Combining Optical Coherence Tomography and Fundus Photography to Improve Glaucoma Screening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Methods
3. Results
3.1. Patient Demographics
3.2. Comparison of Three Screening Strategies
3.3. Comparison between Ophthalmologists and Ophthalmology Residents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morizane, Y.; Morimoto, N.; Fujiwara, A.; Kawasaki, R.; Yamashita, H.; Ogura, Y.; Shiraga, F. Incidence and Causes of Visual Impairment in Japan: The First Nation-Wide Complete Enumeration Survey of Newly Certified Visually Impaired Individuals. Jpn. J. Ophthalmol. 2019, 63, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Iwase, A.; Suzuki, Y.; Araie, M.; Yamamoto, T.; Abe, H.; Shirato, S.; Kuwayama, Y.; Mishima, H.; Shimizu, H.; Tomita, G. The Prevalence of Primary Open Angle Glaucoma in Japanese: The Tajimi Study. Ophthalmogy 2004, 111, 1641–1648. [Google Scholar] [CrossRef]
- Yamamoto, T.; Iwase, A.; Araie, M.; Suzuki, Y.; Abe, H.; Shirato, S.; Kuwayama, Y.; Mishima, H.K.; Shimizu, H.; Tomita, G.; et al. Prevalence of Primary Angle Closure and Secondary Glaucoma in a Japanese Population. Ophthalmology 2005, 112, 1661–1669. [Google Scholar] [CrossRef]
- The AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The Relationship between Control of Intraocular Pressure and Visual Field Deterioration. Am. J. Ophthalmol. 2000, 130, 429–440. [Google Scholar] [CrossRef]
- Collaborative Normal-Tension Glaucoma Study Group. The Effectiveness of Intraocular Pressure Reduction in the Treatment of Normal-Tension Glaucoma. Am. J. Ophthalmol. 1998, 126, 498–505. [Google Scholar] [CrossRef]
- Collaborative Normal-Tension Glaucoma Study Group. Comparison of Glaucomatous Progression between Untreated Patients with Normal-Tension Glaucoma and Patients with Therapeutically Reduced Intraocular Pressures. Am. J. Ophthalmol. 1998, 126, 487–497. [Google Scholar] [CrossRef]
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Bengtsson, B.; Hussein, M.; Early Manifest Glaucoma Trial Group. Reduction of Intraocular Pressure and Glaucoma Progression: Results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002, 120, 1268–1279. [Google Scholar] [CrossRef]
- Tuulonen, A.; Airaksinen, P.J.; Montagna, A.; Nieminen, H. Screening for Glaucoma with a Non-Mydriatic Fundus Camera. Acta Ophthalmol. 1990, 68, 445–449. [Google Scholar] [CrossRef]
- Wang, F.; Quigley, H.A.; Tielsch, J.M. Screening for Glaucoma in a Medical Clinic with Photographs of the Nerve Fiber Layer. Arch. Ophthalmol. 1994, 112, 796–800. [Google Scholar] [CrossRef]
- Tatemichi, M.; Nakano, T.; Tanaka, K.; Hayashi, T.; Nawa, T.; Miyamoto, T.; Hiro, H.; Iwasaki, A.; Sugita, M.; Glaucoma Screening Project (GSP) Study Group. Performance of Glaucoma Mass Screening with Only a Visual Field Test Using Frequency-Doubling Technology Perimetry. Am. J. Ophthalmol. 2002, 134, 529–537. [Google Scholar] [CrossRef]
- Johnson, C.A.; Samuels, S.J. Screening for Glaucomatous Visual Field Loss with Frequency-Doubling Perimetry. Investig. Ophthalmol. Vis. Sci. 1997, 38, 413–425. [Google Scholar]
- Terauchi, R.; Wada, T.; Ogawa, S.; Kaji, M.; Kato, T.; Tatemichi, M.; Nakano, T. FDT Perimetry for Glaucoma Detection in Comprehensive Health Checkup Service. J. Ophthalmol. 2020, 2020, 4687398. [Google Scholar] [CrossRef] [PubMed]
- Ervin, A.M.; Boland, M.V.; Myrowitz, E.H.; Prince, J.; Hawkins, B.; Vollenweider, D.; Ward, D.; Suarez-Cuervo, C.; Robinson, K.A. Screening for Glaucoma: Comparative Effectiveness. Comparative Effectiveness Review Number 59; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2012.
- Tielsch, J.M.; Katz, J.; Singh, K.; Quigley, H.A.; Gottsch, J.D.; Javitt, J.; Sommer, A. A Population-Based Evaluation of Glaucoma Screening: The Baltimore Eye Survey. Am. J. Epidemiol. 1991, 134, 1102–1110. [Google Scholar] [CrossRef]
- Bengtsson, B.; Heijl, A. False-Negative Responses in Glaucoma Perimetry: Indicators of Patient Performance or Test Reliability? Investig. Ophthalmol. Vis. Sci. 2000, 41, 2201–2204. [Google Scholar] [CrossRef]
- Katz, J.; Sommer, A. Screening for Glaucomatous Visual Field Loss. The Effect of Patient Reliability. Ophthalmology 1990, 97, 1032–1037. [Google Scholar] [CrossRef]
- Pierre-Filho, P.T.; Gomes, P.R.; Pierre, E.T.; Pierre, L.M. Learning Effect in Visual Field Testing of Healthy Subjects Using Humphrey Matrix Frequency Doubling Technology Perimetry. Eye 2010, 24, 851–856. [Google Scholar] [CrossRef]
- Abrams, L.S.; Scott, I.U.; Spaeth, G.L.; Quigley, H.A.; Varma, R. Agreement among Optometrists, Ophthalmologists, and Residents in Evaluating the Optic Disc for Glaucoma. Ophthalmology 1994, 101, 1662–1667. [Google Scholar] [CrossRef]
- Rossetto, J.D.; Melo, L.A.S., Jr.; Campos, M.S.; Tavares, I.M. Agreement on the Evaluation of Glaucomatous Optic Nerve Head Findings by Ophthalmology Residents and a Glaucoma Specialist. Clin. Ophthalmol. 2017, 11, 1281–1284. [Google Scholar] [CrossRef] [Green Version]
- Mwanza, J.C.; Oakley, J.D.; Budenz, D.J.; Anderson, D.R. Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology 2011, 118, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.J.; Park, J.H.; Yoo, C.; Kim, Y.Y. Comparison of the progression of localized retinal nerve fiber layer defects in red-free fundus photograph, en face structural image, and OCT angiography image. J. Glaucoma 2000, 29, 698–703. [Google Scholar] [CrossRef]
- Meleppat, R.K.; Roonning, K.E.; Karlen, S.J.; Burns, M.E.; Pugh, E.N., Jr.; Zawadzki, R.J. In vivo multimodal retinal imaging of disease-related pigmentary changes in retinal pigment epithelium. Sci. Rep. 2021, 11, 16252. [Google Scholar] [CrossRef] [PubMed]
- Mleppat, R.K.; Zhang, P.; Ju, M.J.; Manna, S.K.; Jian, Y.; Pugh, E.N.; Zawadzki, R.J. Directional optical coherence tomography reveals melanin concentration dependent scattering properties of retinal pigment epithelium. J. Biomed. Opt. 2019, 24, 066011. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Tan, J.; Chen, B. Robust Spike-Based Continual Meta-Learning Improved by Restricted Minimum Error Entropy Criterion. Entropy 2022, 24, 455. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, J.; Zhang, N.; Deng, B.; Pang, Y.; Azghadi, M.R. CerebulluMorphic:Large-Scale Neuromorphic Model and Architecture for Supervised Motor Learning. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–15. [Google Scholar] [CrossRef]
- Paczka, J.A.; Friedman, D.S.; Quigley, H.A.; Barron, Y.; Vitale, S. Diagnostic Capabilities of Frequency-Doubling Technology, Scanning Laser Polarimetry, and Nerve Fiber Layer Photographs to Distinguish Glaucomatous Damage. Am. J. Ophthalmol. 2001, 131, 188–197. [Google Scholar] [CrossRef]
- Casson, R.; James, B.; Rubinstein, A.; Ali, H. Clinical Comparison of Frequency Doubling Technology Perimetry and Humphrey Perimetry. Br. J. Ophthalmol. 2001, 85, 360–362. [Google Scholar] [CrossRef]
- Yamada, N.; Chen, P.P.; Mills, R.P.; Leen, M.M.; Lieberman, M.F.; Stamper, R.L.; Stanford, D.C. Screening for Glaucoma with Frequency-Doubling Technology and Damato Campimetry. Arch. Ophthalmol. 1999, 117, 1479–1484. [Google Scholar] [CrossRef] [Green Version]
- Iwase, A.; Tomidokoro, A.; Araie, M.; Shirato, S.; Shimizu, H.; Kitazawa, Y. Performance of Frequency-Doubling Technology Perimetry in a Population-Based Prevalence Survey of Glaucoma. Ophthalmology 2007, 114, 27–32. [Google Scholar] [CrossRef]
- Budenz, D.L.; Michael, A.; Chang, R.T.; McSoley, J.; Katz, J. Sensitivity and Specificity of the StratusOCT for Perimetric Glaucoma. Ophthalmology 2005, 112, 3–9. [Google Scholar] [CrossRef]
- Ye, C.; To, E.; Weinreb, R.N.; Yu, M.; Liu, S.; Lam, D.S.; Leung, C.K. Comparison of Retinal Nerve Fiber Layer Imaging by Spectral Domain Optical Coherence Tomography and Scanning Laser Ophthalmoscopy. Ophthalmology 2011, 118, 2196–2202. [Google Scholar] [CrossRef]
- Bae, H.W.; Lee, S.Y.; Kim, S.; Park, C.K.; Lee, K.; Kim, C.Y.; Seong, G.J. Asymmetry of Peak Thicknesses between the Superior and Inferior Retinal Nerve Fiber Layers for Early Glaucoma Detection: A Simple Screening Method. Yonsei Med. J. 2018, 59, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.Y.; Shin, H.Y.; Yoon, J.Y.; Jung, Y.; Park, C.K. Intereye Comparison of Cirrus OCT in Early Glaucoma Diagnosis and Detecting Photographic Retinal Nerve Fiber Layer Abnormalities. Investig. Ophthalmol. Vis. Sci. 2014, 56, 1733–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros, F.A.; Zangwill, L.M.; Bowd, C.; Vessani, R.M.; Susanna, R.; Weinreb, R.N. Evaluation of Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements for Glaucoma Detection Using Optical Coherence Tomography. Am. J. Ophthalmol. 2005, 139, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Wollstein, G.; Ishikawa, H.; Wang, J.; Beaton, S.A.; Schuman, J.S. Comparison of Three Optical Coherence Tomography Scanning Areas for Detection of Glaucomatous Damage. Am. J. Ophthalmol. 2005, 139, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Aspinall, P.; Bennett, G.; Magidson, J.; Tatham, A.J. The Influence of Optical Coherence Tomography Measurements of Retinal Nerve Fiber Layer on Decision-Making in Glaucoma Diagnosis. Curr. Eye Res. 2017, 42, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.W.; Uhm, K.B.; Seong, M.; Lee, D.E. Retinal Nerve Fiber Layer Volume Measurements in Healthy Subjects Using Spectral Domain Optical Coherence Tomography. J. Glaucoma 2014, 23, 567–573. [Google Scholar] [CrossRef]
- Leung, C.K.; Chan, W.M.; Yung, W.H.; Ng, A.C.; Woo, J.; Tsang, M.K.; Tse, R.K. Comparison of Macular and Peripapillary Measurements for the Detection of Glaucoma: An Optical Coherence Tomography Study. Ophthalmology 2005, 112, 391–400. [Google Scholar] [CrossRef]
- Oddone, F.; Lucenteforte, E.; Michelessi, M.; Rizzo, S.; Donati, S.; Parravano, M.; Virgili, G. Macular versus Retinal Nerve Fiber Layer Parameters for Diagnosing Manifest Glaucoma: A Systematic Review of Diagnostic Accuracy Studies. Ophthalmology 2016, 123, 939–949. [Google Scholar] [CrossRef]
- Nakatani, Y.; Higashide, T.; Ohkubo, S.; Takeda, H.; Sugiyama, K. Evaluation of Macular Thickness and Peripapillary Retinal Nerve Fiber Layer Thickness for Detection of Early Glaucoma Using Spectral Domain Optical Coherence Tomography. J. Glaucoma 2011, 20, 252–259. [Google Scholar] [CrossRef]
- Mwanza, J.C.; Durbin, M.K.; Budenz, D.L.; Sayyad, F.E.; Chang, R.T.; Neelakantan, A.; Godfrey, D.G.; Carter, R.; Crandall, A.S. Glaucoma Diagnostic Accuracy of Ganglion Cell-Inner Plexiform Layer Thickness: Comparison with Nerve Fiber Layer and Optic Nerve Head. Ophthalmology 2012, 119, 1151–1158. [Google Scholar] [CrossRef]
- Akashi, A.; Kanamori, A.; Nakamura, M.; Fujihara, M.; Yamada, Y.; Negi, A. Comparative Assessment for the Ability of Cirrus, RTVue, and 3D-OCT to Diagnose Glaucoma. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4478–4484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maa, A.Y.; McCord, S.; Lu, X.; Janjua, R.; Howell, A.V.; Hunt, K.J.; Medert, C.M.; Giangiacomo, A.; Lynch, M.G. The Impact of OCT on Diagnostic Accuracy of the Technology-Based Eye Care Services Protocol: Part II of the Technology-Based Eye Care Services Compare Trial. Ophthalmology 2020, 127, 544–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, M.; Hiratsuka, Y.; Nakano, T.; Kita, Y.; Watanabe, T.; Tamura, H.; Kawasaki, R.; Yokoyama, T.; Takano, S. Detection of Glaucoma and Other Vision-Threatening Ocular Diseases in the Population Recruited at Specific Health Checkups in Japan. Clin. Epidemiol. 2020, 12, 1381–1388. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.R.; Patella, V.M. Automated Static Perimetry, 2nd ed.; Mosby: St. Louis, MO, USA, 1999; pp. 121–190. [Google Scholar]
- Foster, P.J.; Buhrmann, R.; Quigley, H.A.; Johnson, G.J. The Definition and Classification of Glaucoma in Prevalence Surveys. Br. J. Ophthalmol. 2002, 86, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Kanda, Y. Investigation of the Freely Available Easy-to-Use Software ‘EZR’ for Medical Statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Quigley, H.A.; Enger, C.; Katz, J.; Sommer, A.; Scott, R.; Gilbert, D. Risk Factors for the Development of Glaucomatous Visual Field Loss in Ocular Hypertension. Arch. Ophthalmol. 1994, 112, 644–649. [Google Scholar] [CrossRef]
- Sommer, A.; Miller, N.R.; Pollack, I.; Maumenee, A.E.; George, T. The Nerve Fiber Layer in the Diagnosis of Glaucoma. Arch. Ophthalmol. 1977, 95, 2149–2156. [Google Scholar] [CrossRef]
- Fletcher, R.H.; Fletcher, S.W.; Fletcher, G.S. Clinical Epidemiology: The Essentials; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Kim, K.E.; Ahn, S.J.; Kim, D.M. Comparison of Two Different Spectral Domain Optical Coherence Tomography Devices in the Detection of Localized Retinal Nerve Fiber Layer Defects. Jpn. J. Ophthalmol. 2013, 57, 347–358. [Google Scholar] [CrossRef]
- Yang, Z.; Tatham, A.J.; Zangwill, L.M.; Weinreb, R.N.; Zhang, C.; Medeiros, F.A. Diagnostic Ability of Retinal Nerve Fiber Layer Imaging by Swept-Source Optical Coherence Tomography in Glaucoma. Am. J. Ophthalmol. 2015, 159, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Mishra, S.K.; Agarwal, E.; Sharma, R.; Bhartiya, S.; Dada, T. Assessment of Retinal Nerve Fiber Layer Changes by Cirrus High-Definition Optical Coherence Tomography in Myopia. J. Curr. Glaucoma Pract. 2017, 11, 52–57. [Google Scholar] [CrossRef]
- Paquet, C.; Boissonnot, M.; Roger, F.; Dighiero, P.; Gil, R.; Hugon, J. Abnormal Retinal Thickness in Patients with Mild Cognitive Impairment and Alzheimer’s Disease. Neurosci. Lett. 2007, 420, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Inzelberg, R.; Ramirez, J.A.; Nisipeanu, P.; Ophir, A. Retinal Nerve Fiber Layer Thinning in Parkinson Disease. Vision Res. 2004, 44, 2793–2797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moschos, M.M.; Tagaris, G.; Markopoulos, I.; Margetis, I.; Tsapakis, S.; Kanakis, M.; Koutsandrea, C. Morphologic Changes and Functional Retinal Impairment in Patients with Parkinson Disease without Visual Loss. Eur. J. Ophthalmol. 2011, 21, 24–29. [Google Scholar] [CrossRef]
- Garcia-Martin, E.; Larrosa, J.M.; Polo, V.; Satue, M.; Marques, M.L.; Alarcia, R.; Seral, M.; Fuertes, I.; Otin, S.; Pablo, L.E. Distribution of Retinal Layer Atrophy in Patients with Parkinson Disease and Association with Disease Severity and Duration. Am. J. Ophthalmol. 2014, 157, 470–478.e2. [Google Scholar] [CrossRef] [PubMed]
- Pueyo, V.; Ara, J.R.; Almarcegui, C.; Martin, J.; Güerri, N.; García, E.; Pablo, L.E.; Honrubia, F.M.; Fernandez, F.J. Sub-Clinical Atrophy of the Retinal Nerve Fibre Layer in Multiple Sclerosis. Acta Ophthalmol. 2010, 88, 748–752. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martin, E.; Polo, V.; Larrosa, J.M.; Marques, M.L.; Herrero, R.; Martin, J.; Ara, J.R.; Fernandez, J.; Pablo, L.E. Retinal Layer Segmentation in Patients with Multiple Sclerosis Using Spectral Domain Optical Coherence Tomography. Ophthalmology 2014, 121, 573–579. [Google Scholar] [CrossRef]
- Yılmaz, U.; Küçük, E.; Ülgen, A.; Özköse, A.; Demircan, S.; Ulusoy, D.M.; Zararsız, G. Retinal Nerve Fiber Layer and Macular Thickness Measurement in Patients with Schizophrenia. Eur. J. Ophthalmol. 2016, 26, 375–378. [Google Scholar] [CrossRef]
- Sagiv, O.; Fishelson-Arev, T.; Buckman, G.; Mathalone, N.; Wolfson, J.; Segev, E.; Peled, R.; Lavi, I.; Geyer, O. Retinal Nerve Fibre Layer Thickness Measurements by Optical Coherence Tomography in Patients with Sleep Apnoea Syndrome. Clin. Exp. Ophthalmol. 2014, 42, 132–138. [Google Scholar] [CrossRef]
- Dogan, B.; Kazim Erol, M.; Dogan, U.; Habibi, M.; Bulbuller, N.; Turgut Coban, D.; Bulut, M. The Retinal Nerve Fiber Layer, Choroidal Thickness, and Central Macular Thickness in Morbid Obesity: An Evaluation Using Spectral-Domain Optical Coherence Tomography. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 886–891. [Google Scholar]
- Laiginhas, R.; Guimarães, M.; Cardoso, P.; Santos-Sousa, H.; Preto, J.; Nora, M.; Chibante, J.; Falcão-Reis, F.; Falcão, M. Retinal Nerve Fiber Layer Thickness Decrease in Obesity as a Marker of Neurodegeneration. Obes. Surg. 2019, 29, 2174–2179. [Google Scholar] [CrossRef]
- Zarei, R.; Anvari, P.; Eslami, Y.; Fakhraie, G.; Mohammadi, M.; Jamali, A.; Afarideh, M.; Ghajar, A.; Heydarzade, S.; Esteghamati, A.; et al. Retinal Nerve Fibre Layer Thickness Is Reduced in Metabolic Syndrome. Diabet. Med. 2017, 34, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Cikmazkara, I.; Ugurlu, S.K. Peripapillary Retinal Nerve Fiber Layer Thickness in Patients with Iron Deficiency Anemia. Indian J. Ophthalmol. 2016, 64, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.J. The Epidemiology of Eye Disease; Arnold: London, UK, 2003. [Google Scholar]
Demographic Characteristics | ||||
---|---|---|---|---|
Age, Years | 62.5 ± 9.0 | |||
Sex (Male/Female), n/n | 167/336 | |||
Ocular Characteristics | All (n = 1006) | Normal (n = 874) | Glaucoma (n = 132) | p-Value † |
Spherical equivalent, D | −1.12 ± 2.58 | −0.96 ± 2.46 | −2.12 ± 3.11 | <0.01 |
logMAR | −0.04 ± 0.08 | −0.05 ± 0.07 | −0.01 ± 0.11 | <0.01 |
IOP, mmHg | 14.6 ± 2.8 | 14.6 ± 2.8 | 14.9 ± 2.9 | 0.18 |
MD (dB) | −0.76 ± 5.50 | −0.13 ± 1.81 | −4.96 ± 13.79 | <0.01 |
PSD (dB) | 2.42 ± 2.12 | 1.97 ± 1.26 | 5.41 ± 3.69 | <0.01 |
Average thickness cpRNFL (μm) | 95.9 ± 13.1 | 98.4 ± 11.5 | 79.4 ± 10.9 | <0.01 |
Fundus Photography | Fundus Photography with OCT | Fundus Photography with OCT and Comprehensive Eye Examination | |
---|---|---|---|
24 doctors | 1754/3168 | 2535/3168 | 2485/3168 |
12 ophthalmologists | 877/1584 | 1303/1584 | 1264/1584 |
12 ophthalmology residents | 877/1584 | 1232/1584 | 1221/1584 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, T.; Hiratsuka, Y.; Kita, Y.; Tamura, H.; Kawasaki, R.; Yokoyama, T.; Kawashima, M.; Nakano, T.; Yamada, M. Combining Optical Coherence Tomography and Fundus Photography to Improve Glaucoma Screening. Diagnostics 2022, 12, 1100. https://doi.org/10.3390/diagnostics12051100
Watanabe T, Hiratsuka Y, Kita Y, Tamura H, Kawasaki R, Yokoyama T, Kawashima M, Nakano T, Yamada M. Combining Optical Coherence Tomography and Fundus Photography to Improve Glaucoma Screening. Diagnostics. 2022; 12(5):1100. https://doi.org/10.3390/diagnostics12051100
Chicago/Turabian StyleWatanabe, Tomoyuki, Yoshimune Hiratsuka, Yoshiyuki Kita, Hiroshi Tamura, Ryo Kawasaki, Tetsuji Yokoyama, Motoko Kawashima, Tadashi Nakano, and Masakazu Yamada. 2022. "Combining Optical Coherence Tomography and Fundus Photography to Improve Glaucoma Screening" Diagnostics 12, no. 5: 1100. https://doi.org/10.3390/diagnostics12051100
APA StyleWatanabe, T., Hiratsuka, Y., Kita, Y., Tamura, H., Kawasaki, R., Yokoyama, T., Kawashima, M., Nakano, T., & Yamada, M. (2022). Combining Optical Coherence Tomography and Fundus Photography to Improve Glaucoma Screening. Diagnostics, 12(5), 1100. https://doi.org/10.3390/diagnostics12051100