Serum Mac-2 Binding Protein Glycosylation Isomer to Predict the Severity of Hepatic Fibrosis in Patients with Hepatitis C Virus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Design
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Correlation between Serum M2BPGi Level and Hepatic Fibrosis
3.3. AUROC of M2BPGi to Predict the Severity of Hepatic Fibrosis
3.4. Selective M2BPGi Cutoff Values to Predict the Severity of Hepatic Fibrosis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polaris Observatory HCV Collaborators. Global change in hepatitis C virus prevalence and cascade of care between 2015 and 2020: A modelling study. Lancet Gastroenterol. Hepatol. 2022, 7, 396–415. [Google Scholar] [CrossRef]
- Lauer, G.M.; Walker, B.D. Hepatitis C virus infection. N. Engl. J. Med. 2001, 345, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Poynard, T.; Bedossa, P.; Opolon, P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet 1997, 349, 825–832. [Google Scholar] [CrossRef]
- Liu, C.-H.; Kao, J.-H. Nanomedicines in the treatment of hepatitis C virus infection in Asian patients: Optimizing use of peginterferon alfa. Int. J. Nanomed. 2014, 9, 2051–2067. [Google Scholar]
- Shiratori, Y.; Imazeki, F.; Moriyama, M.; Yano, M.; Arakawa, Y.; Yokosuka, O.; Kuroki, T.; Nishiguchi, S.; Sata, M.; Yamada, G.; et al. Histologic improvement of fibrosis in patients with hepatitis C who have sustained response to interferon therapy. Ann. Intern. Med. 2000, 132, 517–524. [Google Scholar] [CrossRef]
- Marks, K.; Naggie, S. Management of hepatitis C in 2019. JAMA 2019, 322, 355–356. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Chen, P.-Y.; Chen, J.-J.; Lo, C.-C.; Su, W.-W.; Tseng, K.-C.; Liu, C.-J.; Huang, C.-S.; Huang, K.-J.; Yang, S.-S.; et al. Sofosbuvir/velpatasvir for patients with chronic hepatitis C virus infection and compensated liver disease: Real-World data in Taiwan. Hepatol. Int. 2021, 15, 338–349. [Google Scholar] [CrossRef]
- Liu, C.-H.; Liu, C.-J.; Hung, C.-C.; Hsieh, S.-M.; Su, T.-H.; Sun, H.-Y.; Tseng, T.-C.; Chen, P.-J.; Chen, D.-S.; Kao, J.-H. Glecaprevir/pibrentasvir for patients with chronic hepatitis C virus infection: Real-World effectiveness and safety in Taiwan. Liver Int. 2020, 40, 758–768. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chen, C.-Y.; Su, W.-W.; Tseng, K.-C.; Lo, C.-C.; Liu, C.-J.; Chen, J.-J.; Peng, C.-Y.; Shih, Y.-L.; Yang, S.-S.; et al. Sofosbuvir/velpatasvir with or without low-dose ribavirin for patients with chronic hepatitis C virus infection and severe renal impairment. Gut 2022, 71, 176–184. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef]
- AASLD-IDSA HCV Guidance Panel. Hepatitis C guidance 2018 update: AASLD-IDSA recommendations for testing, managing, and treating hepatitis C virus infection. Clin. Infect. Dis. 2018, 67, 1477–1492. [Google Scholar] [CrossRef]
- Omata, M.; Kanda, T.; Wei, L.; Yu, M.-L.; Chuang, W.-L.; Ibrahim, A.; Lesmana, C.-R.; Sollano, J.; Kumar, M.; Jindal, A.; et al. APASL consensus statements and recommendation on treatment of hepatitis C. Hepatol. Int. 2016, 10, 702–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, A.-A.; Sheth, S.-G.; Chopra, S. Liver biopsy. N. Engl. J. Med. 2001, 344, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Al Knawy, B.; Shiffman, M. Percutaneous liver biopsy in clinical practice. Liver Int. 2007, 27, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, B.; Maharaj, R.-J.; Leary, W.-P.; Cooppan, R.-M.; Naran, A.-D.; Pirie, D.; Pudifin, D.-J. Sampling variability and its influence on the diagnostic yield of percutaneous needle biopsy of the liver. Lancet 1986, 1, 523–525. [Google Scholar] [CrossRef]
- Bedossa, P.; Dargère, D.; Paradis, V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology 2003, 38, 1449–1457. [Google Scholar] [CrossRef]
- Loomba, R.; Adams, L.-A. Advances in non-invasive assessment of hepatic fibrosis. Gut 2020, 69, 1343–1352. [Google Scholar] [CrossRef]
- Castera, L.; Forns, X.; Alberti, A. Non-invasive evaluation of liver fibrosis using transient elastography. J. Hepatol. 2008, 48, 835–847. [Google Scholar] [CrossRef]
- Kuno, A.; Ikehara, Y.; Tanaka, Y.; Ito, K.; Matsuda, A.; Sekiya, S.; Hige, S.; Sakamoto, M.; Kage, M.; Mizokami, M.; et al. A serum “sweet-doughnut” protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci. Rep. 2013, 3, 1065. [Google Scholar] [CrossRef] [Green Version]
- Shirabe, K.; Bekki, Y.; Gantumur, D.; Araki, K.; Ishii, N.; Kuno, A.; Narimatsu, H.; Mizokami, M. Mac-2 binding protein glycan isomer (M2BPGi) is a new serum biomarker for assessing liver fibrosis: More than a biomarker of liver fibrosis. J. Gastroenterol. 2018, 53, 819–826. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, X.; Gao, Q.; Liu, Y. Protein glycosylation in viral hepatitis-related HCC: Characterization of heterogeneity, biological roles, and clinical implications. Cancer Lett. 2017, 406, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Kong, W.; Liu, L.; Chi, X.; Wang, X.; Wu, R.; Gao, X.; Wang, H.; Qu, L.; Qi, Y.; et al. Accuracy of M2BPGi, compared with Fibro Scan®, in analysis of liver fibrosis in patients with hepatitis C. BMC Gastroenterol. 2017, 17, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, S.-A.; Salama, M.-M.; Alhusseini, M.-M.; Mohamed, G.-A. M2BPGi for assessing liver fibrosis in patients with hepatitis C treated with direct-acting antivirals. World J. Gastroenterol. 2020, 26, 2864–2876. [Google Scholar] [CrossRef] [PubMed]
- Ueda, N.; Kawaoka, T.; Imamura, M.; Aikata, H.; Nakahara, T.; Murakami, E.; Tsuge, M.; Hiramatsu, A.; Hayes, C.-N.; Yokozaki, M.; et al. Liver fibrosis assessments using FibroScan, virtual-touch tissue quantification, the FIB-4 index, and mac-2 binding protein glycosylation isomer levels compared with pathological findings of liver resection specimens in patients with hepatitis C infection. BMC Gastroenterol. 2020, 20, 314. [Google Scholar] [CrossRef]
- Chuaypen, N.; Chittmittrapap, S.; Avihingsanon, A.; Siripongsakun, S.; Wongpiyabovorn, J.; Tanpowpong, N.; Tanaka, Y.; Tangkijvanich, P. Liver fibrosis improvement assessed by magnetic resonance elastography and Mac-2-binding protein glycosylation isomer in patients with hepatitis C virus infection receiving direct-acting antivirals. Hepatol. Res. 2021, 51, 528–537. [Google Scholar] [CrossRef]
- Ura, K.; Furusyo, N.; Ogawa, E.; Hayashi, T.; Mukae, H.; Shimizu, M.; Toyoda, K.; Murata, M.; Hayashi, J. Serum WFA(+)-M2BP is a non-invasive liver fibrosis marker that can predict the efficacy of direct-acting anti-viral-based triple therapy for chronic hepatitis C. Aliment. Pharmacol. Ther. 2016, 43, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Kikukawa, K.; Uchida-Kobayashi, S.; Tamori, A.; Yoshida, K.; Kotani, K.; Motoyama, H.; Kozuka, R.; Hagihara, A.; Fujii, H.; Morikawa, H.; et al. Serum Mac-2-binding protein glycosylation isomer predicts esophagogastric varices in cirrhotic patients with chronic hepatitis C virus infection treated with IFN-free direct-acting antiviral agent: M2BPGi levels predict varices in SVR patients. Ann. Hepatol. 2020, 19, 367–372. [Google Scholar] [CrossRef]
- Yugawa, K.; Maeda, T.; Nagata, S.; Sakai, A.; Edagawa, M.; Omine, T.; Kometani, T.; Yamaguchi, S.; Konishi, K.; Hashimoto, K. Mac-2-binding protein glycosylation isomer as a novel predictor of hepatocellular carcinoma recurrence in patients with hepatitis C virus eradication. Ann. Surg. Oncol. 2022, 29, 2711–2719. [Google Scholar] [CrossRef]
- Takemura, K.; Takizawa, E.; Tamori, A.; Nakamae, M.; Kubota, H.; Uchida-Kobayashi, S.; Enomoto, M.; Kawada, N.; Hino, M. Post-treatment M2BPGi level and the rate of autotaxin reduction are predictive of hepatocellular carcinoma development after antiviral therapy in patients with chronic hepatitis C. Int. J. Mol. Sci. 2020, 21, 4517. [Google Scholar] [CrossRef]
- Jun, T.; Hsu, Y.-C.; Ogawa, S.; Huang, Y.-T.; Yeh, M.-L.; Tseng, C.-H.; Huang, C.-F.; Tai, C.-M.; Dai, C.-Y.; Huang, J.-F.; et al. Mac-2 binding protein glycosylation isomer as a hepatocellular carcinoma marker in patients with chronic hepatitis B or C infection. Hepatol. Commun. 2019, 3, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Okuda, Y.; Taura, K.; Yoshino, K.; Ikeno, Y.; Nishio, T.; Yamamoto, G.; Tanabe, K.; Koyama, Y.; Hatano, E.; Tanaka, S.; et al. Usefulness of Mac-2 binding protein glycosylation isomer for prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma. Ann. Surg. 2017, 265, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Tateyama, M.; Abiru, S.; Komori, A.; Nagaoka, S.; Saeki, A.; Hashimoto, S.; Sasaki, R.; Bekki, S.; Kugiyama, Y.; et al. Elevated serum levels of Wisteria floribunda agglutinin-positive human Mac-2 binding protein predict the development of hepatocellular carcinoma in hepatitis C patients. Hepatology 2014, 60, 1563–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, R.; Yamasaki, K.; Abiru, S.; Komori, A.; Nagaoka, S.; Saeki, A.; Hashimoto, S.; Bekki, S.; Kugiyama, Y.; Kuno, A.; et al. Serum Wisteria floribunda agglutinin-positive Mac-2 binding protein values predict the development of hepatocellular carcinoma among patients with chronic hepatitis C after sustained virological response. PLoS One 2015, 10, e0129053. [Google Scholar] [CrossRef] [PubMed]
- Nagata, H.; Nakagawa, M.; Nishimura-Sakurai, Y.; Asano, Y.; Tsunoda, T.; Miyoshi, M.; Kaneko, S.; Goto, F.; Otani, S.; Kawai-Kitahata, F.; et al. Ochanomizu Liver Conference Study Group. Serial measurement of Wisteria floribunda agglutinin positive Mac-2-binding protein is useful for predicting liver fibrosis and the development of hepatocellular carcinoma in chronic hepatitis C patients treated with IFN-based and IFN-free therapy. Hepatol. Int. 2016, 10, 956–964. [Google Scholar] [PubMed]
- Kawata, K.; Atsukawa, M.; Ohta, K.; Chida, T.; Noritake, H.; Arai, T.; Iwakiri, K.; Yasuda, S.; Toyoda, H.; Okubo, T.; et al. Mac-2-binding protein glycan isomer predicts all malignancies after sustained virological response in chronic hepatitis C. Hepatol. Commun. 2022, 6, 1855–1869. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Nawa, N.; Takeichi, E.; Shimizu, T.; Tsuchiya, J.; Sato, A.; Miyoshi, M.; Kawai-Kitahata, F.; Murakawa, M.; Nitta, S.; et al. Mac-2 binding protein glycosylation isomer as a novel predictive biomarker for patient survival after hepatitis C virus eradication by DAAs. J. Gastroenterol. 2020, 55, 990–999. [Google Scholar] [CrossRef]
- Liu, C.-H.; Liang, C.-C.; Liu, C.-J.; Lin, C.-L.; Su, T.-H.; Yang, H.-C.; Chen, P.-J.; Chen, D.-S.; Kao, J.-H. Comparison of Abbott RealTime HCV Genotype II with Versant line probe assay 2.0 for hepatitis C virus genotyping. J. Clin. Microbiol. 2015, 53, 1754–1757. [Google Scholar] [CrossRef] [Green Version]
- Prati, D.; Taioli, E.; Zanella, A.; Della Torre, E.; Butelli, S.; Del Vecchio, E.; Vianello, L.; Zanuso, F.; Mozzi, F.; Milani, S.; et al. Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann. Intern. Med. 2002, 137, 1–10. [Google Scholar] [CrossRef]
- Liu, C.-H.; Lee, M.-H.; Lin, J.-W.; Liu, C.-J.; Su, T.-H.; Tseng, T.-C.; Chen, P.-J.; Chen, D.-S.; Kao, J.-H. Evolution of eGFR in chronic HCV patients receiving sofosbuvir-based or sofosbuvir-free direct-acting antivirals. J. Hepatol. 2020, 72, 839–846. [Google Scholar] [CrossRef]
- Liu, C.-H.; Lin, J.-W.; Liu, C.-J.; Su, T.-H.; Wu, J.-H.; Tseng, T.-C.; Chen, P.-J.; Kao, J.-H. Long-term evolution of estimated glomerular filtration rate in patients with antiviral treatment for hepatitis C virus infection. Clin. Gastroenterol. Hepatol. 2022, 22, S1542-3565. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.-N.; Sarin, S.-K.; Anstee, Q.-M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.-F.; Schattenberg, J.-M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Liu, C.-J.; Hong, C.-M.; Su, T.-H.; Yang, H.-C.; Chen, K.-M.; Huang, Y.-P.; Yeh, Y.-M.; Tien, H.-L.; Liu, Y.-C.; et al. A noninvasive diagnosis of hepatic fibrosis by BioFibroScore® in chronic hepatitis C patients. J. Gastroenterol. Hepatol. 2018, 33, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Bedossa, P.; Poynard, T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 1996, 24, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Hanley, J.-A.; McNeil, B.-J. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983, 148, 839–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrell, F.-E., Jr.; Califf, R.-M.; Pryor, D.-B.; Lee, K.-L.; Rosati, R.-A. Evaluating the yield of medical tests. JAMA 1982, 247, 2543–2546. [Google Scholar] [CrossRef]
- Puhan, M.-A.; Steurer, J.; Bachmann, L.-M.; ter Riet, G. A randomized trial of ways to describe test accuracy: The effect on physicians post-test probability estimates. Ann. Intern. Med. 2005, 143, 184–189. [Google Scholar] [CrossRef]
- Wai, C.-T.; Greenson, J.-K.; Fontana, R.-J.; Kalbfleisch, J.-D.; Marrero, J.-A.; Conjeevaram, H.-S.; Lok, A.-S. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Sterling, R.-K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.-C.; Montaner, J.; S Sulkowski, M.; Torriani, F.-J.; Dieterich, D.-T.; Thomas, D.-L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Vallet-Pichard, A.; Mallet, V.; Nalpas, B.; Verkarre, V.; Nalpas, A.; Dhalluin-Venier, V.; Fontaine, H.; Pol, S. FIB-4: An inexpensive and accurate marker of fibrosis in HCV infection. comparison with liver biopsy and fibrotest. Hepatology 2007, 46, 32–36. [Google Scholar] [CrossRef]
- Castéra, L.; Vergniol, J.; Foucher, J.; Le Bail, B.; Chanteloup, E.; Haaser, M.; Darriet, M.; Couzigou, P.; De Lédinghen, V. Prospective comparison of transient elastography, Fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C. Gastroenterology 2005, 128, 343–350. [Google Scholar] [CrossRef]
Characteristics a | Patient (N = 1460) |
---|---|
Age, years | 56 (47–62) |
Age > 60 years, n (%) | 447 (30.6) |
Male, n (%) | 795 (54.5) |
DM, n (%) | 329 (22.5) |
MAFLD, n (%) | 748 (51.2) |
HCV RNA, log10, IU/mL | 6.00 (5.31–6.51) |
HCV RNA > 2,000,000 IU/mL, n (%) | 503 (34.5) |
HCV genotype 1, (%) | 863 (59.1) |
LSM, kPa b | 7.6 (6.3–11.3) |
Fibrosis stage (METAVIR), n (%) c | |
F0–F1 | 559 (38.3) |
F2 | 410 (28.1) |
F3 | 179 (12.3) |
F4 | 312 (21.4) |
M2BPGi, COI | 1.81 (1.26–3.24) |
BMI, kg/m2 | 25.2 (22.8–27.7) |
BMI ≥ 23 kg/m2, n (%) | 1074 (73.6) |
Platelet count, 109/L | 170 (130–210) |
INR | 1.00 (0.95–1.05) |
Albumin, g/dL | 4.2 (4.1–4.4) |
Total bilirubin, mg/dL | 0.9 (0.7–1.1) |
ALT, ULN d | 3.79 (2.26–6.27) |
ALT > 2-fold ULN, n (%) | 1149 (78.7) |
eGFR, mg/dL/1.73 m2 e | 74 (64–86) |
CKD stage, n (%) f | |
1 | 312 (21.4) |
2 | 897 (61.4) |
3 | 238 (16.3) |
4 | 13 (0.9) |
Overall Population/Subgroup | Fibrosis Stage | |||||
---|---|---|---|---|---|---|
≥F2 | ≥F3 | F4 | ||||
AUROC | 95% CI | AUROC | 95% CI | AUROC | 95% CI | |
Overall (N = 1460) | 0.865 | 0.846–0.884 | 0.937 | 0.922–0.952 | 0.962 | 0.951–0.972 |
Age > 60 years (n = 447) | 0.884 | 0.846–0.921 | 0.918 | 0.890–0.946 | 0.935 | 0.913–0.958 |
Male (n = 795) | 0.860 | 0.834–0.886 | 0.935 | 0.913–0.957 | 0.971 | 0.959–0.982 |
MAFLD (n = 748) | 0.870 | 0.844–0.896 | 0.944 | 0.925–0.963 | 0.963 | 0.950–0.976 |
HCV RNA > 2,000,000 IU/mL (n = 503) | 0.892 | 0.863–0.920 | 0.927 | 0.898–0.956 | 0.970 | 0.951–0.989 |
HCV genotype 1 (n = 863) | 0.883 | 0.861–0.906 | 0.948 | 0.931–0.965 | 0.959 | 0.944–0.973 |
ALT > 2 folds ULN (n = 1149) | 0.870 | 0.849–0.891 | 0.937 | 0.922–0.953 | 0.955 | 0.943–0.968 |
CKD stage 3 and 4 (n = 251) | 0.865 | 0.818–0.911 | 0.949 | 0.922–0.977 | 0.971 | 0.951–0.990 |
Significant Hepatic Fibrosis (≥F2) | ||||||||||
M2BPGi (COI) a | Patient Tested, n (%) | Actual Fibrosis, n (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Positive LR | Negative LR | Accuracy (%) | |
All (N = 1460) | ≥F2 (n = 901) | <F2 (n = 559) | ||||||||
1.72 (maximal Youden index) | 841 (57.6) | 733 (81.3) | 108 (19.6) | 81.3 | 80.6 | 87.1 | 72.9 | 4.19 | 0.24 | 81.1 |
1.51 | 1018 (69.7) | 833 (92.4) | 135 (24.2) | 92.4 | 75.8 | 81.8 | 95.9 | 3.82 | 0.10 | 86.1 |
2.08 | 621 (42.5) | 585 (64.9) | 36 (6.5) | 64.9 | 93.5 | 94.2 | 62.4 | 10.0 | 0.38 | 75.9 |
Advanced hepatic fibrosis (≥F3) | ||||||||||
M2BPGi (COI) a | Patient Tested, n (%) | Actual Fibrosis, n (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Positive LR | Negative LR | Accuracy (%) | |
All (N = 1460) | ≥F3 (n = 491) | <F3 (n = 969) | ||||||||
2.65 (maximal Youden index) | 577 (39.5) | 433 (88.1) | 144 (14.9) | 88.1 | 85.1 | 75.0 | 93.4 | 5.90 | 0.14 | 86.2 |
2.48 | 685 (46.9) | 453 (92.2) | 232 (23.9) | 92.2 | 76.1 | 66.1 | 95.1 | 3.92 | 0.10 | 81.5 |
2.87 | 480 (32.9) | 399 (81.2) | 81 (8.4) | 81.2 | 91.6 | 83.1 | 90.6 | 10.1 | 0.20 | 88.2 |
Cirrhosis (F4) | ||||||||||
M2BPGi (COI) a | Patient Tested, n (%) | Actual Fibrosis, n (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Positive LR | Negative LR | Accuracy (%) | |
All (N = 1460) | F4 (n = 312) | <F4 (n = 1148) | ||||||||
3.93 (maximal Youden index) | 363 (24.9) | 306 (98.1) | 57 (5.0) | 98.1 | 95.0 | 84.3 | 99.5 | 19.62 | 0.02 | 95.7 |
3.50 | 421 (28.2) | 308 (98.7) | 113 (9.8) | 98.7 | 90.2 | 73.2 | 99.6 | 10.04 | 0.01 | 92.0 |
4.35 | 329 (22.5) | 281 (90.1) | 48 (4.2) | 90.1 | 95.6 | 85.4 | 97.3 | 20.48 | 0.10 | 94.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-H.; Liu, C.-J.; Su, T.-H.; Huang, S.-C.; Tseng, T.-C.; Wu, J.-H.; Chen, P.-J.; Kao, J.-H. Serum Mac-2 Binding Protein Glycosylation Isomer to Predict the Severity of Hepatic Fibrosis in Patients with Hepatitis C Virus Infection. Diagnostics 2022, 12, 2650. https://doi.org/10.3390/diagnostics12112650
Liu C-H, Liu C-J, Su T-H, Huang S-C, Tseng T-C, Wu J-H, Chen P-J, Kao J-H. Serum Mac-2 Binding Protein Glycosylation Isomer to Predict the Severity of Hepatic Fibrosis in Patients with Hepatitis C Virus Infection. Diagnostics. 2022; 12(11):2650. https://doi.org/10.3390/diagnostics12112650
Chicago/Turabian StyleLiu, Chen-Hua, Chun-Jen Liu, Tung-Hung Su, Shang-Chin Huang, Tai-Chung Tseng, Jo-Hsuan Wu, Pei-Jer Chen, and Jia-Horng Kao. 2022. "Serum Mac-2 Binding Protein Glycosylation Isomer to Predict the Severity of Hepatic Fibrosis in Patients with Hepatitis C Virus Infection" Diagnostics 12, no. 11: 2650. https://doi.org/10.3390/diagnostics12112650
APA StyleLiu, C. -H., Liu, C. -J., Su, T. -H., Huang, S. -C., Tseng, T. -C., Wu, J. -H., Chen, P. -J., & Kao, J. -H. (2022). Serum Mac-2 Binding Protein Glycosylation Isomer to Predict the Severity of Hepatic Fibrosis in Patients with Hepatitis C Virus Infection. Diagnostics, 12(11), 2650. https://doi.org/10.3390/diagnostics12112650