The Impact of Cerebral Amyloid Angiopathy on Functional Outcome of Patients Affected by Spontaneous Intracerebral Hemorrhage Discharged from Intensive Inpatient Rehabilitation: A Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical and Instrumental Assessment
2.3. Diagnosis of CAA-Related sICH
2.4. Rehabilitation Treatment
2.5. Pharmacological Treatment
2.6. Outcomes
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Tsubuki, S.; Takai, Y.; Saido, T.C. Dutch, Flemish, Italian, and Arctic mutations of APP and resistance of Aβ to physiologically relevant proteolytic degradation. Lancet 2003, 361, 1957–1958. [Google Scholar] [CrossRef]
- Davis, J.; Xu, F.; Deane, R.; Romanov, G.; Previti, M.L.; Zeigler, K.; Zlokovic, B.V.; Van Nostrand, W.E. Early-onset and Robust Cerebral Microvascular Accumulation of Amyloid β-Protein in Transgenic Mice Expressing Low Levels of a Vasculotropic Dutch/Iowa Mutant Form of Amyloid β-Protein Precursor. J. Biol. Chem. 2004, 279, 20296–20306. [Google Scholar] [CrossRef] [Green Version]
- Ferreiro, J.A.; Ansbacher, L.E.; Vinters, H.V. Stroke related to cerebral amyloid angiopathy: The significance of systemic vascular disease. J. Neurol. 1989, 236, 267–272. [Google Scholar] [CrossRef]
- Arvanitakis, Z.; Leurgans, S.E.; Wang, Z.; Wilson, R.S.; Bennett, D.A.; Schneider, J.A. Cerebral amyloid angiopathy pathology and cognitive domains in older persons. Ann. Neurol. 2010, 69, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Keage, H.A.; Carare, R.O.; Friedland, R.P.; Ince, P.G.; Love, S.; Nicoll, J.A.; Wharton, S.B.; Weller, R.O.; Brayne, C. Population studies of sporadic cerebral amyloid angiopathy and dementia: A systematic review. BMC Neurol. 2009, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Knudsen, K.A.; Rosand, J.; Karluk, D.; Greenberg, S.M. Clinical diagnosis of cerebral amyloid angiopathy: Validation of the Boston Criteria. Neurology 2001, 56, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Van Rooden, S.; Van Der Grond, J.; Boom, R.V.D.; Haan, J.; Linn, J.; Greenberg, S.M.; Van Buchem, M.A. Descriptive Analysis of the Boston Criteria Applied to a Dutch-Type Cerebral Amyloid Angiopathy Population. Stroke 2009, 40, 3022–3027. [Google Scholar] [CrossRef] [Green Version]
- Linn, J.; Halpin, A.; Demaerel, P.; Ruhland, J.; Giese, A.D.; Dichgans, M.; van Buchem, M.A.; Bruckmann, H.; Greenberg, S.M. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 2010, 74, 1346–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zia, E.; Engstrom, G.; Svensson, P.J.; Norrving, B.; Pessah-Rasmussen, H. Three-Year Survival and Stroke Recurrence Rates in Patients With Primary Intracerebral Hemorrhage. Stroke 2009, 40, 3567–3573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellanos-Pinedo, F.; Cid-Gala, M.; Duque, P.; Ramirez-Moreno, J.M.; Zurdo-Hernandez, J.M. Acquired Brain Injury: A Proposal for Its Definition, Diagnostic Criteria and Classification. Revista de Neurología 2012, 54, 357–366. Available online: https://pubmed.ncbi.nlm.nih.gov/22403149/ (accessed on 22 June 2022). [PubMed]
- Jolink, W.M.; Klijn, C.J.; Brouwers, P.J.; Kappelle, L.J.; Vaartjes, I. Time trends in incidence, case fatality, and mortality of intracerebral hemorrhage. Neurology 2015, 85, 1318–1324. [Google Scholar] [CrossRef]
- Béjot, Y.; Blanc, C.; Delpont, B.; Thouant, P.; Chazalon, C.; Daumas, A.; Osseby, G.-V.; Hervieu-Bègue, M.; Ricolfi, F.; Giroud, M.; et al. Increasing early ambulation disability in spontaneous intracerebral hemorrhage survivors. Neurology 2018, 90, e2017–e2024. [Google Scholar] [CrossRef] [PubMed]
- Poon, M.; Fonville, A.F.; Salman, R.A.-S. Long-term prognosis after intracerebral haemorrhage: Systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2013, 85, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Feigin, V.L.; Lawes, C.M.; Bennett, D.A.; Barker-Collo, S.L.; Parag, V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: A systematic review. Lancet Neurol. 2009, 8, 355–369. [Google Scholar] [CrossRef]
- Feigin, V.L.; Stark, B.A.; Johnson, C.O.; Roth, G.A.; Bisignano, C.; Abady, G.G.; Abbasifard, M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abedi, V.; et al. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Qureshi, A.I.; Mendelow, A.D.; Hanley, D.F. Intracerebral haemorrhage. Lancet 2009, 373, 1632–1644. [Google Scholar] [CrossRef] [Green Version]
- Carlsson, M.; Wilsgaard, T.; Johnsen, S.H.; Johnsen, L.-H.; Løchen, M.-L.; Njølstad, I.; Mathiesen, E.B. Long-Term Survival, Causes of Death, and Trends in 5-Year Mortality After Intracerebral Hemorrhage: The Tromsø Study. Stroke 2021, 52, 3883–3890. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.M.; Nilsson, O.G.; Anderson, H.; Norrving, B.; Säveland, H.; Lindgren, A. Long term (13 years) prognosis after primary intracerebral haemorrhage: A prospective population based study of long term mortality, prognostic factors and causes of death. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1150–1155. [Google Scholar] [CrossRef]
- Murthy, S.B.; Merkler, A.E.; Omran, S.S.; Gialdini, G.; Gusdon, A.; Hartley, B.; Roh, D.; Mangat, H.S.; Iadecola, C.; Navi, B.B.; et al. Outcomes after intracerebral hemorrhage from arteriovenous malformations. Neurology 2017, 88, 1882–1888. [Google Scholar] [CrossRef] [Green Version]
- Kase, C.S.; Williams, J.P.; Wyatt, D.A.; Mohr, J.P. Lobar intracerebral hematomas: Clinical and CT analysis of 22 cases. Neurology 1982, 32, 1146–1150. [Google Scholar] [CrossRef] [PubMed]
- Pasi, M.; Casolla, B.; Kyheng, M.; Boulouis, G.; Kuchcinski, G.; Moulin, S.; Labreuche, J.; Henon, H.; Leys, D.; Cordonnier, C. Long-term functional decline of spontaneous intracerebral haemorrhage survivors. J. Neurol. Neurosurg. Psychiatry 2020, 92, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, E.; Papi, G.; Insalata, G.; Rinnoci, V.; Donnini, I.; Martini, M.; Falsini, C.; Hakiki, B.; Romoli, A.; Barbato, C.; et al. Comparison between Ischemic and Hemorrhagic Strokes in Functional Outcome at Discharge from an Intensive Rehabilitation Hospital. Diagnostics 2020, 11, 38. [Google Scholar] [CrossRef]
- Hakiki, B.; Donnini, I.; Romoli, A.M.; Draghi, F.; Maccanti, D.; Grippo, A.; Scarpino, M.; Maiorelli, A.; Sterpu, R.; Atzori, T.; et al. Clinical, Neurophysiological, and Genetic Predictors of Recovery in Patients With Severe Acquired Brain Injuries (PRABI): A Study Protocol for a Longitudinal Observational Study. Front. Neurol. 2022, 13, 711312. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Giacino, J.T.; Trojano, L. An Italian Multicentre Validation Study of the Coma Recovery Scale-Revised. Eur. J. Phys. Rehabil. Med. 2014. Available online: https://pubmed.ncbi.nlm.nih.gov/24603937/ (accessed on 22 June 2022).
- Rollnik, J.D. The Early Rehabilitation Barthel Index (ERBI). Die Rehabilitation 2011, 50, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Kidd, D.; Stewart, G.; Baldry, J.; Johnson, J.; Rossiter, D.; Petruckevitch, A.; Thompson, A. The Functional Independence Measure: A comparative validity and reliability study. Disabil. Rehabilitation 1995, 17, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.L.; Pettigrew, L.E.; Teasdale, G.M. Structured Interviews for the Glasgow Outcome Scale and the Extended Glasgow Outcome Scale: Guidelines for Their Use. J. Neurotrauma 1998, 15, 573–585. [Google Scholar] [CrossRef]
- Gouvier, W.; Blanton, P.; LaPorte, K. Reliability and validity of the disability rating scale and the levels of cognitive functioning scale in monitoring recovery from severe head injury. J. Head Trauma Rehabil. 1987, 68, 94–97. [Google Scholar] [CrossRef]
- Hirsch, L.J. Classification of EEG patterns in patients with impaired consciousness. Epilepsia 2011, 52 (Suppl. S8), 21–24. [Google Scholar] [CrossRef]
- Scarpino, M.; Lolli, F.; Hakiki, B.; Lanzo, G.; Sterpu, R.; Atzori, T.; Portaccio, E.; Draghi, F.; Amantini, A.; Grippo, A. EEG and Coma Recovery Scale-Revised prediction of neurological outcome in Disorder of Consciousness patients. Acta Neurol. Scand. 2020, 142, 221–228. [Google Scholar] [CrossRef]
- Hakiki, B.; Draghi, F.; Scarpino, M.; Portaccio, E.; Romoli, A.; Mannini, A.; Atzori, T.; Lolli, F.; Macchi, C.; Grippo, A. Critical illness polyneuromyopathy: Functional impact after severe acquired brain injuries. Acta Neurol. Scand. 2020, 142, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, S.M.; Ziai, W.C.; Cordonnier, C.; Dowlatshahi, D.; Francis, B.; Goldstein, J.N.; Hemphill III, J.C.; Johnson, R.; Keigher, K.M.; Mack, W.J.; et al. 2022 guideline for the management of patients with spontaneous intracerebral hemorrhage: A guideline from the American Heart Association/American Stroke Association. Stroke 2022, 53, e282. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, S.M.; Bacskai, B.J.; Hernandez-Guillamon, M.; Pruzin, J.; Sperling, R.; Van Veluw, S.J. Cerebral amyloid angiopathy and Alzheimer disease—One peptide, two pathways. Nat. Rev. Neurol. 2019, 16, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P.A.; Yu, L.; Nag, S.; Leurgans, S.; Wilson, R.S.; Bennett, D.A.; Schneider, J.A. Cerebral amyloid angiopathy and cognitive outcomes in community-based older persons. Neurology 2015, 85, 1930–1936. [Google Scholar] [CrossRef] [Green Version]
- Charidimou, A.; Fox, Z.; Peeters, A.; Vandermeeren, Y.; Laloux, P.; Baron, J.-C.; Werring, D.J.; Jäger, R.H. Prevalence and mechanisms of cortical superficial siderosis in cerebral amyloid angiopathy. Neurology 2013, 81, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Rosand, J.; Hylek, E.M.; O’Donnell, H.C.; Greenberg, S.M. Warfarin-associated hemorrhage and cerebral amyloid angiopathy: A genetic and pathologic study. Neurology 2000, 55, 947–951. [Google Scholar] [CrossRef]
- Ward, R.; Ponamgi, S.; DeSimone, C.V.; English, S.; Hodge, D.O.; Slusser, J.P.; Graff-Radford, J.; Rabinstein, A.A.; Asirvatham, S.J.; Holmes, D. Utility of HAS-BLED and CHA2DS2-VASc Scores Among Patients with Atrial Fibrillation and Imaging Evidence of Cerebral Amyloid Angiopathy. Mayo Clin. Proc. 2020, 95, 2090–2098. [Google Scholar] [CrossRef]
- Biffi, A.; Halpin, A.; Towfighi, A.; Gilson, A.; Busl, K.; Rost, N.; Smith, E.E.; Greenberg, M.S.; Rosand, J.; Viswanathan, A. Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy. Neurology 2010, 75, 693–698. [Google Scholar] [CrossRef] [Green Version]
- Tanskanen, M.; Mäkelä, M.; Myllykangas, L.; Notkola, I.-L.; Polvikoski, T.; Sulkava, R.; Kalimo, H.; Paetau, A. Prevalence and severity of cerebral amyloid angiopathy: A population-based study on very elderly Finns (Vantaa 85+). Neuropathol. Appl. Neurobiol. 2011, 38, 329–336. [Google Scholar] [CrossRef]
- Robinson, J.L.; Corrada, M.M.; Kovacs, G.G.; Dominique, M.; Caswell, C.; Xie, S.X.; Lee, V.M.-Y.; Kawas, C.H.; Trojanowski, J.Q. Non-Alzheimer’s contributions to dementia and cognitive resilience in The 90+ Study. Acta Neuropathol. 2018, 136, 377–388. [Google Scholar] [CrossRef]
- Jäkel, L.; De Kort, A.M.; Klijn, C.J.; Schreuder, F.H.; Verbeek, M.M. Prevalence of cerebral amyloid angiopathy: A systematic review and meta-analysis. Alzheimer’s Dement. 2021, 18, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Charidimou, A.; Boulouis, G.; Frosch, M.P.; Baron, J.-C.; Pasi, M.; Albucher, J.F.; Banerjee, G.; Barbato, C.; Bonneville, F.; Brandner, S.; et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: A multicentre, retrospective, MRI–neuropathology diagnostic accuracy study. Lancet Neurol. 2022, 21, 714–725. [Google Scholar] [CrossRef]
Total Sample (N = 102) | nCAA (N = 89) | CAA (N = 13) | OR/X2 | 95%CI | p-Value | |
---|---|---|---|---|---|---|
Clinical and Functional Evaluations | ||||||
Age, years | 66 {16} | 64 {14} | 76 {12} | 1.109 | 1.032–1.191 | 0.005 |
Gender, F | 54 (52.9) | 48 (53.9) | 6 (46.2) | 0.275 | -- | 0.768 |
TPO, days | 40 {27} | 40.5 {24} | 36 {51} | 0.996 | 0.977–1.015 | 0.659 |
CRS-R total score | 17.5 {14} | 16 {14} | 19 {14} | 0.995 | 0.914–1.084 | 0.916 |
ERBI score | −275 {0} | −275 {10} | −275 {0} | 0.990 | 0.970–1.012 | 0.379 |
FIM | 18 {2} | 18 {2} | 18 {4} | 1.022 | 0.936–1.116 | 0.627 |
LCF scale | 3 {2} | 3 {1} | 3 {2} | 0.830 | 0.448–1.536 | 0.552 |
GOS-E | 3 {0} | 3 {0} | 3 {1} | 0.958 | 0.824–1.114 | 0.579 |
EEG | ||||||
Symmetry | 43 (42.6) | 36 (40.9) | 7 (53.8) | 0.775 | -- | 0.549 |
Frequency | 0.000 | -- | 1.000 | |||
Alpha | 34 (33.7) | 30 (34.1) | 4 (30.8) | -- | -- | -- |
Theta | 67 (66.3) | 58 (65.9) | 9 (69.2) | -- | -- | -- |
Gradient AP | 2.450 | -- | 0.367 | |||
Absent | 14 (13.9) | 11 (12.5) | 3 (23.1) | -- | -- | -- |
Present | 71 (70.3) | 64 (72.7) | 7 (53.8) | -- | -- | -- |
N/A | 16 (15.8) | 13 (14.8) | 3 (23.1) | -- | -- | -- |
Reactivity | 5.283 | -- | 0.121 | |||
Present | 9 (8.9) | 6 (6.8) | 3 (23.1) | -- | -- | -- |
Not Constant | 32 (31.7) | 28 (31.8) | 4 (30.8) | -- | -- | -- |
Not Clear | 51 (50.5) | 47 (53.4) | 4 (30.8) | -- | -- | -- |
Absent | 9 (8.9) | 7 (8.0) | 2 (15.4) | -- | -- | -- |
Voltage | 3.689 | -- | 0.089 | |||
Normal | 92 (91.1) | 82 (93.2) | 10 (76.9) | -- | -- | -- |
Low-Voltage | 9 (8.9) | 6 (6.8) | 3 (23.1) | -- | -- | -- |
Continuity | 3.468 | -- | 0.505 | |||
Continous | 96 (95) | 84 (95.5) | 12 (92.3) | -- | -- | -- |
Quasi-continous | 2 (2) | 1 (1.1) | 1 (7.7) | -- | -- | -- |
Discontinous | 2 (2) | 2 (2.3) | 0 (0) | -- | -- | -- |
Burst-suppression | 1 (1) | 1(1.1) | 0 (0) | -- | -- | -- |
Epileptic graphoelem | 20 (19.8) | 17 (19.3) | 3 (23.1) | -- | -- | 0.718 |
EMG | ||||||
CIPNM presence | 58 (62.4) | 52 (63.4) | 6 (54.5) | 0.325 | -- | 0.742 |
Total Sample (N = 102) | nCAA (N = 89) | CAA (N = 13) | Test Statistics | p-Value | |
---|---|---|---|---|---|
GOS-E > 4 | 32 (41.6) | 30 (46.9) | 2 (15.4) | 5.621 | 0.032 |
CRS-R total score | 23 {0} | 23 {0} | 23 {4} | 243.5 | 0.607 |
LCF | 5 {2} | 5 {1} | 3 {1} | 133.5 | 0.081 |
FIM | 24 {17} | 24.5 {19} | 18 {3} | 98.5 | 0.020 |
ERBI | −165 {113} | −160 {113} | −225 {176} | 155.5 | 0.025 |
LOS, days | 83 {68} | 84 {66} | 87 {75} | 350.5 | 0.525 |
Sepsis during IRU stay | 22 (21.8) | 18 (20.5) | 4 (30.8) | 0.659 | 0.472 |
Epileptic seizures during IRU stay | 5 (5.6) | 5 (4.9) | 0 (0) | -- | 1.000 |
Z | p-Value | |
---|---|---|
GOS-E > 4 | −1.414 | 0.157 |
CRS-R total score | −2.210 | 0.021 |
LCF | −0.447 | 0.655 |
FIM | −0.024 | 0.994 |
ERBI | −3.145 | 0.011 |
GOS-E | −1.807 | 0.071 |
A: GOS-E ≥ 4 Nagelkerke R2 = 0.371 | p-Value | Odds Ratio | 95%C.I. for EXP(B) | |
---|---|---|---|---|
Age | 0.220 | 0.969 | 0.923 | 1.019 |
Gender | 0.078 | 0.371 | 0.123 | 1.117 |
CAA | 0.041 | 0.232 | 0.134 | 0.901 |
TPO | 0.528 | 0.994 | 0.977 | 1.012 |
LoS | 0.389 | 0.995 | 0.983 | 1.007 |
GOS-E upon admission | 0.022 | 5.256 | 1.271 | 21.735 |
B: FIM R2 = 0.341 | p-Value | Odds Ratio | 95%C.I. for EXP(B) | p-Value |
Age | 0.869 | 0.014 | −0.152 | 0.179 |
Gender | 0.072 | 5.268 | 4.429 | 17.253 |
CAA | 0.019 | −14.627 | −26.790 | −2.464 |
TPO | 0.161 | −0.092 | −0.221 | 0.038 |
LoS | 0.076 | −0.068 | −0.143 | 0.007 |
FIM upon admission | 0.000 | 1.155 | 0.693 | 1.617 |
C: ERBI R2 = 0.422 | p-Value | Odds Ratio | 95%C.I. for EXP(B) | p-Value |
Age | 0.161 | −0.809 | −1.949 | 0.331 |
Gender | 0.106 | 11.627 | −6.037 | 21.291 |
CAA | 0.091 | −14.660 | −18.366 | 9.045 |
TPO | 0.087 | −0.671 | −1.441 | 0.100 |
LoS | 0.345 | −0.227 | −0.702 | 0.249 |
ERBI | 0.039 | 0.372 | 0.019 | 0.724 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbato, C.; Liuzzi, P.; Romoli, A.M.; Draghi, F.; Maccanti, D.; Mannini, A.; Macchi, C.; Cecchi, F.; Hakiki, B. The Impact of Cerebral Amyloid Angiopathy on Functional Outcome of Patients Affected by Spontaneous Intracerebral Hemorrhage Discharged from Intensive Inpatient Rehabilitation: A Cohort Study. Diagnostics 2022, 12, 2458. https://doi.org/10.3390/diagnostics12102458
Barbato C, Liuzzi P, Romoli AM, Draghi F, Maccanti D, Mannini A, Macchi C, Cecchi F, Hakiki B. The Impact of Cerebral Amyloid Angiopathy on Functional Outcome of Patients Affected by Spontaneous Intracerebral Hemorrhage Discharged from Intensive Inpatient Rehabilitation: A Cohort Study. Diagnostics. 2022; 12(10):2458. https://doi.org/10.3390/diagnostics12102458
Chicago/Turabian StyleBarbato, Carmen, Piergiuseppe Liuzzi, Anna Maria Romoli, Francesca Draghi, Daniela Maccanti, Andrea Mannini, Claudio Macchi, Francesca Cecchi, and Bahia Hakiki. 2022. "The Impact of Cerebral Amyloid Angiopathy on Functional Outcome of Patients Affected by Spontaneous Intracerebral Hemorrhage Discharged from Intensive Inpatient Rehabilitation: A Cohort Study" Diagnostics 12, no. 10: 2458. https://doi.org/10.3390/diagnostics12102458
APA StyleBarbato, C., Liuzzi, P., Romoli, A. M., Draghi, F., Maccanti, D., Mannini, A., Macchi, C., Cecchi, F., & Hakiki, B. (2022). The Impact of Cerebral Amyloid Angiopathy on Functional Outcome of Patients Affected by Spontaneous Intracerebral Hemorrhage Discharged from Intensive Inpatient Rehabilitation: A Cohort Study. Diagnostics, 12(10), 2458. https://doi.org/10.3390/diagnostics12102458