Impact of Follicle Stimulating Hormone Receptor (FSHR) Polymorphism on the Efficiency of Co-Treatment with Growth Hormone in a Group of Infertile Women from Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population Sample
2.2. Ovarian Stimulation Protocols, Oocyte Retrieval and Embryo Transfer
2.3. Biological Sampling and Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blumenfeld, Z. What Is the Best Regimen for Ovarian Stimulation of Poor Responders in ART/IVF? Front. Endocrinol. 2020, 11, 192. [Google Scholar] [CrossRef] [PubMed]
- Giannelou, P.; Simopoulou, M.; Grigoriadis, S.; Makrakis, E.; Kontogeorgi, A.; Pantou, A.; Galatis, D.; Kalampokas, T.; Bakas, P.; Bolaris, S.; et al. The Conundrum of Poor Ovarian Response: From Diagnosis to Treatment. Diagnostics 2020, 10, 687. [Google Scholar] [CrossRef] [PubMed]
- Gonda, K.J.; Domar, A.D.; Gleicher, N.; Marrs, R.P. Insights from Clinical Experience in Treating IVF Poor Responders. Reprod. Biomed. Online 2018, 36, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Roque, M.; Bedoschi, G.M.; Conforti, A.; Humaidan, P.; Alviggi, C. Defining Low Prognosis Patients Undergoing Assisted Reproductive Technology: POSEIDON Criteria—The Why. Front. Endocrinol. 2018, 9, 461. [Google Scholar] [CrossRef]
- Humaidan, P.; Alviggi, C.; Fischer, R.; Esteves, S.C. The Novel POSEIDON Stratification of ‘Low Prognosis Patients in Assisted Reproductive Technology’ and Its Proposed Marker of Successful Outcome. F1000Res 2016, 5, 2911. [Google Scholar] [CrossRef]
- Shelling, A.N. Premature Ovarian Failure. Reproduction 2010, 140, 633–641. [Google Scholar] [CrossRef]
- Riccetti, L.; Sperduti, S.; Lazzaretti, C.; Casarini, L.; Simoni, M. The cAMP/PKA Pathway: Steroidogenesis of the Antral Follicular Stage. Minerva Ginecol. 2018, 70, 516–524. [Google Scholar] [CrossRef]
- Surcel, M.; Zlatescu-Marton, C.; Micu, R.; Nemeti, G.I.; Axente, D.D.; Mirza, C.; Neamtiu, I. The role of high follicular levels of angiotensin ii and vascular endothelial growth factor in anticipating the development of severe ovarian hyperstimulation syndrome in patients with prophylactic cabergoline therapy undergoing an in vitro fertilization procedure. Acta Endocrinol. 2020, 16, 30–36. [Google Scholar] [CrossRef]
- Alam, H.; Weck, J.; Maizels, E.; Park, Y.; Lee, E.J.; Ashcroft, M.; Hunzicker-Dunn, M. Role of the Phosphatidylinositol-3-Kinase and Extracellular Regulated Kinase Pathways in the Induction of Hypoxia-Inducible Factor (HIF)-1 Activity and the HIF-1 Target Vascular Endothelial Growth Factor in Ovarian Granulosa Cells in Response to Follicle-Stimulating Hormone. Endocrinology 2009, 150, 915–928. [Google Scholar] [CrossRef]
- de Pascali, F.; Tréfier, A.; Landomiel, F.; Bozon, V.; Bruneau, G.; Yvinec, R.; Poupon, A.; Crépieux, P.; Reiter, E. Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. In International Review of Cell and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 338, pp. 1–58. [Google Scholar]
- Baumgarten, S.C.; Convissar, S.M.; Fierro, M.A.; Winston, N.J.; Scoccia, B.; Stocco, C. IGF1R Signaling Is Necessary for FSH-Induced Activation of AKT and Differentiation of Human Cumulus Granulosa Cells. J. Clin. Endocrinol. Metab. 2014, 99, 2995–3004. [Google Scholar] [CrossRef] [Green Version]
- Wayne, C.M.; Fan, H.-Y.; Cheng, X.; Richards, J.S. Follicle-Stimulating Hormone Induces Multiple Signaling Cascades: Evidence That Activation of Rous Sarcoma Oncogene, RAS, and the Epidermal Growth Factor Receptor Are Critical for Granulosa Cell Differentiation. Mol. Endocrinol. 2007, 21, 1940–1957. [Google Scholar] [CrossRef] [PubMed]
- Alam, H.; Maizels, E.T.; Park, Y.; Ghaey, S.; Feiger, Z.J.; Chandel, N.S.; Hunzicker-Dunn, M. Follicle-Stimulating Hormone Activation of Hypoxia-Inducible Factor-1 by the Phosphatidylinositol 3-Kinase/AKT/Ras Homolog Enriched in Brain (Rheb)/Mammalian Target of Rapamycin (MTOR) Pathway Is Necessary for Induction of Select Protein Markers of Follicular Differentiation. J. Biol. Chem. 2004, 279, 19431–19440. [Google Scholar] [CrossRef] [PubMed]
- Monge-Ochoa, B.; Montoro, L.; Gil-Arribas, E.; Montoya, J.; Ruiz-Pesini, E.; López-Pérez, M.J.; de Castro, F.; Díez-Sánchez, C. Variants Ala307Ala and Ser680Ser of 307 and 680 FSHr Polymorphisms Negatively Influence on Assisted Reproductive Techniques Outcome and Determine High Probability of Non-Pregnancy in Caucasian Patients. J. Assist. Reprod. Genet. 2021, 38, 2769–2779. [Google Scholar] [CrossRef]
- Huang, X.; Li, L.; Hong, L.; Zhou, W.; Shi, H.; Zhang, H.; Zhang, Z.; Sun, X.; Du, J. The Ser680Asn Polymorphism in the Follicle-Stimulating Hormone Receptor Gene Is Associated with the Ovarian Response in Controlled Ovarian Hyperstimulation. Clin. Endocrinol. 2015, 82, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Alviggi, C.; Conforti, A.; Caprio, F.; Gizzo, S.; Noventa, M.; Strina, I.; Pagano, T.; de Rosa, P.; Carbone, F.; Colacurci, N.; et al. In Estimated Good Prognosis Patients Could Unexpected “Hyporesponse” to Controlled Ovarian Stimulation Be Related to Genetic Polymorphisms of FSH Receptor? Reprod. Sci. 2016, 23, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Conforti, A.; Tüttelmann, F.; Alviggi, C.; Behre, H.M.; Fischer, R.; Hu, L.; Polyzos, N.P.; Chuderland, D.; Rama Raju, G.A.; D’Hooghe, T.; et al. Effect of Genetic Variants of Gonadotropins and Their Receptors on Ovarian Stimulation Outcomes: A Delphi Consensus. Front. Endocrinol. 2022, 12, 797365. [Google Scholar] [CrossRef]
- Sheikhha, M.; Kalantar, S.; Eftekhar, M. Investigating the Association between Polymorphism of Follicle-Stimulating Hormone Receptor Gene and Ovarian Response in Controlled Ovarian Hyperstimulation. J. Hum. Reprod. Sci. 2011, 4, 86–90. [Google Scholar] [CrossRef]
- Pabalan, N.; Trevisan, C.M.; Peluso, C.; Jarjanazi, H.; Christofolini, D.M.; Barbosa, C.P.; Bianco, B. Evaluating Influence of the Genotypes in the Follicle-Stimulating Hormone Receptor (FSHR) Ser680Asn (Rs6166) Polymorphism on Poor and Hyper-Responders to Ovarian Stimulation: A Meta-Analysis. J. Ovarian Res. 2014, 7, 285. [Google Scholar] [CrossRef]
- Yao, Y.; Ma, C.; Tang, H.; Hu, Y. Influence of Follicle-Stimulating Hormone Receptor (FSHR) Ser680Asn Polymorphism on Ovarian Function and in-Vitro Fertilization Outcome: A Meta-Analysis. Mol. Genet. Metab. 2011, 103, 388–393. [Google Scholar] [CrossRef]
- Mohiyiddeen, L.; Newman, W.G.; Cerra, C.; McBurney, H.; Mulugeta, B.; Roberts, S.A.; Nardo, L.G. A Common Asn680Ser Polymorphism in the Follicle-Stimulating Hormone Receptor Gene Is Not Associated with Ovarian Response to Gonadotropin Stimulation in Patients Undergoing in Vitro Fertilization. Fertil. Steril. 2013, 99, 149–155. [Google Scholar] [CrossRef]
- Binder, H.; Strick, R.; Zaherdoust, O.; Dittrich, R.; Hamori, M.; Beckmann, M.W.; Oppelt, P.G. Assessment of FSHR Variants and Antimüllerian Hormone in Infertility Patients with a Reduced Ovarian Response to Gonadotropin Stimulation. Fertil. Steril. 2012, 97, 1169–1175. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, I.; Bååth, M.; Uvebrant, K.; Dejmek, A.; Kjaer, L.; Henic, E.; Bungum, M.; Bungum, L.; Cilio, C.; Leijonhufvud, I.; et al. Combined Assessment of Polymorphisms in the LHCGR and FSHR Genes Predict Chance of Pregnancy after in Vitro Fertilization. Hum. Reprod. 2016, 31, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, N.P.; Neves, A.R.; Drakopoulos, P.; Spits, C.; Alvaro Mercadal, B.; Garcia, S.; Ma, P.Q.M.; Le, L.H.; Ho, M.T.; Mertens, J.; et al. The Effect of Polymorphisms in FSHR and FSHB Genes on Ovarian Response: A Prospective Multicenter Multinational Study in Europe and Asia. Hum. Reprod. 2021, 36, 1711–1721. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.M.; Ahmad, G.; Mohiyiddeen, L.; Nardo, L.G.; Watson, A. Growth Hormone for in Vitro Fertilization. Cochrane Database Syst. Rev. 2010, 1, CD000099. [Google Scholar] [CrossRef]
- Kolibianakis, E.M.; Venetis, C.A.; Diedrich, K.; Tarlatzis, B.C.; Griesinger, G. Addition of Growth Hormone to Gonadotrophins in Ovarian Stimulation of Poor Responders Treated by In-Vitro Fertilization: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2009, 15, 613–622. [Google Scholar] [CrossRef]
- Tesarik, J.; Galán-Lázaro, M.; Conde-López, C.; Chiara-Rapisarda, A.M.; Mendoza-Tesarik, R. The Effect of GH Administration on Oocyte and Zygote Quality in Young Women with Repeated Implantation Failure After IVF. Front. Endocrinol. 2020, 11, 519572. [Google Scholar] [CrossRef]
- Li, J.; Chen, Q.; Wang, J.; Huang, G.; Ye, H. Does Growth Hormone Supplementation Improve Oocyte Competence and IVF Outcomes in Patients with Poor Embryonic Development? A Randomized Controlled Trial. BMC Pregnancy Childbirth 2020, 20, 310. [Google Scholar] [CrossRef]
- Ho, Y.-K.; Lee, T.-H.; Lee, C.-I.; Cheng, E.-H.; Huang, C.-C.; Huang, L.-S.; Lee, M.-S. Effects of Growth Hormone plus Gonadotropins on Controlled Ovarian Stimulation in Infertile Women of Advanced Age, Poor Responders, and Previous in Vitro Fertilization Failure Patients. Taiwan J. Obstet. Gynecol. 2017, 56, 806–810. [Google Scholar] [CrossRef]
- Hull, K.L.; Harvey, S. Growth Hormone and Reproduction: A Review of Endocrine and Autocrine/Paracrine Interactions. Int. J. Endocrinol. 2014, 2014, 234014. [Google Scholar] [CrossRef]
- Weall, B.M.; Al-Samerria, S.; Conceicao, J.; Yovich, J.L.; Almahbobi, G. A Direct Action for GH in Improvement of Oocyte Quality in Poor-Responder Patients. Reproduction 2015, 149, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Sirotkin, A.V. Control of Reproductive Processes by Growth Hormone: Extra- and Intracellular Mechanisms. Vet. J. 2005, 170, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Regan, S.L.P.; Knight, P.G.; Yovich, J.L.; Arfuso, F.; Dharmarajan, A. Growth Hormone during in Vitro Fertilization in Older Women Modulates the Density of Receptors in Granulosa Cells, with Improved Pregnancy Outcomes. Fertil. Steril. 2018, 110, 1298–1310. [Google Scholar] [CrossRef] [PubMed]
- Carter-Su, C.; Schwartz, J.; Argetsinger, L.S. Growth Hormone Signaling Pathways. Growth Horm. IGF Res. 2016, 28, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Xue-mei, W.; Hong, J.; Wen-xiang, Z.; Yang, L. The Effects of Growth Hormone on Clinical Outcomes after Frozen-Thawed Embryo Transfer. Int. J. Gynecol. Obstet. 2016, 133, 347–350. [Google Scholar] [CrossRef]
- Ng, D.Y.T.; Ko, J.K.Y.; Li, H.W.R.; Lau, E.Y.L.; Yeung, W.S.B.; Ho, P.C.; Ng, E.H.Y. Performance of Ovarian Response Prediction Index (ORPI) in Predicting Ovarian Response and Livebirth in the in-Vitro Fertilisation Cycle Using a Standard Stimulation with Corifollitropin Alpha in a GnRH Antagonist Protocol. Hum. Fertil. 2022, 25, 377–383. [Google Scholar] [CrossRef]
- Ashrafi, M.; Hemat, M.; Arabipoor, A.; Salman Yazdi, R.; Bahman-Abadi, A.; Cheraghi, R. Predictive Values of Anti-Müllerian Hormone, Antral Follicle Count and Ovarian Response Prediction Index (ORPI) for Assisted Reproductive Technology Outcomes. J. Obstet. Gynaecol. 2017, 37, 82–88. [Google Scholar] [CrossRef]
- Peluso, C.; de Oliveira, R.; Laporta, G.Z.; Christofolini, D.M.; Fonseca, F.L.A.; Laganà, A.S.; Barbosa, C.P.; Bianco, B. Are Ovarian Reserve Tests Reliable in Predicting Ovarian Response? Results from a Prospective, Cross-Sectional, Single-Center Analysis. Gynecol. Endocrinol. 2021, 37, 358–366. [Google Scholar] [CrossRef]
- di Paola, R.; Garzon, S.; Giuliani, S.; Laganà, A.S.; Noventa, M.; Parissone, F.; Zorzi, C.; Raffaelli, R.; Ghezzi, F.; Franchi, M.; et al. Are We Choosing the Correct FSH Starting Dose during Controlled Ovarian Stimulation for Intrauterine Insemination Cycles? Potential Application of a Nomogram Based on Woman’s Age and Markers of Ovarian Reserve. Arch. Gynecol. Obstet. 2018, 298, 1029–1035. [Google Scholar] [CrossRef]
- Lensen, S.F.; Wilkinson, J.; Leijdekkers, J.A.; la Marca, A.; Mol, B.W.J.; Marjoribanks, J.; Torrance, H.; Broekmans, F.J. Individualised Gonadotropin Dose Selection Using Markers of Ovarian Reserve for Women Undergoing in Vitro Fertilisation plus Intracytoplasmic Sperm Injection (IVF/ICSI). Cochrane Database Syst. Rev. 2018, 2, CD012693. [Google Scholar] [CrossRef]
- Norman, R.J.; Hart, R.J. Human Growth Hormone Use in Poor Ovarian Response—Caution and Opportunities. Ther. Adv. Reprod. Health 2021, 15, 263349412199942. [Google Scholar] [CrossRef]
- Sunkara, S.K.; Ramaraju, G.A.; Kamath, M.S. Management Strategies for POSEIDON Group 2. Front. Endocrinol. 2020, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Bosch, E.; Labarta, E.; Kolibianakis, E.; Rosen, M.; Meldrum, D. Regimen of Ovarian Stimulation Affects Oocyte and Therefore Embryo Quality. Fertil. Steril. 2016, 105, 560–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Factor | GH Treated | Ser/Ser | Ser/Asn | Asn/Asn | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | N (%) | Quantile | Total | N (%) | Quantile | Total | N (%) | Quantile | ||||||||||||||
0 a | 1 b | 2 c | 3 d | 4 e | 0 a | 1 b | 2 c | 3 d | 4 e | 0 a | 1 b | 2 c | 3 d | 4 e | ||||||||
Female age (years) | Y | 37 | 20 | 31 | 37 | 39.5 | 41 | 43 | 37 | 16 | 34 | 38.5 | 41 | 42 | 43 | 51 | 22 | 34 | 38 | 39 | 41 | 43 |
N | 17 | 36 | 37 | 39 | 40 | 43 | 21 | 36 | 38 | 41 | 42 | 43 | 29 | 34 | 38 | 40 | 42 | 43 | ||||
Infertility (years) | Y | 37 | 20 | 3 | 4.5 | 6 | 8.5 | 10 | 37 | 16 | 3 | 4.5 | 6 | 7 | 9 | 51 | 22 | 2 | 5 | 6.5 | 8 | 11 |
N | 17 | 3 | 5 | 6 | 8 | 9 | 21 | 3 | 5 | 6 | 8 | 9 | 29 | 3 | 4 | 7 | 8 | 11 | ||||
Female BMI (kg/m3) | Y | 37 | 20 | 19.2 | 20.7 | 23 | 24.1 | 27.2 | 37 | 16 | 19.8 | 21.4 | 23 | 24.7 | 29.6 | 51 | 22 | 19.8 | 21.6 | 23.2 | 24.9 | 27.3 |
N | 17 | 19.7 | 21.9 | 22.9 | 25.2 | 27.4 | 21 | 18.9 | 22.1 | 23.7 | 24.9 | 27.2 | 29 | 18.8 | 22.4 | 23.1 | 24.1 | 27.2 | ||||
AFC | Y | 37 | 20 | 3 | 5 | 6.5 | 8 | 10 | 37 | 16 | 1 | 3.5 | 5 | 8 | 9 | 51 | 22 | 2 | 5 | 6 | 7 | 9 |
N | 17 | 2 | 5 | 7 | 8 | 11 | 21 | 1 | 5 | 6 | 8 | 10 | 29 | 3 | 6 | 6 | 7 | 9 | ||||
Follicle FSH (mUI/mL) | Y | 37 | 20 | 6.9 | 8.5 | 10.4 | 11.3 | 13.1 | 37 | 16 | 6.2 | 7.1 | 8.5 | 10.3 | 11.9 | 51 | 22 | 5.9 | 7.3 | 8.3 | 9.6 | 13.1 |
N | 17 | 7.8 | 8.8 | 9.4 | 10.8 | 13.1 | 21 | 6.1 | 7.6 | 8.6 | 9.9 | 13.8 | 29 | 5.8 | 7.6 | 8.4 | 10.1 | 12.9 | ||||
Follicle LH (mUI/mL) | Y | 37 | 20 | 4.2 | 5.3 | 6.1 | 6.4 | 7.3 | 37 | 16 | 3.9 | 4.4 | 4.9 | 5.9 | 6.4 | 51 | 22 | 3.8 | 4.3 | 4.7 | 5.4 | 6.9 |
N | 17 | 3.7 | 4.2 | 4.9 | 5.5 | 6.3 | 21 | 3.1 | 3.8 | 4.3 | 5.3 | 6.8 | 29 | 3.1 | 3.6 | 4.3 | 4.8 | 7.5 | ||||
Follicle estradiol (ng/mL) | Y | 37 | 20 | 429 | 505 | 618.5 | 864.5 | 1001 | 37 | 16 | 421 | 495 | 610 | 681 | 921 | 51 | 22 | 380 | 492 | 566 | 653 | 987 |
N | 17 | 290 | 439 | 496 | 618 | 822 | 21 | 298 | 431 | 531 | 601 | 811 | 29 | 298 | 495 | 541 | 653 | 842 | ||||
Follicle progesterone (pg/mL) | Y | 37 | 20 | 3570 | 7215 | 9660 | 15,385 | 19,560 | 37 | 16 | 5680 | 8610 | 12,160 | 14,560 | 18,650 | 51 | 22 | 6540 | 8950 | 12,665 | 14,520 | 17,560 |
N | 17 | 1350 | 4570 | 6780 | 8650 | 11,800 | 21 | 1180 | 7460 | 9780 | 12,370 | 17,690 | 29 | 2170 | 7890 | 11,000 | 12,710 | 16,430 | ||||
Follicle testosterone (ng/mL) | Y | 37 | 20 | 3.2 | 6.0 | 6.9 | 7.6 | 9.9 | 37 | 16 | 5.5 | 7 | 7.8 | 9.4 | 12.2 | 51 | 22 | 4.2 | 6.9 | 8.4 | 9.5 | 12.3 |
N | 17 | 1.7 | 2.8 | 3.8 | 5.2 | 8.4 | 21 | 1.5 | 4.9 | 6.8 | 7.3 | 10.1 | 29 | 2.2 | 6.1 | 7.1 | 8.2 | 11.1 | ||||
Stimulation days | Y | 37 | 20 | 8 | 9 | 10 | 11 | 12 | 37 | 16 | 8 | 9 | 10.5 | 11.5 | 13 | 51 | 22 | 8 | 9 | 10.5 | 12 | 13 |
N | 17 | 8 | 10 | 11 | 12 | 13 | 21 | 9 | 10 | 11 | 12 | 13 | 29 | 8 | 10 | 11 | 12 | 13 | ||||
Total gonadotropin dose (UI) | Y | 37 | 20 | 2400 | 2700 | 3000 | 3200 | 4300 | 37 | 16 | 2700 | 2775 | 3050 | 3300 | 3900 | 51 | 22 | 2400 | 2700 | 3025 | 3300 | 3950 |
N | 17 | 2400 | 3150 | 3600 | 3900 | 4350 | 21 | 2700 | 3000 | 3300 | 3750 | 4215 | 29 | 2400 | 3000 | 3300 | 3600 | 4150 | ||||
Endometrial thickness (mm) | Y | 37 | 20 | 5.8 | 8.2 | 9.7 | 10.6 | 11.3 | 37 | 16 | 5.9 | 7.55 | 8.75 | 10.2 | 11.3 | 51 | 22 | 6.5 | 7.9 | 9.0 | 10.1 | 11.1 |
N | 17 | 5.5 | 7.8 | 8.8 | 10.2 | 12.2 | 21 | 6.1 | 8 | 9.7 | 10.6 | 11.9 | 29 | 5.1 | 7.5 | 8.1 | 10.1 | 11.2 | ||||
Agonist stimulation protocol | Y | 7 | 4 (20.0%) | - | - | - | - | - | 6 | 2 (12.5%) | - | - | - | - | - | 10 | 4 (18.2%) | - | - | - | - | - |
N | 3 (17.6) | - | - | - | - | - | 4 (19.1%) | - | - | - | - | - | 6 (20.7%) | - | - | - | - | - | ||||
Antagonist stimulation protocol | Y | 30 | 16 (80.0%) | - | - | - | - | - | 31 | 14 (87.5%) | - | - | - | - | - | 41 | 18 (81.8%) | - | - | - | - | - |
N | 14 (82.4) | - | - | - | - | - | 17 (80.9%) | - | - | - | - | - | 23 (79.3%) | - | - | - | - | - | ||||
No. of Metaphase II oocytes | Y | 37 | 20 | 0 | 3 | 3.5 | 5 | 6 | 37 | 16 | 0 | 2 | 2.5 | 3 | 4 | 51 | 22 | 0 | 2 | 3 | 3 | 5 |
N | 17 | 0 | 2 | 2 | 3 | 4 | 21 | 0 | 2 | 3 | 3 | 4 | 29 | 0 | 2 | 2 | 3 | 5 | ||||
No. of embryos | Y | 37 | 20 | 0 | 1 | 2 | 2 | 3 | 37 | 16 | 0 | 0 | 1 | 1 | 2 | 51 | 22 | 0 | 0 | 1 | 1 | 2 |
N | 17 | 0 | 0 | 1 | 1 | 2 | 21 | 0 | 0 | 1 | 1 | 2 | 29 | 0 | 0 | 1 | 1 | 2 | ||||
Serum IGF1 (ng/mL) | Y | 37 | 20 | 120 | 165 | 184 | 189.5 | 210 | 37 | 16 | 131 | 165.5 | 179.5 | 192.5 | 231 | 51 | 22 | 119 | 141 | 170 | 185 | 221 |
N | 17 | 108 | 148 | 159 | 189 | 196 | 21 | 107 | 125 | 164 | 178 | 198 | 29 | 106 | 131 | 151 | 167 | 199 | ||||
Follicle IGF1 (ng/mL) | Y | 37 | 20 | 62 | 79.5 | 103.5 | 118.5 | 131 | 37 | 16 | 76 | 89.5 | 111 | 131 | 144 | 51 | 22 | 57 | 87 | 98.5 | 112 | 126 |
N | 17 | 42 | 51 | 67 | 84 | 107 | 21 | 52 | 77 | 93 | 101 | 131 | 29 | 49 | 79 | 91 | 109 | 132 | ||||
Follicle IGF2 (ng/mL) | Y | 37 | 20 | 75 | 80 | 82 | 85 | 86 | 37 | 16 | 73 | 77 | 77.5 | 81 | 82 | 51 | 22 | 73 | 78 | 79 | 81 | 85 |
N | 17 | 73 | 77 | 79 | 81 | 82 | 21 | 72 | 78 | 79 | 81 | 85 | 29 | 75 | 77 | 79 | 80 | 84 | ||||
Follicle IGFBP3 (ng/mL) | Y | 37 | 20 | 1470 | 1626.5 | 1680 | 1725.5 | 1870 | 37 | 16 | 1458 | 1665.5 | 1731.5 | 1808 | 1842 | 51 | 22 | 1346 | 1643 | 1737.5 | 1821 | 1953 |
N | 17 | 1456 | 1679 | 1769 | 1834 | 1956 | 21 | 1421 | 1590 | 1631 | 1731 | 1842 | 29 | 1511 | 1645 | 1719 | 1784 | 1864 |
Clinical and Paraclinical Factors | Mean ± SD | ||||
---|---|---|---|---|---|
Subtype FSHR | GH Treated | GH Untreated | MD (95% CI) | p-Value | |
Mature follicles (number) | (Ser/Ser) | 5.60 ± 1.43 | 3.65 ± 1.37 | 1.95 (1.02–2.89) | 0.0002 |
(Ser/Asn) | 4.44 ± 1.36 | 3.62 ± 1.53 | 0.82 (−0.15–1.79) | 0.0957 | |
(Asn/Asn) | 4.64 ± 1.65 | 3.69 ± 1.14 | 0.95 (0.11–1.78) | 0.0269 | |
Metaphase II oocytes (number) | (Ser/Ser) | 3.75 ± 1.37 | 2.23 ± 1.03 | 1.51 (0.71–2.32) | 0.0005 |
(Ser/Asn) | 2.5 ± 1.09 | 2.33 ± 1.31 | 0.17 (−0.64–0.97) | 0.6771 | |
(Asn/Asn) | 2.68 ± 1.25 | 2.31 ± 0.93 | 0.37 (−0.27–1.01) | 0.2493 | |
Fertilized oocytes (2PN) (number) | (Ser/Ser) | 3.00 ± 1.30 | 1.41 ± 0.94 | 1.59 (0.84–2.34) | 0.0001 |
(Ser/Asn) | 1.87 ± 1.09 | 1.67 ± 1.24 | 0.20 (−0.57–0.99) | 0.5904 | |
(Asn/Asn) | 2.00 ± 1.27 | 1.90 ± 0.94 | 0.10 (−0.55–0.76) | 0.7502 | |
Follicle progesterone (pg/mL) | (Ser/Ser) | 11,090.5 ± 4960.15 | 6899.41 ± 3074.21 | 4191.09 (1469.62–6912.56) | 0.0036 |
(Ser/Asn) | 11,562.5 ± 3939.08 | 9268.09 ± 3983.39 | 2294.40 (−379.16–4967.97) | 0.0901 | |
(Asn/Asn) | 12,087.95 ± 3366.00 | 10,352.41 ± 3325.22 | 1735.54 (−171.16–3642.25) | 0.0734 | |
Follicle testosterone (ng/mL) | (Ser/Ser) | 6.84 ± 1.46 | 4.21 ± 1.76 | 2.63 (1.53–3.72) | 0.0000 |
(Ser/Asn) | 8.29 ± 1.64 | 6.31 ± 2.27 | 1.98 (0.68–3.29) | 0.0040 | |
(Asn/Asn) | 8.48 ± 2.07 | 7.11 ± 1.93 | 1.37 (0.22–2.51) | 0.0206 | |
Follicle IGF1 (ng/mL) | (Ser/Ser) | 97.9 ± 21.92 | 70.65 ± 20.64 | 27.25 (13.02–41.48) | 0.0004 |
(Ser/Asn) | 110.81 ± 22.81 | 89.24 ± 20.06 | 21.57 (6.89–36.26) | 0.0054 | |
(Asn/Asn) | 99.5 ± 18.07 | 92.83 ± 21.93 | 6.67 (−4.59–17.94) | 0.2397 | |
Follicle IGF2 (ng/mL) | (Ser/Ser) | 81.85 ± 3.00 | 78.53 ± 2.79 | 3.32 (1.39–5.25) | 0.0013 |
(Ser/Asn) | 78.37 ± 2.65 | 79.05 ± 2.96 | −0.67 (−2.55–1.21) | 0.4725 | |
(Asn/Asn) | 78.95 ± 2.70 | 78.90 ± 2.38 | 0.06 (−1.41–1.52) | 0.9367 | |
Follicle IGFBP3 (ng/mL) | (Ser/Ser) | 1674.4 ± 86.69 | 1751.71 ± 129.55 | −77.30 (−153.03–−1.58) | 0.0457 |
(Ser/Asn) | 1722.44 ± 99.91 | 1641.67 ± 115.14 | 80.77 (8.80–152.74) | 0.0289 | |
(Asn/Asn) | 1717.95 ± 131.27 | 1713.21 ± 86.96 | 4.75 (−60.89–70.38) | 0.8840 |
Clinical Factors | Subtype FSHR (Ser/Ser) | z | p-Value | Subtype FSHR (Ser/Asn) | z | p-Value | Subtype FSHR (Asn/Asn) | z | p-Value |
Number of transferable embryos (embryos) | −2.772 | 0.0056 | −0.036 | 0.9709 | −0.448 | 0.6542 | |||
Fertility rate (%) | −2.723 | 0.0065 | −0.261 | 0.7943 | 1.276 | 0.2018 | |||
Cleavage rate (%) | −1.117 | 0.2638 | −0.602 | 0.5472 | −0.522 | 0.6014 | |||
Transferable embryo rate (%) | 0.000 | 1.000 | 0.775 | 0.4381 | −0.175 | 0.8607 |
Clinical Outcomes | Subtype FSHR (Ser/Ser) | z | p-Value | Subtype FSHR (Ser/Asn) | z | p-Value | Subtype FSHR (Asn/Asn) | z | p-Value |
Implantation rate (%) | −0.516 | 0.6056 | 0.173 | 0.8623 | −0.292 | 0.7702 | |||
Early miscarriage rate (%) | 0.394 | 0.6933 | −0.333 | 0.7389 | 0.000 | 1.0000 | |||
Clinical pregnancy rate (%) | −1.062 | 0.2881 | 0.000 | 1.0000 | −0.662 | 0.5082 | |||
Ongoing pregnancy rate (%) | −1.130 | 0.2585 | 0.291 | 0.7707 | −0.510 | 0.6100 | |||
Livebirth rate (%) | −1.130 | 0.2585 | 0.291 | 0.7707 | −0.510 | 0.6100 |
Clinical and Paraclinical Factors | F Ratio and p-Value | ||
---|---|---|---|
FSHR Polymorphisms | GH Treatment | Interaction between FSHR Polymorphisms and GH Treatment | |
Mature follicles (follicles) | 1.83 0.1652 | 23.24 0.0000 | 1.84 0.1631 |
Metaphase II oocytes (oocytes) | 2.70 0.0713 | 10.33 0.0017 | 3.65 0.0290 |
Fertilized oocytes (2PN) (oocytes) | 1.36 0.2600 | 9.38 0.0027 | 5.22 0.0067 |
Follicle progesterone (pg/mL) | 3.65 0.0288 | 15.68 0.0001 | 1.16 0.3174 |
Follicle testosterone (ng/mL) | 15.95 0.0000 | 33.21 0.0000 | 1.17 0.3128 |
Follicle IGF1 (ng/mL) | 5.73 0.0042 | 23.53 0.0000 | 2.84 0.0623 |
Follicle IGF2 (ng/mL) | 3.24 0.0428 | 3.29 0.0724 | 5.70 0.0043 |
Follicle IGFBP3 (ng/mL) | 1.15 0.3193 | 0.02 0.8901 | 4.86 0.0094 |
Clinical and Paraclinical Factors | MD and p-Value | ||
---|---|---|---|
Mature Follicles (Follicles) | Subtype FSHR (Ser/Asn) | Subtype FSHR (Ser/Ser) | |
Subtype FSHR (Ser/Ser) | 0.730 0.131 | ||
Subtype FSHR (Asn/Asn) | 0.125 1.000 | −0.605 0.214 | |
Metaphase II oocytes (oocytes) | |||
Subtype FSHR (Ser/Ser) | 0.649 0.076 | ||
Subtype FSHR (Asn/Asn) | 0.065 1.000 | −0.583 0.091 | |
Fertilized oocytes (2PN) (oocytes) | |||
Subtype FSHR (Ser/Ser) | 0.513 0.207 | ||
Subtype FSHR (Asn/Asn) | 0.184 1.000 | −0.329 0.624 | |
Follicle progesterone (pg/mL) | |||
Subtype FSHR (Ser/Ser) | −1095.41 0.727 | ||
Subtype FSHR (Asn/Asn) | 840.808 1.000 | 1936.21 0.082 | |
Follicle testosterone (ng/mL) | |||
Subtype FSHR (Ser/Ser) | −1.535 0.007 | ||
Subtype FSHR (Asn/Asn) | 0.536 0.735 | 2.071 0.000 | |
Follicle IGF1 (ng/mL) | |||
Subtype FSHR (Ser/Ser) | −13.189 0.043 | ||
Subtype FSHR (Asn/Asn) | −2.862 1.000 | 10.327 0.115 | |
Follicle IGF2 (ng/mL) | |||
Subtype FSHR (Ser/Ser) | 1.567 0.059 | ||
Subtype FSHR (Asn/Asn) | 0.165 1.000 | −1.403 0.074 | |
Follicle IGFBP3 (ng/mL) | |||
Subtype FSHR (Ser/Ser) | 33.324 0.602 | ||
Subtype FSHR (Asn/Asn) | 38.660 0.332 | 5.336 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surcel, M.; Doroftei, B.; Neamtiu, I.A.; Muresan, D.; Caracostea, G.; Goidescu, I.; Staicu, A.; Nemeti, G.; Bloom, M.S.; Zlatescu-Marton, C. Impact of Follicle Stimulating Hormone Receptor (FSHR) Polymorphism on the Efficiency of Co-Treatment with Growth Hormone in a Group of Infertile Women from Romania. Diagnostics 2022, 12, 2371. https://doi.org/10.3390/diagnostics12102371
Surcel M, Doroftei B, Neamtiu IA, Muresan D, Caracostea G, Goidescu I, Staicu A, Nemeti G, Bloom MS, Zlatescu-Marton C. Impact of Follicle Stimulating Hormone Receptor (FSHR) Polymorphism on the Efficiency of Co-Treatment with Growth Hormone in a Group of Infertile Women from Romania. Diagnostics. 2022; 12(10):2371. https://doi.org/10.3390/diagnostics12102371
Chicago/Turabian StyleSurcel, Mihai, Bogdan Doroftei, Iulia Adina Neamtiu, Daniel Muresan, Gabriela Caracostea, Iulian Goidescu, Adelina Staicu, Georgiana Nemeti, Michael S. Bloom, and Cristina Zlatescu-Marton. 2022. "Impact of Follicle Stimulating Hormone Receptor (FSHR) Polymorphism on the Efficiency of Co-Treatment with Growth Hormone in a Group of Infertile Women from Romania" Diagnostics 12, no. 10: 2371. https://doi.org/10.3390/diagnostics12102371
APA StyleSurcel, M., Doroftei, B., Neamtiu, I. A., Muresan, D., Caracostea, G., Goidescu, I., Staicu, A., Nemeti, G., Bloom, M. S., & Zlatescu-Marton, C. (2022). Impact of Follicle Stimulating Hormone Receptor (FSHR) Polymorphism on the Efficiency of Co-Treatment with Growth Hormone in a Group of Infertile Women from Romania. Diagnostics, 12(10), 2371. https://doi.org/10.3390/diagnostics12102371