Influence of Spinal Movements Associated with Physical Evaluation on Muscle Mechanical Properties of the Lumbar Paraspinal in Subjects with Acute Low Back Pain
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Sample Size
2.3. Assessments and Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganesan, S.; Acharya, A.S.; Chauhan, R.; Acharya, S. Prevalence and risk factors for low back pain in 1,355 young adults: A cross-sectional study. Asian Spine J. 2017, 11, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coggeshall, M.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [Green Version]
- Palacios-Ceña, D.; Alonso-Blanco, C.; Hernández-Barrera, V.; Carrasco-Garrido, P.; Jiménez-García, R.; Fernández-de-las-Peñas, C. Prevalence of neck and low back pain in community-dwelling adults in Spain: An updated population-based national study (2009/10–2011/12). Eur. Spine J. 2015, 24, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Manchikanti, L.; Singh, V.; Falco, F.J.E.; Benyamin, R.M.; Hirsch, J.A. Epidemiology of low back pain in Adults. Neuromodulation 2014, 17, 3–10. [Google Scholar] [CrossRef]
- O’Sullivan, P. Diagnosis and classification of chronic low back pain disorders: Maladaptive movement and motor control impairments as underlying mechanism. Man. Ther. 2005, 10, 242–255. [Google Scholar] [CrossRef]
- Koch, C.; Hänsel, F. Non-specific low back pain and postural control during quiet standing-A systematic review. Front. Psychol. 2019, 10, 586. [Google Scholar] [CrossRef]
- Hodges, P.W.; Tucker, K. Moving differently in pain: A new theory to explain the adaptation to pain. Pain 2011, 152, 90–98. [Google Scholar] [CrossRef]
- Hodges, P.W.; Danneels, L. Changes in structure and function of the back muscles in low back pain: Different time points, observations, and mechanisms. J. Orthop. Sports Phys. Ther. 2019, 49, 464–476. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, R.I.; Garden, C.L.P.; Brown, S.J. Immediate effect of a spinal mobilisation intervention on muscle stiffness, tone and elasticity in subjects with lower back pain—A randomized cross-over trial. J. Bodyw. Mov. Ther. 2021. [Google Scholar] [CrossRef]
- Haines, T. Cost-effectiveness of using a motion-sensor biofeedback treatment approach for the management of sub-acute or chronic low back pain: Economic evaluation alongside a randomised trial. BMC Musculoskelet. Disord. 2017, 18, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nair, K.; Masi, A.T.; Andonian, B.J.; Barry, A.J.; Coates, B.A.; Dougherty, J.; Schaefer, E.; Henderson, J.; Kelly, J. Stiffness of resting lumbar myofascia in healthy young subjects quantified using a handheld myotonometer and concurrently with surface electromyography monitoring. J. Bodyw. Mov. Ther. 2016, 20, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Creze, M.; Bedretdinova, D.; Soubeyrand, M.; Rocher, L.; Gennisson, J.L.; Gagey, O.; Maître, X.; Bellin, M.F. Posture-related stiffness mapping of paraspinal muscles. J. Anat. 2019, 234, 787–799. [Google Scholar] [CrossRef]
- Lo, W.L.A.; Yu, Q.; Mao, Y.; Li, W.; Hu, C.; Li, L. Lumbar muscles biomechanical characteristics in young people with chronic spinal pain. BMC Musculoskelet. Disord. 2019, 20, 1–9. [Google Scholar] [CrossRef]
- Alcaraz-Clariana, S.; García-Luque, L.; Garrido-Castro, J.L.; Valera, I.C.A.; Ladehesa-Pineda, L.; Puche-Larrubia, M.A.; Carmona-Pérez, C.; Rodrigues-de-Souza, D.P.; Alburquerque-Sendín, F. Paravertebral Muscle Mechanical Properties in Patients with Axial Spondyloarthritis or Low Back Pain: A Case-Control Study. Diagnostics 2021, 11, 1898. [Google Scholar] [CrossRef]
- Shum, G.L.; Tsung, B.Y.; Lee, R.Y. The immediate effect of posteroanterior mobilization on reducing back pain and the stiffness of the lumbar spine. Arch. Phys. Med. Rehabil. 2013, 94, 673–679. [Google Scholar] [CrossRef]
- Herbert, R.D.; Gandevia, S.C. The passive mechanical properties of muscle. J. Appl. Physiol. 2019, 126, 1442–1444. [Google Scholar] [CrossRef]
- Masi, A.T.; Hannon, J.C. Human resting muscle tone (HRMT): Narrative introduction and modern concepts. J. Bodyw. Mov. Ther. 2008, 12, 320–332. [Google Scholar] [CrossRef]
- Altman, D.; Minozzo, F.C.; Rassier, D.E. Thixotropy and rheopexy of muscle fibers probed using sinusoidal oscillations. PLoS ONE 2015, 10, e0121726. [Google Scholar] [CrossRef] [Green Version]
- Lakie, M.; Campbell, K.S. Muscle thixotropy—Where are we now? J. Appl. Physiol. 2019, 126, 1790–1799. [Google Scholar] [CrossRef]
- Mewis, J.; Wagner, N.J. Thixotropy. Adv. Colloid Interface Sci. 2009, 147–148, 214–227. [Google Scholar] [CrossRef]
- Axelson, H.W.; Hagbarth, K.E. Human motor control consequences of thixotropic changes in muscular short-range stiffness. J. Physiol. 2001, 535, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Bilston, L.E.; Bolsterlee, B.; Nordez, A.; Sinha, S. Contemporary image-based methods for measuring passive mechanical properties of skeletal muscles in vivo. J. Appl. Physiol. 2019, 126, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.P.; Koppenhaver, S.L.; Michener, L.A.; Proulx, L.; Bisagni, F.; Cleland, J.A. Characterization of tissue stiffness of the infraspinatus, erector spinae, and gastrocnemius muscle using ultrasound shear wave elastography and superficial mechanical deformation. J. Electromyogr. Kinesiol. 2018, 38, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Castro, J.L.; Valera, I.C.A.; Amaro, J.P.; Galisteo, A.M.; Navas, C.G.; De Souza, D.P.R.; Clariana, S.A.; Luque, L.G.; Sánchez, I.R.M.; Medina, C.L.; et al. Mechanical Properties of Lumbar and Cervical Paravertebral Muscles in Patients with Axial Spondyloarthritis: A Case—Control Study. Diagnostics 2021, 11, 1662. [Google Scholar] [CrossRef]
- Hu, X.; Lei, D.; Li, L.; Leng, Y.; Yu, Q.; Wei, X.; Lo, W.L.A. Quantifying paraspinal muscle tone and stiffness in young adults with chronic low back pain: A reliability study. Sci. Rep. 2018, 8, 14343. [Google Scholar] [CrossRef] [Green Version]
- Lohr, C.; Braumann, K.M.; Reer, R.; Schroeder, J.; Schmidt, T. Reliability of tensiomyography and myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in healthy volunteers. Eur. J. Appl. Physiol. 2018, 118, 1349–1359. [Google Scholar] [CrossRef]
- Rodrigues-de-Souza, D.P.; Alcaraz-Clariana, S.; García-Luque, L.; Carmona-Pérez, C.; Luis Garrido-Castro, J.; Cruz-Medel, I.; Camargo, P.R.; Alburquerque-Sendín, F.; Muñoz-Berbel, X. Absolute and Relative Reliability of the Assessment of the Muscle Mechanical Properties of Pelvic Floor Muscles in Women with and without Urinary Incontinence. Diagnostics 2021, 11, 2315. [Google Scholar] [CrossRef]
- Schneebeli, A.; Falla, D.; Clijsen, R.; Barbero, M. Myotonometry for the evaluation of Achilles tendon mechanical properties: A reliability and construct validity study. BMJ Open Sport Exerc. Med. 2020, 6, e000726. [Google Scholar] [CrossRef] [Green Version]
- Zinder, S.M.; Padua, D.A. Reliability, validity, and precision of a handheld myometer for assessing in vivo muscle stiffness. J. Sport Rehabil. 2011, 20, 2010_0051. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Bernal, M.I.; Heredia-Rizo, A.M.; Gonzalez-Garcia, P.; Cortés-Vega, M.D.; Casuso-Holgado, M.J. Validity and reliability of myotonometry for assessing muscle viscoelastic properties in patients with stroke: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Kocur, P.; Grzeskowiakb, M.; Wiernicka, M.; Goliwas, M.; Lewandowski, J.; Lochyriski, D. Effects of aging on mechanical properties of sternocleidomastoid and trapezius muscles during transition from lying to sitting position-A cross-sectional study. Arch. Gerontol. Geriatr. 2017, 70, 14–18. [Google Scholar] [CrossRef]
- Agyapong-badu, S.; Warner, M.; Samuel, D.; Stokes, M. Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch. Gerontol. Geriatr. 2016, 62, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Dietsch, A.M.; Heather, C.; Steiner, J.; Solomon, N. Effects of Age, Sex, and Body Position on Orofacial Muscle Tone in Healthy Adults. J. Speech Lang. Hear. Res. 2015, 58, 1145–1150. [Google Scholar] [CrossRef] [Green Version]
- Kocur, P.; Wilski, M.; Goliwąs, M.; Lewandowski, J.; Łochyński, D. Influence of Forward Head Posture on Myotonometric Measurements of Superficial Neck Muscle Tone, Elasticity, and Stiffness in Asymptomatic Individuals With Sedentary Jobs. J. Manip. Physiol. Ther. 2019, 42, 195–202. [Google Scholar] [CrossRef]
- Schoenrock, B.; Zander, V.; Dern, S.; Limper, U.; Mulder, E.; Veraksitš, A.; Viir, R.; Kramer, A.; Stokes, M.J.; Salanova, M.; et al. Bed rest, exercise countermeasure and reconditioning effects on the human resting muscle tone system. Front. Physiol. 2018, 9, 810. [Google Scholar] [CrossRef] [Green Version]
- Ilahi, S.; Masi, A.T.; White, A.; Devos, A.; Henderson, J.; Nair, K. Quantified biomechanical properties of lower lumbar myofascia in younger adults with chronic idiopathic low back pain and matched healthy controls. Clin. Biomech. 2020, 73, 78–85. [Google Scholar] [CrossRef]
- Qaseem, A.; Wilt, T.J.; McLean, R.M.; Forciea, M.A. Noninvasive treatments for acute, subacute, and chronic low back pain: A clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 2017, 166, 514–530. [Google Scholar] [CrossRef] [Green Version]
- Abbott, J.H.; Schmitt, J. Minimum important differences for the patient-specific functional scale, 4 region-specific outcome measures, and the numeric pain rating scale. J. Orthop. Sports Phys. Ther. 2014, 44, 560–564. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. The concepts of power analysis. In Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; pp. 1–17. ISBN 9780203771587. [Google Scholar]
- Armijo-Olivo, S.; Warren, S.; Fuentes, J.; Magee, D.J. Clinical relevance vs. statistical significance: Using neck outcomes in patients with temporomandibular disorders as an example. Man. Ther. 2011, 16, 563–572. [Google Scholar] [CrossRef]
- Selva-Sevilla, C.; Ferrara, P.; Geronimo-Pardo, M. Psychometric properties study of the Oswestry disability index in a Spanish population with previous lumbar disc surgery: Homogeneity and validity. Spine 2019, 44, 430–437. [Google Scholar] [CrossRef]
- Technology–Myoton. Available online: https://www.myoton.com/technology/ (accessed on 2 December 2021).
- White, A.; Abbott, H.; Masi, A.T.; Henderson, J.; Nair, K. Biomechanical properties of low back myofascial tissue in younger adult ankylosing spondylitis patients and matched healthy control subjects. Clin. Biomech. 2018, 57, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz-Clariana, S.; García-Luque, L.; Garrido-Castro, J.L.; Fernández-de-las-Peñas, C.; Carmona-Pérez, C.; Rodrigues-de-Souza, D.P.; Alburquerque-Sendín, F. Paravertebral Muscle Mechanical Properties and Spinal Range of Motion in Patients with Acute Neck or Low Back Pain: A Case-Control Study. Diagnostics 2021, 11, 352. [Google Scholar] [CrossRef] [PubMed]
- Sieper, J.; van der Heijde, D.; Landewé, R.; Brandt, J.; Burgos-Vagas, R.; Collantes-Estevez, E.; Dijkmans, B.; Dougados, M.; Khan, M.A.; Leirisalo-Repo, M.; et al. New criteria for inflammatory back pain in patients with chronic back pain: A real patient exercise by experts from the Assessment of SpondyloArthritis international Society (ASAS). Ann. Rheum. Dis. 2009, 68, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Mousavi-Khatir, R.; Talebian, S.; Toosizadeh, N.; Olyaei, G.R.; Maroufi, N. The effect of static neck flexion on mechanical and neuromuscular behaviors of the cervical spine. J. Biomech. 2018, 72, 152–158. [Google Scholar] [CrossRef]
- Mooney, K.; Warner, M.; Stokes, M. Symmetry and within-session reliability of mechanical properties of biceps brachii muscles in healthy young adult males using the MyotonPRO device. Work. Pap. Health Sci. 2013, 1, 1–11. [Google Scholar]
- Romero, D.E.; Santana, D.; Borges, P.; Marques, A.; Castanheira, D.; Rodrigues, J.M.; Sabbadini, L. Prevalence, associated factors, and limitations related to chronic back problems in adults and elderly in Brazil. Cad. Saude Publica 2018, 34, e00012817. [Google Scholar] [CrossRef]
- Solomonow, M. Neuromuscular manifestations of viscoelastic tissue degradation following high and low risk repetitive lumbar flexion. J. Electromyogr. Kinesiol. 2012, 22, 155–175. [Google Scholar] [CrossRef]
- Masaki, M.; Aoyama, T.; Murakami, T.; Yanase, K.; Ji, X.; Tateuchi, H.; Ichihashi, N. Association of low back pain with muscle stiffness and muscle mass of the lumbar back muscles, and sagittal spinal alignment in young and middle-aged medical workers. Clin. Biomech. 2017, 49, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Lakie, M.; Robson, L.G. Thixotropic Changes in Human Muscle Stiffness and the Effects of Fatigue. Q. J. Exp. Physiol. 1988, 73, 809. [Google Scholar] [CrossRef] [Green Version]
- Lindemann, I.; Coombes, B.K.; Tucker, K.; Hug, F.; Dick, T.J.M. Age-related differences in gastrocnemii muscles and Achilles tendon mechanical properties in vivo. J. Biomech. 2020, 112, 110067. [Google Scholar] [CrossRef]
- Murata, Y.; Nakamura, E.; Tsukamoto, M.; Nakagawa, T.; Takeda, M.; Kozuma, M.; Kadomura, T.; Narusawa, K.; Shimizu, K.; Uchida, S.; et al. Longitudinal study of risk factors for decreased cross-sectional area of psoas major and paraspinal muscle in 1849 individuals. Sci. Rep. 2021, 11, 16986. [Google Scholar] [CrossRef] [PubMed]
- Lexell, J.; Taylor, C.C.; Sjöström, M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J. Neurol. Sci. 1988, 84, 275–294. [Google Scholar] [CrossRef]
- Rahemi, H.; Nigam, N.; Wakeling, J.M. The effect of intramuscular fat on skeletal muscle mechanics: Implications for the elderly and obese. J. R. Soc. Interface 2015, 12, 20150365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csapo, R.; Malis, V.; Hodgson, J.; Sinha, S. Age-related greater Achilles tendon compliance is not associated with larger plantar flexor muscle fascicle strains in senior women. J. Appl. Physiol. 2014, 116, 961–969. [Google Scholar] [CrossRef] [Green Version]
- Stenroth, L.; Peltonen, J.; Cronin, N.J.; Sipilä, S.; Finni, T. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J. Appl. Physiol. 2012, 113, 1537–1544. [Google Scholar] [CrossRef] [Green Version]
- Andonian, B.J.; Masi, A.T.; Aldag, J.C.; Barry, A.J.; Coates, B.A.; Emrich, K.; Henderson, J.; Kelly, J.; Nair, K. Greater Resting Lumbar Extensor Myofascial Stiffness in Younger Ankylosing Spondylitis Patients Than Age-Comparable Healthy Volunteers Quantified by Myotonometry. Arch. Phys. Med. Rehabil. 2015, 96, 2041–2047. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhu, Y.; Xu, W.; Liang, J.; Guan, Y.; Xu, X. Analysis of Biomechanical Properties of the Lumbar Extensor Myofascia in Elderly Patients with Chronic Low Back Pain and That in Healthy People. BioMed Res. Int. 2020, 2020, 7649157. [Google Scholar] [CrossRef]
- Chang, T.T.; Li, Z.; Wang, X.Q.; Zhang, Z.J. Stiffness of the Gastrocnemius–Achilles Tendon Complex Between Amateur Basketball Players and the Non-athletic General Population. Front. Physiol. 2020, 11, 606706. [Google Scholar] [CrossRef]
- Janecki, D.; Jarocka, E.; Jaskólska, A.; Marusiak, J.; Jaskólski, A. Muscle passive stiffness increases less after the second bout of eccentric exercise compared to the first bout. J. Sci. Med. Sport 2011, 14, 338–343. [Google Scholar] [CrossRef]
- Uysal, Ö.; Delioğlu, K.; Firat, T. The effects of hamstring training methods on muscle viscoelastic properties in healthy young individuals. Scand. J. Med. Sci. Sport. 2021, 31, 371–379. [Google Scholar] [CrossRef] [PubMed]
LBP Group (N = 33) | Healthy Group (N = 33) | p-Value | |
---|---|---|---|
Age (years) | 33.05 ± 11.8 | 33.6 ± 12.0 | NS |
Sex (female/male) | 14/19 | 14/19 | NS |
BMI (kg/m2) | 24.2 ± 2.45 | 23.6 ± 2.8 | NS |
Pain intensity (VAS) | 4.7 ± 1.7 | - | - |
ODI | 7.8 ± 5.4 | - | - |
Group | Age | Baseline Evaluation | After Movement Evaluation | Between Evaluation Differences | |
---|---|---|---|---|---|
Frequency (Hz) | LBP | <35 years | 14.26 ± 1.50 | 14.64 ± 2.07 | 0.38 (0.83, −0.06) |
Healthy | 13.94 ± 1.40 | 14.30 ± 1.87 | 0.36 (0.82, −0.09) | ||
Between clinical status differences | 0.31 (−0.98, 1.61) | 0.33 (−1.09, 1.77) | |||
LBP | >35 years | 14.91 ± 2.51 | 14.98 ± 2.50 | 0.07 (0.59, −0.44) | |
Healthy | 15 87 ± 2,46 | 15.73 ± 2.33 | −0.14 (0.35, −0.64) | ||
Between clinical status differences | −0.96 (−2.43, 0.50) | 0.74 (−2.36, 0.87) | |||
Stiffness (N/m) | LBP | <35 years | 250.26 ± 59.63 | 269.03 ± 89.23 | 18.77 (42.37, −4.82) |
Healthy | 235.23 ± 55.73 | 261.95 ± 110.83 | 26.72 (50.97, 2.47) | ||
Between clinical status differences | 15.02 (−30.99, 61.05) | 7.08 (−53.09, 67.26) | |||
LBP | >35 years | 283.36 ± 80.95 | 295.48 ± 76.09 | 12.12 (39.61, −15.37) | |
Healthy | 309.95 ± 85.27 | 309.85 ± 81.04 | −0.10 (26.46, −26.66) | ||
Between clinical status differences | −26.58 (−78.58, 25.41) | 14.36 (−82.35, 53.62) | |||
Decrement | LBP | <35 years | 1.05 ± 0.23 | 1.08 ± 0.31 | 0.02 (0.10, −0.05) |
Healthy | 1.08 ± 0.22 | 1.04 ± 0.17 | −0.03 (0.04, −0.11) | ||
Between clinical status differences | −0.02 (−0.19, 0.15) | 0.04 (−0.13, 0.21) | |||
LBP | >35 years | 1.41 ± 0.24 | 1.41 ± 0.21 | −0.00 (0.09, −0.09) | |
Healthy | 1.38 ± 0.34 | 1.40 ± 0.33 | 0.01 (0.10, −0.07) | ||
Between clinical status differences | 0.03 (−0.16, 0.22) | 0.01 (−0.18, 0.21) | |||
Relaxation (ms) | LBP | <35 years | 19.35 ± 5.89 | 19.05 ± 5.96 | −0.29 (0.38, −0.98) |
Healthy | 20.79 ± 4.05 | 20.35 ± 4.61 | −0.44 (0.28, −1.17) | ||
Between clinical status differences | −1.44 (−4.56, 1.66) | −1.30 (−4.54, 1.94) | |||
LBP | >35 years | 19.26 ± 4.20 | 19.43 ± 4.54 | −0.16 (0.96, −0.63) | |
Healthy | 17.58 ± 3.86 | 17.61 ± 3.70 | 0.03 (0.80, −0.73) | ||
Between clinical status differences | 1.68 (−1.77, 5.15) | 1.81 (−1.79, 5.43) | |||
Creep (Deborah Number) | LBP | <35 years | 1.15 ± 0.14 | 1.13 ± 0.19 | −0.02 (0.05, −0.09) |
Healthy | 1.20 ± 0.22 | 1.16 ± 0.28 | −0.04 (0.035, −0.11) | ||
Between clinical status differences | −0.04 (−0.19, 0.09) | 0.03 (−0.19, 0.12) | |||
LBP | >35 years | 1.27 ± 0.28 | 1.22 ± 0.28 | −0.05 (0.02, −0.14) | |
Healthy | 1.14 ± 0.21 | 1.12 ± 0.18 | −0.01 (0.07, −0.09) | ||
Between clinical status differences | 0.13 (−0.25, 0.30) | 0.09 (−0.08, 0.27) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcaraz-Clariana, S.; García-Luque, L.; Garrido-Castro, J.L.; Carmona-Pérez, C.; Rodrigues-de-Souza, D.P.; Fernández-de-las-Peñas, C.; Alburquerque-Sendín, F. Influence of Spinal Movements Associated with Physical Evaluation on Muscle Mechanical Properties of the Lumbar Paraspinal in Subjects with Acute Low Back Pain. Diagnostics 2022, 12, 302. https://doi.org/10.3390/diagnostics12020302
Alcaraz-Clariana S, García-Luque L, Garrido-Castro JL, Carmona-Pérez C, Rodrigues-de-Souza DP, Fernández-de-las-Peñas C, Alburquerque-Sendín F. Influence of Spinal Movements Associated with Physical Evaluation on Muscle Mechanical Properties of the Lumbar Paraspinal in Subjects with Acute Low Back Pain. Diagnostics. 2022; 12(2):302. https://doi.org/10.3390/diagnostics12020302
Chicago/Turabian StyleAlcaraz-Clariana, Sandra, Lourdes García-Luque, Juan Luis Garrido-Castro, Cristina Carmona-Pérez, Daiana Priscila Rodrigues-de-Souza, César Fernández-de-las-Peñas, and Francisco Alburquerque-Sendín. 2022. "Influence of Spinal Movements Associated with Physical Evaluation on Muscle Mechanical Properties of the Lumbar Paraspinal in Subjects with Acute Low Back Pain" Diagnostics 12, no. 2: 302. https://doi.org/10.3390/diagnostics12020302
APA StyleAlcaraz-Clariana, S., García-Luque, L., Garrido-Castro, J. L., Carmona-Pérez, C., Rodrigues-de-Souza, D. P., Fernández-de-las-Peñas, C., & Alburquerque-Sendín, F. (2022). Influence of Spinal Movements Associated with Physical Evaluation on Muscle Mechanical Properties of the Lumbar Paraspinal in Subjects with Acute Low Back Pain. Diagnostics, 12(2), 302. https://doi.org/10.3390/diagnostics12020302