D.; Laville, M.; Covic, A.; Fouque, D.; Vanholder, R.; Juillard, L.; Van Biesen, W. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: Part 1: Definitions, conservative management and contrast-induced nephropathy. Nephrol. Dial. Transplant. 2012, 27, 4263–4272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slocum, N.K.; Grossman, P.M.; Moscucci, M.; Smith, D.E.; Aronow, H.D.; Dixon, S.R.; Share, D.; Gurm, H.S. The changing definition of contrast-induced nephropathy and its clinical implications: Insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2). Am. Heart J. 2012, 163, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Budano, C.; Levis, M.; D’Amico, M.; Usmiani, T.; Fava, A.; Sbarra, P.; Burdese, M.; Segoloni, G.P.; Colombo, A.; Marra, S. Impact of contrast-induced acute kidney injury definition on clinical outcomes. Am. Heart J. 2011, 161, 963–971. [Google Scholar] [CrossRef] [PubMed]
- D’Amore, C.; Nuzzo, S.; Briguori, C. Biomarkers of Contrast-Induced Nephropathy:: Which Ones are Clinically Important? Interv. Cardiol. Clin. 2020, 9, 335–344. [Google Scholar] [CrossRef]
- Shams, E.; Mayrovitz, H.N. Contrast-Induced Nephropathy: A Review of Mechanisms and Risks. Cureus 2021, 13, e14842. [Google Scholar] [CrossRef] [PubMed]
- Kane-Gill, S.L.; Meersch, M.; Bell, M. Biomarker-guided management of acute kidney injury. Curr. Opin. Crit. Care 2020, 26, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Zdziechowska, M.; Gluba-Brzozka, A.; Franczyk, B.; Rysz, J. Biochemical Markers in the Prediction of Contrast-induced Acute Kidney Injury. Curr. Med. Chem. 2021, 28, 1234–1250. [Google Scholar] [CrossRef] [PubMed]
- Parikh, C.R.; Liu, C.; Mor, M.K.; Palevsky, P.M.; Kaufman, J.S.; Thiessen Philbrook, H.; Weisbord, S.D. Kidney Biomarkers of Injury and Repair as Predictors of Contrast-Associated AKI: A Substudy of the PRESERVE Trial. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2020, 75, 187–194. [Google Scholar] [CrossRef]
- Boccalandro, F.; Shreyder, K.; Harmon, L.; Dhindsa, M.; Fahim, T.; Sheikh, S. Five-Year Follow-Up of Patients With Radio-Contrast-Induced Acute Renal Injury: Can Intravenous Sodium Bicarbonate Improve Long-Term Outcomes? Cardiovasc. Revascularization Med. Incl. Mol. Interv. 2021, 31, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Mehran, R.; Aymong, E.D.; Nikolsky, E.; Lasic, Z.; Iakovou, I.; Fahy, M.; Mintz, G.S.; Lansky, A.J.; Moses, J.W.; Stone, G.W.; et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J. Am. Coll. Cardiol. 2004, 44, 1393–1399. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Costanzo, E.; Cosentino, J.; Patel, C.; Qaisar, H.; Singh, V.; Khan, T.; Cheng, J.S.; Asif, A.; Vachharajani, T.J. Contrast-induced nephropathy: Pathophysiology, risk factors, and prevention. Saudi J. Kidney Dis. Transplant. Off. Publ. Saudi Cent. Organ Transplant. Saudi Arab. 2018, 29, 1–9. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, K.; Xie, X.; Song, B. Contrast-associated acute kidney injury: An update of risk factors, risk factor scores, and preventive measures. Clin. Imaging 2021, 69, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Kooiman, J.; Klok, F.A.; Mos, I.C.; van der Molen, A.; de Roos, A.; Sijpkens, Y.W.; Huisman, M.V. Incidence and predictors of contrast-induced nephropathy following CT-angiography for clinically suspected acute pulmonary embolism. J. Thromb. Haemost. JTH 2010, 8, 409–411. [Google Scholar] [CrossRef]
- Katzberg, R.W.; Newhouse, J.H. Intravenous contrast medium-induced nephrotoxicity: Is the medical risk really as great as we have come to believe? Radiology 2010, 256, 21–28. [Google Scholar] [CrossRef]
- Manske, C.L.; Sprafka, J.M.; Strony, J.T.; Wang, Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am. J. Med. 1990, 89, 615–620. [Google Scholar] [CrossRef]
- Su, T.H.; Hsieh, C.H.; Chan, Y.L.; Wong, Y.C.; Kuo, C.F.; Li, C.H.; Lee, C.C.; Chen, H.Y. Intravenous CT Contrast Media and Acute Kidney Injury: A Multicenter Emergency Department-based Study. Radiology 2021, 301, 571–581. [Google Scholar] [CrossRef]
- Werner, S.; Bez, C.; Hinterleitner, C.; Horger, M. Incidence of contrast-induced acute kidney injury (CI-AKI) in high-risk oncology patients undergoing contrast-enhanced CT with a reduced dose of the iso-osmolar iodinated contrast medium iodixanol. PLoS ONE 2020, 15, e0233433. [Google Scholar] [CrossRef]
- Li, Y.; Ren, K. The Mechanism of Contrast-Induced Acute Kidney Injury and Its Association with Diabetes Mellitus. Contrast Media Mol. Imaging 2020, 2020, 3295176. [Google Scholar] [CrossRef] [PubMed]
- Delp, M.D.; Behnke, B.J.; Spier, S.A.; Wu, G.; Muller-Delp, J.M. Ageing diminishes endothelium-dependent vasodilatation and tetrahydrobiopterin content in rat skeletal muscle arterioles. J. Physiol. 2008, 586, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Bolignano, D.; Mattace-Raso, F.; Sijbrands, E.J.; Zoccali, C. The aging kidney revisited: A systematic review. Ageing Res. Rev. 2014, 14, 65–80. [Google Scholar] [CrossRef]
- Morcos, R.; Kucharik, M.; Bansal, P.; Al Taii, H.; Manam, R.; Casale, J.; Khalili, H.; Maini, B. Contrast-Induced Acute Kidney Injury: Review and Practical Update. Clin. Med. Insights. Cardiol. 2019, 13, 1–9. [Google Scholar] [CrossRef]
- Mehran, R.; Dangas, G.D.; Weisbord, S.D. Contrast-Associated Acute Kidney Injury. N. Engl. J. Med. 2019, 380, 2146–2155. [Google Scholar] [CrossRef] [PubMed]
- Grainger, R.G. Osmolality of intravascular radiological contrast media. Br. J. Radiol. 1980, 53, 739–746. [Google Scholar] [CrossRef]
- Faucon, A.L.; Bobrie, G.; Clement, O. Nephrotoxicity of iodinated contrast media: From pathophysiology to prevention strategies. Eur. J. Radiol. 2019, 116, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Buschur, M.; Aspelin, P. Contrast Media: History and Chemical Properties. Interv. Cardiol. Clin. 2014, 3, 333–339. [Google Scholar] [CrossRef]
- Solomon, R. Contrast media: Are there differences in nephrotoxicity among contrast media? BioMed Res. Int. 2014, 2014, 934947. [Google Scholar] [CrossRef]
- Zhao, F.; Lei, R.; Yang, S.K.; Luo, M.; Cheng, W.; Xiao, Y.Q.; Li, X.W.; Guo, J.; Duan, S.B. Comparative effect of iso-osmolar versus low-osmolar contrast media on the incidence of contrast-induced acute kidney injury in diabetic patients: A systematic review and meta-analysis. Cancer Imaging Off. Publ. Int. Cancer Imaging Soc. 2019, 19, 38. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Jiang, L.; Tang, X.; Gao, Z.; Xu, B.; Yuan, J. Contrast Induced Nephropathy and 2-Year Outcomes of Iso-Osmolar Compared with Low-Osmolar Contrast Media after Elective Percutaneous Coronary Intervention. Korean Circ. J. 2021, 51, 174–181. [Google Scholar] [CrossRef]
- Han, X.F.; Zhang, X.X.; Liu, K.M.; Tan, H.; Zhang, Q. Contrast-induced nephropathy in patients with diabetes mellitus between iso- and low-osmolar contrast media: A meta-analysis of full-text prospective, randomized controlled trials. PLoS ONE 2018, 13, e0194330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Jiang, Y.; Rui, Q.; Chen, M.; Zhang, N.; Yang, H.; Zhou, Y. Iodixanol versus iopromide in patients with renal insufficiency undergoing coronary angiography with or without PCI. Medicine 2018, 97, e0617. [Google Scholar] [CrossRef]
- Liu, T.Q.; Luo, W.L.; Tan, X.; Fang, Y.; Chen, J.; Zhang, H.; Yu, X.F.; Cai, J.R.; Ding, X.Q. A novel contrast-induced acute kidney injury model based on the 5/6-nephrectomy rat and nephrotoxicological evaluation of iohexol and iodixanol in vivo. Oxidative Med. Cell. Longev. 2014, 2014, 427560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Zhou, L.Y.; Li, D.Y.; Cheng, W.J.; Yin, W.J.; Hu, C.; Xie, Y.L.; Wang, J.L.; Zuo, S.R.; Chen, L.H.; et al. A novel rat model of contrast-induced nephropathy based on dehydration. J. Pharmacol. Sci. 2019, 141, 49–55. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Liu, B.; Fang, L.; Li, Y.; Meng, S. Iso-Osmolar Iodixanol Induces Less Increase in Circulating Endothelial Microparticles In Vivo and Less Endothelial Apoptosis In Vitro Compared with Low-Osmolar Iohexol. Contrast Media Mol. Imaging 2018, 2018, 8303609. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.S.; McDonald, R.J.; Comin, J.; Williamson, E.E.; Katzberg, R.W.; Murad, M.H.; Kallmes, D.F. Frequency of acute kidney injury following intravenous contrast medium administration: A systematic review and meta-analysis. Radiology 2013, 267, 119–128. [Google Scholar] [CrossRef]
- McDonald, J.S.; McDonald, R.J.; Carter, R.E.; Katzberg, R.W.; Kallmes, D.F.; Williamson, E.E. Risk of intravenous contrast material-mediated acute kidney injury: A propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology 2014, 271, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, A.; Aronson, D. Risk of Acute Kidney Injury after Intravenous Contrast Media Administration in Patients with Suspected Pulmonary Embolism: A Propensity-Matched Study. Thromb. Haemost. 2021, 121, 800–807. [Google Scholar] [CrossRef]
- Dong, M.; Jiao, Z.; Liu, T.; Guo, F.; Li, G. Effect of administration route on the renal safety of contrast agents: A meta-analysis of randomized controlled trials. J. Nephrol. 2012, 25, 290–301. [Google Scholar] [CrossRef]
- Tziakas, D.; Chalikias, G.; Stakos, D.; Altun, A.; Sivri, N.; Yetkin, E.; Gur, M.; Stankovic, G.; Mehmedbegovic, Z.; Voudris, V.; et al. Validation of a new risk score to predict contrast-induced nephropathy after percutaneous coronary intervention. Am. J. Cardiol. 2014, 113, 1487–1493. [Google Scholar] [CrossRef]
- Gurm, H.S.; Seth, M.; Dixon, S.R.; Michael Grossman, P.; Sukul, D.; Lalonde, T.; Cannon, L.; West, D.; Madder, R.D.; Adam Lauver, D. Contemporary use of and outcomes associated with ultra-low contrast volume in patients undergoing percutaneous coronary interventions. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2019, 93, 222–230. [Google Scholar] [CrossRef] [PubMed]
- van der Molen, A.J.; Reimer, P.; Dekkers, I.A.; Bongartz, G.; Bellin, M.F.; Bertolotto, M.; Clement, O.; Heinz-Peer, G.; Stacul, F.; Webb, J.A.W.; et al. Post-contrast acute kidney injury. Part 2: Risk stratification, role of hydration and other prophylactic measures, patients taking metformin and chronic dialysis patients: Recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur. Radiol. 2018, 28, 2856–2869. [Google Scholar] [CrossRef] [Green Version]
- Mamoulakis, C.; Tsarouhas, K.; Fragkiadoulaki, I.; Heretis, I.; Wilks, M.F.; Spandidos, D.A.; Tsitsimpikou, C.; Tsatsakis, A. Contrast-induced nephropathy: Basic concepts, pathophysiological implications and prevention strategies. Pharmacol. Ther. 2017, 180, 99–112. [Google Scholar] [CrossRef]
- Ward, D.B.; Valentovic, M.A. Contrast Induced Acute Kidney Injury and Direct Cytotoxicity of Iodinated Radiocontrast Media on Renal Proximal Tubule Cells. J. Pharmacol. Exp. Ther. 2019, 370, 160–171. [Google Scholar] [CrossRef] [PubMed]
- McCullough, P.A.; Choi, J.P.; Feghali, G.A.; Schussler, J.M.; Stoler, R.M.; Vallabahn, R.C.; Mehta, A. Contrast-Induced Acute Kidney Injury. J. Am. Coll. Cardiol. 2016, 68, 1465–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caiazza, A.; Russo, L.; Sabbatini, M.; Russo, D. Hemodynamic and tubular changes induced by contrast media. BioMed Res. Int. 2014, 2014, 578974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.Z.; Viegas, V.U.; Perlewitz, A.; Lai, E.Y.; Persson, P.B.; Patzak, A.; Sendeski, M.M. Iodinated contrast media differentially affect afferent and efferent arteriolar tone and reactivity in mice: A possible explanation for reduced glomerular filtration rate. Radiology 2012, 265, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Heyman, S.N.; Khamaisi, M.; Zorbavel, D.; Rosen, S.; Abassi, Z. Role of Hypoxia in Renal Failure Caused by Nephrotoxins and Hypertonic Solutions. Semin. Nephrol. 2019, 39, 530–542. [Google Scholar] [CrossRef]
- Leisman, S. Radiocontrast Toxicity. Adv. Chronic Kidney Dis. 2020, 27, 50–55. [Google Scholar] [CrossRef]
- Sendeski, M.M.; Persson, A.B.; Liu, Z.Z.; Busch, J.F.; Weikert, S.; Persson, P.B.; Hippenstiel, S.; Patzak, A. Iodinated contrast media cause endothelial damage leading to vasoconstriction of human and rat vasa recta. Am. J. Physiol. Ren. Physiol. 2012, 303, F1592–F1598. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Z.; Schmerbach, K.; Lu, Y.; Perlewitz, A.; Nikitina, T.; Cantow, K.; Seeliger, E.; Persson, P.B.; Patzak, A.; Liu, R.; et al. Iodinated contrast media cause direct tubular cell damage, leading to oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback. Am. J. Physiol. Ren. Physiol. 2014, 306, F864–F872. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.H.; Lee, T.S.; Lin, S.J.; Yeh, Y.C.; Lu, T.M.; Hsu, C.P. DDAH-2 alleviates contrast medium iopromide-induced acute kidney injury through nitric oxide synthase. Clin. Sci. 2019, 133, 2361–2378. [Google Scholar] [CrossRef]
- Kusirisin, P.; Chattipakorn, S.C.; Chattipakorn, N. Contrast-induced nephropathy and oxidative stress: Mechanistic insights for better interventional approaches. J. Transl. Med. 2020, 18, 400. [Google Scholar] [CrossRef] [PubMed]
- Pisani, A.; Riccio, E.; Andreucci, M.; Faga, T.; Ashour, M.; Di Nuzzi, A.; Mancini, A.; Sabbatini, M. Role of reactive oxygen species in pathogenesis of radiocontrast-induced nephropathy. BioMed Res. Int. 2013, 2013, 868321. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.Y.; Lee, H.Y.; Park, C.G.; Kang, J.; Yu, S.L.; Choi, D.R.; Han, S.Y.; Park, M.H.; Cho, S.; Lee, S.Y.; et al. Oxidative stress caused by activation of NADPH oxidase 4 promotes contrast-induced acute kidney injury. PLoS ONE 2018, 13, e0191034. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.L.; Lei, R.; Duan, S.B.; Tang, M.M.; Luo, M.; Xu, Q. Atorvastatin alleviates iodinated contrast media-induced cytotoxicity in human proximal renal tubular epithelial cells. Exp. Ther. Med. 2017, 14, 3309–3313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, X.; Wang, Q.; Tang, X.; Wang, Y.; Fu, D.; Lu, H.; Wang, G.; Norgren, S. Tetramethylpyrazine prevents contrast-induced nephropathy by inhibiting p38 MAPK and FoxO1 signaling pathways. Am. J. Nephrol. 2013, 37, 199–207. [Google Scholar] [CrossRef]
- Amano, M.; Nakayama, M.; Kaibuchi, K. Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity. Cytoskeleton 2010, 67, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Ying, Z.; Webb, R.C. Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H1495–H1500. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Yang, Z.; Miao, D.; Zhang, D. Rho Kinase Inhibitor, Fasudil, Attenuates Contrast-induced Acute Kidney Injury. Basic Clin. Pharmacol. Toxicol. 2018, 122, 278–287. [Google Scholar] [CrossRef]
- Khaleel, S.A.; Raslan, N.A.; Alzokaky, A.A.; Ewees, M.G.; Ashour, A.A.; Abdel-Hamied, H.E.; Abd-Allah, A.R. Contrast media (meglumine diatrizoate) aggravates renal inflammation, oxidative DNA damage and apoptosis in diabetic rats which is restored by sulforaphane through Nrf2/HO-1 reactivation. Chem.-Biol. Interact. 2019, 309, 108689. [Google Scholar] [CrossRef]
- Hong, Y.A.; Bae, S.Y.; Ahn, S.Y.; Kim, J.; Kwon, Y.J.; Jung, W.Y.; Ko, G.J. Resveratrol Ameliorates Contrast Induced Nephropathy Through the Activation of SIRT1-PGC-1alpha-Foxo1 Signaling in Mice. Kidney Blood Press. Res. 2017, 42, 641–653. [Google Scholar] [CrossRef]
- Kim, J.E.; Bae, S.Y.; Ahn, S.Y.; Kwon, Y.J.; Ko, G.J. The role of nuclear factor erythroid-2-related factor 2 expression in radiocontrast-induced nephropathy. Sci. Rep. 2019, 9, 2608. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Liao, G.; Zhou, Q.; Lv, D.; Holthfer, H.; Zou, H. Sulforaphane Attenuates Contrast-Induced Nephropathy in Rats via Nrf2/HO-1 Pathway. Oxidative Med. Cell. Longev. 2016, 2016, 9825623. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, X.; Shao, X.; Wang, H.; Liu, X.; Ke, X.; Xiong, C.; Wei, L.; Zou, H. tert-Butylhydroquinone Treatment Alleviates Contrast-Induced Nephropathy in Rats by Activating the Nrf2/Sirt3/SOD2 Signaling Pathway. Oxidative Med. Cell. Longev. 2019, 2019, 4657651. [Google Scholar] [CrossRef] [Green Version]
- Morigi, M.; Perico, L.; Benigni, A. Sirtuins in Renal Health and Disease. J. Am. Soc. Nephrol. JASN 2018, 29, 1799–1809. [Google Scholar] [CrossRef]
- Gao, D.; Wang, H.; Xu, Y.; Zheng, D.; Zhang, Q.; Li, W. Protective effect of astaxanthin against contrast-induced acute kidney injury via SIRT1-p53 pathway in rats. Int. Urol. Nephrol. 2019, 51, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, B.; Qi, X.; Zhang, X.; Ren, K. Resveratrol Protects Against Post-Contrast Acute Kidney Injury in Rabbits With Diabetic Nephropathy. Front. Pharmacol. 2019, 10, 833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tongqiang, L.; Shaopeng, L.; Xiaofang, Y.; Nana, S.; Xialian, X.; Jiachang, H.; Ting, Z.; Xiaoqiang, D. Salvianolic Acid B Prevents Iodinated Contrast Media-Induced Acute Renal Injury in Rats via the PI3K/Akt/Nrf2 Pathway. Oxidative Med. Cell. Longev. 2016, 2016, 7079487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, L.; Yao, S.; Zheng, D.; Xuan, Y.; Li, W. Astaxanthin attenuates contrast-induced acute kidney injury in rats via ROS/NLRP3 inflammasome. Int. Urol. Nephrol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Zhao, F.; Tang, C.Y.; Li, X.W.; Luo, M.; Duan, S.B. Comparison of iohexol and iodixanol induced nephrotoxicity, mitochondrial damage and mitophagy in a new contrast-induced acute kidney injury rat model. Arch. Toxicol. 2018, 92, 2245–2257. [Google Scholar] [CrossRef]
- Shen, J.; Wang, L.; Jiang, N.; Mou, S.; Zhang, M.; Gu, L.; Shao, X.; Wang, Q.; Qi, C.; Li, S.; et al. NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis. Sci. Rep. 2016, 6, 34682. [Google Scholar] [CrossRef]
- Lin, Q.; Li, S.; Jiang, N.; Jin, H.; Shao, X.; Zhu, X.; Wu, J.; Zhang, M.; Zhang, Z.; Shen, J.; et al. Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy. Autophagy 2021, 17, 2975–2990. [Google Scholar] [CrossRef]
- Tan, X.; Zheng, X.; Huang, Z.; Lin, J.; Xie, C.; Lin, Y. Involvement of S100A8/A9-TLR4-NLRP3 Inflammasome Pathway in Contrast-Induced Acute Kidney Injury. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017, 43, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Li, S.; Jiang, N.; Shao, X.; Zhang, M.; Jin, H.; Zhang, Z.; Shen, J.; Zhou, Y.; Zhou, W.; et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 2019, 26, 101254. [Google Scholar] [CrossRef]
- Xu, J.; Ma, L.; Fu, P. MicroRNA-30c attenuates contrast-induced acute kidney injury by suppressing NLRP3 inflammasome. Int. Immunopharmacol. 2020, 87, 106457. [Google Scholar] [CrossRef]
- Duan, C.; Cao, Y.; Liu, Y.; Zhou, L.; Ping, K.; Tan, M.T.; Tan, N.; Chen, J.; Chen, P. A New Preprocedure Risk Score for Predicting Contrast-Induced Acute Kidney Injury. Can. J. Cardiol. 2017, 33, 714–723. [Google Scholar] [CrossRef]
- Ni, Z.; Liang, Y.; Xie, N.; Liu, J.; Sun, G.; Chen, S.; Ye, J.; He, Y.; Guo, W.; Tan, N.; et al. Simple pre-procedure risk stratification tool for contrast-induced nephropathy. J. Thorac. Dis. 2019, 11, 1597–1610. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.F.; Chen, S.Q.; Ye, J.F.; Chen, Y.; Lei, L.; Liu, X.Q.; Liu, Y.; Wang, Y.; Lin, J.J.; Chen, J.Y. A simple risk score model for predicting contrast-induced nephropathy after coronary angiography in patients with diabetes. Clin. Exp. Nephrol. 2019, 23, 969–981. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.F.; Shen, H.; Tang, M.N.; Yan, Y.; Ge, J.B. A novel risk assessment model of contrast-induced nephropathy after percutaneous coronary intervention in patients with diabetes. Basic Clin. Pharmacol. Toxicol. 2021, 128, 305–314. [Google Scholar] [CrossRef]
- Ranucci, M.; Castelvecchio, S.; Menicanti, L.; Frigiola, A.; Pelissero, G. Risk of assessing mortality risk in elective cardiac operations: Age, creatinine, ejection fraction, and the law of parsimony. Circulation 2009, 119, 3053–3061. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.H.; Liu, Y.; Zhou, Y.L.; He, P.C.; Yu, D.Q.; Li, L.W.; Xie, N.J.; Guo, W.; Tan, N.; Chen, J.Y. Comparison of Different Risk Scores for Predicting Contrast Induced Nephropathy and Outcomes After Primary Percutaneous Coronary Intervention in Patients With ST Elevation Myocardial Infarction. Am. J. Cardiol. 2016, 117, 1896–1903. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Davenport, M.S.; Perazella, M.A.; Yee, J.; Dillman, J.R.; Fine, D.; McDonald, R.J.; Rodby, R.A.; Wang, C.L.; Weinreb, J.C. Use of Intravenous Iodinated Contrast Media in Patients With Kidney Disease: Consensus Statements from the American College of Radiology and the National Kidney Foundation. Kidney Med. 2020, 2, 85–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motes, A.T.; Ratanasrimetha, P.; Wongsaengsak, S.; Vorakunthada, Y.; Mingbunjerdsuk, T.; Pena, C.; Nugent, K. Impact of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Renal Function in Chronic Kidney Disease Patients Undergoing Coronary Angiography. Cureus 2021, 13, e12808. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Jin, W.; Liu, Y.; Lu, L.; Chen, Q.; Zhang, R. The Effect of Renin-Angiotensin-Aldosterone System Blockade Medications on Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography: A Meta-Analysis. PLoS ONE 2015, 10, e0129747. [Google Scholar] [CrossRef]
- Wang, W.; Qu, W.; Sun, D.; Liu, X. Meta-analysis of effect of renin-angiotensin-aldosterone system blockers on contrast-induced nephropathy. J. Renin Angiotensin Aldosterone Syst. 2020, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shemirani, H.; Pourrmoghaddas, M. A randomized trial of saline hydration to prevent contrast-induced nephropathy in patients on regular captopril or furosemide therapy undergoing percutaneous coronary intervention. Saudi J. Kidney Dis. Transpl. 2012, 23, 280–285. [Google Scholar] [PubMed]
- Rosenstock, J.L.; Bruno, R.; Kim, J.K.; Lubarsky, L.; Schaller, R.; Panagopoulos, G.; DeVita, M.V.; Michelis, M.F. The effect of withdrawal of ACE inhibitors or angiotensin receptor blockers prior to coronary angiography on the incidence of contrast-induced nephropathy. Int. Urol. Nephrol. 2008, 40, 749–755. [Google Scholar] [CrossRef]
- Wolak, T.; Aliev, E.; Rogachev, B.; Baumfeld, Y.; Cafri, C.; Abu-Shakra, M.; Novack, V. Renal safety and angiotensin II blockade medications in patients undergoing non-emergent coronary angiography: A randomized controlled study. Isr. Med. Assoc. J. 2013, 15, 682–687. [Google Scholar] [PubMed]
- Bainey, K.R.; Rahim, S.; Etherington, K.; Rokoss, M.L.; Natarajan, M.K.; Velianou, J.L.; Brons, S.; Mehta, S.R. Effects of withdrawing vs continuing renin-angiotensin blockers on incidence of acute kidney injury in patients with renal insufficiency undergoing cardiac catheterization: Results from the Angiotensin Converting Enzyme Inhibitor/Angiotensin Receptor Blocker and Contrast Induced Nephropathy in Patients Receiving Cardiac Catheterization (CAPTAIN) trial. Am. Heart J. 2015, 170, 110–116. [Google Scholar] [CrossRef]
- Isaka, Y.; Hayashi, H.; Aonuma, K.; Horio, M.; Terada, Y.; Doi, K.; Fujigaki, Y.; Yasuda, H.; Sato, T.; Fujikura, T.; et al. Guideline on the use of iodinated contrast media in patients with kidney disease 2018. Clin. Exp. Nephrol. 2020, 24, 1–44. [Google Scholar] [CrossRef] [Green Version]
- DeFronzo, R.; Fleming, G.A.; Chen, K.; Bicsak, T.A. Metformin-associated lactic acidosis: Current perspectives on causes and risk. Metabolism 2016, 65, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Van der Molen, A.J.; Geenen, R.W.F.; Pels Rijcken, T.H.; Dekker, H.M.; Van den Meiracker, A.H.; Hoogeveen, E.K.; van Straaten, H.M.O.; Sijpkens, Y.W.J.; Kooiman, J.; Cobbaert, C.; et al. Guideline Safe Use of Contrast Media, Part 1. 2017. Available online: https://www.radiologen.nl/kwaliteit/richtlijnen-veilig-gebruik-van-contrastmiddelen-guidelines-safe-use-contrast-media (accessed on 15 December 2021).
- Food and Drug Administration (FDA). FDA Revises Warnings Regarding Use of the Diabetes Medicine Metformin in Certain Patients with Reduced Kidney Function. Available online: http://www.fda.gov/Drugs/DrugSafety/ucm493244.htm (accessed on 15 December 2021).
- Nagayama, Y.; Tanoue, S.; Tsuji, A.; Urata, J.; Furusawa, M.; Oda, S.; Nakaura, T.; Utsunomiya, D.; Yoshida, E.; Yoshida, M.; et al. Application of 80-kVp scan and raw data-based iterative reconstruction for reduced iodine load abdominal-pelvic CT in patients at risk of contrast-induced nephropathy referred for oncological assessment: Effects on radiation dose, image quality and renal function. Br. J. Radiol. 2018, 91, 20170632. [Google Scholar] [CrossRef] [PubMed]
- Balemans, C.E.; Reichert, L.J.; van Schelven, B.I.; van den Brand, J.A.; Wetzels, J.F. Epidemiology of contrast material-induced nephropathy in the era of hydration. Radiology 2012, 263, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Brar, S.S.; Aharonian, V.; Mansukhani, P.; Moore, N.; Shen, A.Y.J.; Jorgensen, M.; Dua, A.; Short, L.; Kane, K. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: The POSEIDON randomised controlled trial. Lancet 2014, 383, 1814–1823. [Google Scholar] [CrossRef]
- Stevens, M.A.; McCullough, P.A.; Tobin, K.J.; Speck, J.P.; Westveer, D.C.; Guido-Allen, D.A.; Timmis, G.C.; O’Neill, W.W. A prospective randomized trial of prevention measures in patients at high risk for contrast nephropathy: Results of the P.R.I.N.C.E. Study. Prevention of Radiocontrast Induced Nephropathy Clinical Evaluation. J. Am. Coll. Cardiol. 1999, 33, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Briguori, C.; D’Amore, C.; De Micco, F.; Signore, N.; Esposito, G.; Napolitano, G.; Focaccio, A.; Investigators, R.I. Renal insufficiency following contrast media administration trial III: Urine flow rate-guided versus left-ventricular end-diastolic pressure-guided hydration in high-risk patients for contrast-induced acute kidney injury. Rationale and design. Catheter. Cardiovasc. Interv. 2020, 95, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Dorval, J.F.; Dixon, S.R.; Zelman, R.B.; Davidson, C.J.; Rudko, R.; Resnic, F.S. Feasibility study of the RenalGuard™ balanced hydration system: A novel strategy for the prevention of contrast-induced nephropathy in high risk patients. Int. J. Cardiol. 2013, 166, 482–486. [Google Scholar] [CrossRef]
- Briguori, C.; Visconti, G.; Focaccio, A.; Airoldi, F.; Valgimigli, M.; Sangiorgi, G.M.; Golia, B.; Ricciardelli, B.; Condorelli, G. Renal Insufficiency After Contrast Media Administration Trial II (REMEDIAL II): RenalGuard System in high-risk patients for contrast-induced acute kidney injury. Circulation 2011, 124, 1260–1269. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y. RenalGuard system and conventional hydration for preventing contrast-associated acute kidney injury in patients undergoing cardiac interventional procedures: A systematic review and meta-analysis. Int. J. Cardiol. 2021, 333, 83–89. [Google Scholar] [CrossRef]
- Briguori, C.; D’Amore, C.; De Micco, F.; Signore, N.; Esposito, G.; Visconti, G.; Airoldi, F.; Signoriello, G.; Focaccio, A. Left Ventricular End-Diastolic Pressure Versus Urine Flow Rate-Guided Hydration in Preventing Contrast-Associated Acute Kidney Injury. JACC Cardiovasc. Interv. 2020, 13, 2065–2074. [Google Scholar] [CrossRef]
- Maioli, M.; Toso, A.; Leoncini, M.; Musilli, N.; Grippo, G.; Ronco, C.; McCullough, P.A.; Bellandi, F. Bioimpedance-Guided Hydration for the Prevention of Contrast-Induced Kidney Injury: The HYDRA Study. J. Am. Coll. Cardiol. 2018, 71, 2880–2889. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Ye, M.; Dong, X.; Chen, Q.; Hong, H.; Chen, L.; Luo, Y. Prevention of Contrast-Induced Nephropathy by Inferior Vena Cava Ultrasonography-Guided Hydration in Chronic Heart Failure Patients. Cardiology 2021, 146, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Fahling, M.; Seeliger, E.; Patzak, A.; Persson, P.B. Understanding and preventing contrast-induced acute kidney injury. Nat. Rev. Nephrol. 2017, 13, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, J.; Yang, B.; Wu, K.; Lin, H.; Wang, Y.; Zhou, L.; Wang, H.; Zeng, C.; Chen, X.; et al. Effectiveness of oral hydration in preventing contrast-induced acute kidney injury in patients undergoing coronary angiography or intervention: A pairwise and network meta-analysis. Coron. Artery Dis. 2018, 29, 286–293. [Google Scholar] [CrossRef]
- Hiremath, S.; Akbari, A.; Shabana, W.; Fergusson, D.A.; Knoll, G.A. Prevention of contrast-induced acute kidney injury: Is simple oral hydration similar to intravenous? A systematic review of the evidence. PLoS ONE 2013, 8, e60009. [Google Scholar] [CrossRef] [Green Version]
- Sebastia, C.; Paez-Carpio, A.; Guillen, E.; Pano, B.; Garcia-Cinca, D.; Poch, E.; Oleaga, L.; Nicolau, C. Oral hydration compared to intravenous hydration in the prevention of post-contrast acute kidney injury in patients with chronic kidney disease stage IIIb: A phase III non-inferiority study (NICIR study). Eur. J. Radiol. 2021, 136, 109509. [Google Scholar] [CrossRef]
- Kong, D.G.; Hou, Y.F.; Ma, L.L.; Yao, D.K.; Wang, L.X. Comparison of oral and intravenous hydration strategies for the prevention of contrast-induced nephropathy in patients undergoing coronary angiography or angioplasty: A randomized clinical trial. Acta Cardiol. 2012, 67, 565–569. [Google Scholar] [CrossRef]
- Nijssen, E.C.; Rennenberg, R.J.; Nelemans, P.J.; Essers, B.A.; Janssen, M.M.; Vermeeren, M.A.; Ommen, V.V.; Wildberger, J.E. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): A prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet 2017, 389, 1312–1322. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, M.; Zhang, Y.; Zhang, N.; Yang, H.; Yao, J.; Zhou, Y. Meta-analysis of prophylactic hydration versus no hydration on contrast-induced acute kidney injury. Coron. Artery Dis. 2017, 28, 649–657. [Google Scholar] [CrossRef]
- Michel, P.; Amione-Guerra, J.; Sheikh, O.; Jameson, L.C.; Bansal, S.; Prasad, A. Meta-analysis of intravascular volume expansion strategies to prevent contrast-associated acute kidney injury following invasive angiography. Catheter. Cardiovasc. Interv. 2021, 98, 1120–1132. [Google Scholar] [CrossRef]
- Cai, Q.; Jing, R.; Zhang, W.; Tang, Y.; Li, X.; Liu, T. Hydration Strategies for Preventing Contrast-Induced Acute Kidney Injury: A Systematic Review and Bayesian Network Meta-Analysis. J. Interv. Cardiol. 2020, 2020, 7292675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.; Kim, D.K.; Jung, H.Y.; Kim, C.D.; Cho, J.H.; Cha, R.H.; Jeong, J.C.; Kim, S.; Kim, H.J.; Ban, T.H.; et al. Efficacy and Safety of a Balanced Salt Solution Versus a 0.9% Saline Infusion for the Prevention of Contrast-Induced Acute Kidney Injury After Contrast-Enhanced Computed Tomography. Kidney Med. 2020, 2, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Cruz, D.N.; Goh, C.Y.; Marenzi, G.; Corradi, V.; Ronco, C.; Perazella, M.A. Renal replacement therapies for prevention of radiocontrast-induced nephropathy: A systematic review. Am. J. Med. 2012, 125, 66–78.e63. [Google Scholar] [CrossRef]
- Marenzi, G.; Lauri, G.; Campodonico, J.; Marana, I.; Assanelli, E.; De Metrio, M.; Grazi, M.; Veglia, F.; Fabbiocchi, F.; Montorsi, P.; et al. Comparison of two hemofiltration protocols for prevention of contrast-induced nephropathy in high-risk patients. Am. J. Med. 2006, 119, 155–162. [Google Scholar] [CrossRef]
- Marenzi, G.; Marana, I.; Lauri, G.; Assanelli, E.; Grazi, M.; Campodonico, J.; Trabattoni, D.; Fabbiocchi, F.; Montorsi, P.; Bartorelli, A.L. The prevention of radiocontrast-agent-induced nephropathy by hemofiltration. N. Engl. J. Med. 2003, 349, 1333–1340. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.J.; Yoon, J.W.; Han, S.J.; Choi, H.H.; Song, Y.R.; Kim, S.G.; Oh, J.E.; Lee, Y.K.; Seo, J.W.; Kim, H.J.; et al. The prevention of contrast-induced nephropathy by simultaneous hemofiltration during coronary angiographic procedures: A comparison with periprocedural hemofiltration. Int. J. Cardiol. 2014, 176, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Oyamada, N.; Hamanaka, I.; Fujioka, A.; Iwasaku, T.; Minami, T.; Fujie, H.; Ueda, K. Effectiveness of high flow-volume intermittent hemodiafiltration during and after intervention to prevent contrast-induced nephropathy in patients with advanced chronic kidney disease: A pilot study. Catheter. Cardiovasc. Interv. 2020, 96, 1174–1181. [Google Scholar] [CrossRef]
- Recio-Mayoral, A.; Chaparro, M.; Prado, B.; Cózar, R.; Méndez, I.; Banerjee, D.; Kaski, J.C.; Cubero, J.; Cruz, J.M. The reno-protective effect of hydration with sodium bicarbonate plus N-acetylcysteine in patients undergoing emergency percutaneous coronary intervention: The RENO Study. J. Am. Coll. Cardiol. 2007, 49, 1283–1288. [Google Scholar] [CrossRef] [Green Version]
- Weisbord, S.D.; Gallagher, M.; Jneid, H.; Garcia, S.; Cass, A.; Thwin, S.S.; Conner, T.A.; Chertow, G.M.; Bhatt, D.L.; Shunk, K.; et al. Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine. N. Engl. J. Med. 2018, 378, 603–614. [Google Scholar] [CrossRef] [PubMed]
- ACT Investigators. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: Main results from the randomized Acetylcysteine for Contrast-induced nephropathy Trial (ACT). Circulation 2011, 124, 1250–1259. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Xie, X.; Liu, L.; Lv, J.; Song, F.; Perkovic, V.; Zhang, H. Comparative Effectiveness of 12 Treatment Strategies for Preventing Contrast-Induced Acute Kidney Injury: A Systematic Review and Bayesian Network Meta-analysis. Am. J. Kidney Dis. 2017, 69, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.Q.; Zhao, Y.; Wang, Y.; Han, X.Q.; Zhu, Y.; Liu, N.F. Comparative efficacy of pharmacological interventions for contrast-induced nephropathy prevention after coronary angiography: A network meta-analysis from randomized trials. Int. Urol. Nephrol. 2018, 50, 1085–1095. [Google Scholar] [CrossRef]
- Yue, R.; Zuo, C.; Zeng, J.; Su, B.; Tao, Y.; Huang, S.; Zeng, R. Atorvastatin attenuates experimental contrast-induced acute kidney injury: A role for TLR4/MyD88 signaling pathway. Ren. Fail. 2017, 39, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.O.; Budoff, M. Effect of statins on atherosclerotic plaque. Trends Cardiovasc. Med. 2019, 29, 451–455. [Google Scholar] [CrossRef]
- Al-Otaibi, K.E.; Al Elaiwi, A.M.; Tariq, M.; Al-Asmari, A.K. Simvastatin attenuates contrast-induced nephropathy through modulation of oxidative stress, proinflammatory myeloperoxidase, and nitric oxide. Oxid. Med. Cell. Longev. 2012, 2012, 831748. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.L.; Chen, L.Q.; Du, X.G. Efficacy of short-term moderate or high-dose statin therapy for the prevention of contrast-induced nephropathy in high-risk patients with chronic kidney disease: Systematic review and meta-analysis. Clinics 2021, 76, e1876. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.H.; Koo, B.K.; Park, J.S.; Kang, H.J.; Cho, Y.S.; Kim, Y.J.; Youn, T.J.; Chung, W.Y.; Chae, I.H.; Choi, D.J.; et al. Prevention of radiocontrast medium-induced nephropathy using short-term high-dose simvastatin in patients with renal insufficiency undergoing coronary angiography (PROMISS) trial—A randomized controlled study. Am. Heart J. 2008, 155, 499.e1–499.e8. [Google Scholar] [CrossRef]
Patient-Related | Impaired renal function Diabetes mellitus Effective intravascular volume depletion: dehydration, blood loss, congestive heart failure, liver cirrhosis, nephrosis Advanced age Female gender Cardiovascular disease including hypertension Malignancy Inflammation Anemia Hyperuricemia Nephrotoxic medications: diuretics, nonsteroidal antiinflammatory drugs, aminoglycosides, amphotericin B, antiviral drugs such as acyclovir, cyclosporine A, cisplatin |
Procedure-Related | Route of CM administration: intra-arterial vs. intravenous administration Type of procedure: catheter-based procedure Type of CM Volume of CM Repeated CM administration within 24–72 h |
Patient-related | Risk stratification of individual patients Evaluate and correct patient’s volume status Correct modifiable factors including cessation of nephrotoxic drugs |
Procedure-related | Use low-osmolar or iso-osmolar contrast media Minimize the volume of contrast media - limit maximum contrast volume - consider the interval of contrast administration |
Pathophysiology-related | Hydration * Pharmaceutical agents targeting pathogenic process including oxidative stress |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, E.; Ko, G.-J. The Pathophysiology and the Management of Radiocontrast-Induced Nephropathy. Diagnostics 2022, 12, 180. https://doi.org/10.3390/diagnostics12010180
Cho E, Ko G-J. The Pathophysiology and the Management of Radiocontrast-Induced Nephropathy. Diagnostics. 2022; 12(1):180. https://doi.org/10.3390/diagnostics12010180
Chicago/Turabian StyleCho, Eunjung, and Gang-Jee Ko. 2022. "The Pathophysiology and the Management of Radiocontrast-Induced Nephropathy" Diagnostics 12, no. 1: 180. https://doi.org/10.3390/diagnostics12010180
APA StyleCho, E., & Ko, G. -J. (2022). The Pathophysiology and the Management of Radiocontrast-Induced Nephropathy. Diagnostics, 12(1), 180. https://doi.org/10.3390/diagnostics12010180