Can EEG Correlates Predict Treatment Efficacy in Children with Overlapping ASD and SLI Symptoms: A Case Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Report
- -
- A speech–language pathologist conducted speech–language therapy every day for 60 min during the first year, after which it was reduced to 2–3 three times per week.
- -
- A special educator conducted sensory integration therapy once a week for 60 min.
- -
- A special educator conducted psychomotor re-education two times per week for 60 min.
- -
- A psychologist conducted psychotherapy counseling sessions with the mother two times per month for 60 min.
2.2. Study Design
2.3. Measures and EEG Recordings
2.4. Statistical Analysis
3. Results
3.1. Cognitive Profile
3.2. ASD Symptoms
3.3. Sensory Profile
3.4. Language and Socioemotional Development
3.5. EEG Findings
4. Discussion
4.1. Cognitive Profile
4.2. Autism Risk Score
4.3. Sensory Profile
4.4. Speech–Language Profile
4.5. EEG Findings
4.6. Correlations
4.7. Time Dynamics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASD | Autism Spectrum Disorder |
SLI | Specific Language Impairment |
EEG | Electroencephalography |
IEPSP | Institute for Experimental Phonetics and Speech Pathology |
MR | Magnetic Resonance |
BERA | Brainstem evoked response audiometry |
RTČ-P | Developmental test Čuturić |
REVISK | Serbian adaptation of the Wechsler Intelligence Scale for Children-Revised |
GARS-3 | Gilliam Autism Rating Scale Third Edition |
CCC-2 | Children’s Communication Checklist |
SEPAC | The scale for evaluation of psychophysiological abilities of children |
AI | Autism Index |
GCC | General Communication Composite |
SIDC | Social Interaction Deviance Composite |
PC | Pragmatic Composite |
EOG | Electrooculograms |
ICA | Independent Component Analysis |
FFT | Fast Fourier Transform |
VIQ | Verbal intelligence quotient |
PIQ | Performance intelligence quotient |
Appendix A
EEG Electrodes | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Assessment Points | Task | Fp1 | Fp2 | F3 | F4 | C3 | C4 | P3 | P4 | O1 | O2 | F7 | F8 | T3 | T4 | T5 | T6 | Fz | Cz | Pz |
t0 | RS | 7.173 | 4.598 | 7.338 | 6.553 | 4.763 | 10.260 | 5.804 | 10.287 | 13.849 | 24.660 | 9.142 | 3.379 | 6.685 | 10.161 | 10.839 | 14.379 | 10.407 | 5.741 | 3.964 |
LT | 8.847 | 9.456 | 10.268 | 12.810 | 7.547 | 12.846 | 12.394 | 10.891 | 9.354 | 12.544 | 10.007 | 13.233 | 15.594 | 17.718 | 17.472 | 14.329 | 12.931 | 6.851 | 7.845 | |
t1 | RS | 4.118 | 8.491 | 4.802 | 6.319 | 6.714 | 4.832 | 6.638 | 3.867 | 13.345 | 13.322 | 6.102 | 5.884 | 7.082 | 8.276 | 9.028 | 9.483 | 7.195 | 6.431 | 6.965 |
LT | 6.394 | 8.754 | 7.380 | 10.582 | 6.948 | 4.160 | 6.644 | 5.683 | 14.145 | 11.951 | 6.930 | 5.043 | 8.069 | 10.058 | 12.841 | 13.738 | 16.926 | 8.902 | 6.982 | |
t2 | RS | 3.858 | 7.966 | 3.993 | 6.497 | 5.756 | 4.571 | 6.254 | 3.123 | 12.105 | 12.290 | 5.207 | 5.437 | 6.244 | 7.652 | 9.065 | 7.852 | 6.103 | 5.904 | 6.016 |
LT | 4.049 | 5.932 | 5.339 | 5.426 | 3.827 | 7.259 | 6.250 | 6.575 | 15.990 | 10.817 | 5.991 | 6.184 | 9.353 | 9.642 | 9.162 | 7.468 | 3.511 | 4.559 | 7.603 | |
t3 | RS | 14.987 | 14.910 | 7.600 | 8.398 | 5.636 | 2.909 | 5.477 | 7.361 | 11.276 | 17.512 | 8.254 | 5.483 | 5.834 | 8.746 | 6.908 | 7.639 | 5.976 | 10.844 | 7.768 |
LT | 4.731 | 4.125 | 6.625 | 5.205 | 5.154 | 4.157 | 3.871 | 5.730 | 19.005 | 18.284 | 4.002 | 2.089 | 4.639 | 4.457 | 6.576 | 8.586 | 8.488 | 10.154 | 3.829 | |
t4 | RS | 4.677 | 6.898 | 5.636 | 6.008 | 6.786 | 8.035 | 7.859 | 7.842 | 18.289 | 9.822 | 5.496 | 4.071 | 3.839 | 6.251 | 8.945 | 11.265 | 4.258 | 8.511 | 7.780 |
LT | 7.577 | 6.204 | 9.329 | 6.098 | 5.244 | 7.244 | 8.184 | 8.502 | 20.317 | 8.855 | 7.691 | 7.665 | 4.215 | 8.176 | 6.087 | 12.497 | 8.387 | 6.901 | 6.685 | |
t5 | RS | 8.773 | 7.429 | 6.674 | 5.300 | 7.320 | 6.646 | 5.185 | 7.648 | 7.055 | 12.323 | 5.506 | 5.308 | 5.566 | 4.249 | 5.053 | 6.290 | 8.262 | 8.513 | 6.162 |
LT | 6.407 | 5.451 | 12.041 | 10.591 | 9.837 | 10.526 | 12.369 | 10.605 | 13.806 | 10.718 | 8.699 | 3.946 | 9.099 | 5.045 | 10.707 | 8.653 | 11.611 | 11.037 | 13.049 |
TASK | Fdiff = (Fp1 + F3 + F7 − Fp2 − F4 − F8)/3 | Frange = (Fdiffti − Fdifftmin) | Fnorm = Frangeti/Frangetmax) |
---|---|---|---|
t0 | −2.126 | 0.000 | 0.000 |
t1 | −1.225 | 0.901 | 0.199 |
t2 | −0.721 | 1.404 | 0.311 |
t3 | 1.313 | 3.439 | 0.762 |
t4 | 1.543 | 3.669 | 0.813 |
t5 | 2.386 | 4.512 | 1.000 |
References
- Bishop, D.V. What causes SLI in children? Current directions. Psychol. Sci. 2006, 15, 217–221. [Google Scholar]
- Tomblin, J.B.; Records, N.L.; Buckwalter, P.; Zhang, X.; Smith, E.; O’Brien, M. Prevalence of specific language impairment in kindergarten children. J. Speech Lang. Hear. Res. 1997, 40, 1245–1260. [Google Scholar] [CrossRef] [Green Version]
- Fombonne, E. The rising prevalence of autism. J. Child Psychol. Psychiatry 2018, 59, 717–720. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Leventhal, B.L.; Koh, Y.-J.; Fombonne, E.; Laska, E.; Lim, E.-C.; Cheon, K.-A.; Kim, S.-J.; Kim, Y.-K.; Lee, H. Prevalence of autism spectrum disorders in a total population sample. Am. J. Psychiatry 2011, 168, 904–912. [Google Scholar] [CrossRef] [Green Version]
- Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny, W.; Rosenberg, C.R.; White, T. Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill. Summ. 2018, 67, 1. [Google Scholar] [CrossRef] [PubMed]
- Association, A.P. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Georgiou, N.; Spanoudis, G. Developmental Language Disorder and Autism: Commonalities and Differences on Language. Brain Sci. 2021, 11, 589. [Google Scholar] [CrossRef]
- Cohen, D.J.; Volkmar, F.R. Handbook of Autism and Pervasive Developmental Disorders; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Bishop, D.V. Pragmatic language impairment: A correlate of SLI, a distinct subgroup, or part of the autistic continuum? In Speech and Language Impairments in Children; Psychology Press: London, UK, 2014; pp. 113–128. [Google Scholar]
- Riches, N.G.; Loucas, T.; Baird, G.; Charman, T.; Simonoff, E. Sentence repetition in adolescents with specific language impairments and autism: An investigation of complex syntax. Int. J. Lang. Commun. Disord. 2010, 45, 47–60. [Google Scholar] [CrossRef]
- Williams, D.; Botting, N.; Boucher, J. Language in autism and specific language impairment: Where are the links? Psychol. Bull. 2008, 134, 944. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.E.; Giarelli, E.; Lee, L.-C.; Schieve, L.A.; Kirby, R.S.; Cunniff, C.; Nicholas, J.; Reaven, J.; Rice, C.E. Autism spectrum disorder and co-occurring developmental, psychiatric, and medical conditions among children in multiple populations of the United States. J. Dev. Behav. Pediatrics 2010, 31, 267–275. [Google Scholar] [CrossRef]
- Baird, G.; Simonoff, E.; Pickles, A.; Chandler, S.; Loucas, T.; Meldrum, D.; Charman, T. Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: The Special Needs and Autism Project (SNAP). Lancet 2006, 368, 210–215. [Google Scholar] [CrossRef]
- De Fossé, L.; Hodge, S.M.; Makris, N.; Kennedy, D.N.; Caviness, V.S., Jr.; McGrath, L.; Steele, S.; Ziegler, D.A.; Herbert, M.R.; Frazier, J.A. Language-association cortex asymmetry in autism and specific language impairment. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2004, 56, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Pringle, B.A. Diagnostic History and Treatment of School-Aged Children with Autism Spectrum Disorder and Special Health Care Needs; US Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2012.
- Roberts, J.A.; Rice, M.L.; Tager–Flusberg, H. Tense marking in children with autism. Appl. Psycholinguist. 2004, 25, 429–448. [Google Scholar] [CrossRef] [Green Version]
- Kjelgaard, M.M.; Tager-Flusberg, H. An investigation of language impairment in autism: Implications for genetic subgroups. Lang. Cogn. Process. 2001, 16, 287–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitehouse, A.J.; Barry, J.G.; Bishop, D.V. Further defining the language impairment of autism: Is there a specific language impairment subtype? J. Commun. Disord. 2008, 41, 319–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, D.V. Overlaps between autism and language impairment: Phenomimicry or shared etiology? Behav. Genet. 2010, 40, 618–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durrleman, S.; Delage, H. Autism spectrum disorder and specific language impairment: Overlaps in syntactic profiles. Lang. Acquis. 2016, 23, 361–386. [Google Scholar] [CrossRef]
- Botting, N.; Conti-Ramsden, G. Autism, primary pragmatic difficulties, and specific language impairment: Can we distinguish them using psycholinguistic markers? Dev. Med. Child Neurol. 2003, 45, 515–524. [Google Scholar] [CrossRef]
- Tager-Flusberg, H. Language and understanding minds: Connections in autism. Underst. Other Minds: Perspect. Dev. Cogn. Neurosci. 2000, 2, 124–149. [Google Scholar]
- Gurau, O.; Bosl, W.J.; Newton, C.R. How useful is electroencephalography in the diagnosis of autism spectrum disorders and the delineation of subtypes: A systematic review. Front. Psychiatry 2017, 8, 121. [Google Scholar] [CrossRef] [Green Version]
- Biasiucci, A.; Franceschiello, B.; Murray, M.M. Electroencephalography. Curr. Biol. 2019, 29, R80–R85. [Google Scholar] [CrossRef] [Green Version]
- Orekhova, E.; Stroganova, T.; Nygren, G.; Tsetlin, M.; Posikera, I.; Gillberg, C.; Elam, M. Excess of high frequency electroencephalogram oscillations in boys with autism. Biol. Psychiatry 2007, 62, 1022–1029. [Google Scholar] [CrossRef]
- Daoust, A.-M.; Limoges, É.; Bolduc, C.; Mottron, L.; Godbout, R. EEG spectral analysis of wakefulness and REM sleep in high functioning autistic spectrum disorders. Clin. Neurophysiol. 2004, 115, 1368–1373. [Google Scholar] [CrossRef]
- Elhabashy, H.; Raafat, O.; Afifi, L.; Raafat, H.; Abdullah, K. Quantitative EEG in autistic children. Egypt. J. Neurol. Psychiatry Neurosurg. 2015, 52, 176. [Google Scholar]
- Coben, R.; Clarke, A.R.; Hudspeth, W.; Barry, R.J. EEG power and coherence in autistic spectrum disorder. Clin. Neurophysiol. 2008, 119, 1002–1009. [Google Scholar] [CrossRef]
- van Diessen, E.; Senders, J.; Jansen, F.E.; Boersma, M.; Bruining, H. Increased power of resting-state gamma oscillations in autism spectrum disorder detected by routine electroencephalography. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 537–540. [Google Scholar] [CrossRef] [Green Version]
- Murias, M.; Webb, S.J.; Greenson, J.; Dawson, G. Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biol. Psychiatry 2007, 62, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Chan, A.S.; Han, Y.M.; Sze, S.L.; Cheung, M.-C.; Leung, W.W.-M.; Chan, R.C.; To, C.Y. Disordered connectivity associated with memory deficits in children with autism spectrum disorders. Res. Autism Spectr. Disord. 2011, 5, 237–245. [Google Scholar] [CrossRef]
- Lushchekina, E.; Podreznaya, E.; Lushchekin, V.; Strelets, V. A comparative EEG study in normal and autistic children. Neurosci. Behav. Physiol. 2012, 42, 236–243. [Google Scholar] [CrossRef]
- Dawson, G.; Klinger, L.G.; Panagiotides, H.; Lewy, A.; Castelloe, P. Subgroups of autistic children based on social behavior display distinct patterns of brain activity. J. Abnorm. Child Psychol. 1995, 23, 569–583. [Google Scholar] [CrossRef]
- Binder, J.R.; Frost, J.A.; Hammeke, T.A.; Bellgowan, P.S.; Springer, J.A.; Kaufman, J.N.; Possing, E.T. Human temporal lobe activation by speech and nonspeech sounds. Cereb. Cortex 2000, 10, 512–528. [Google Scholar] [CrossRef]
- Hickok, G.; Poeppel, D. The cortical organization of speech processing. Nat. Rev. Neurosci. 2007, 8, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Recasens, M.; Gross, J.; Uhlhaas, P.J. Low-Frequency Oscillatory Correlates of Auditory Predictive Processing in Cortical-Subcortical Networks: A MEG-Study. Sci. Rep. 2018, 8, 14007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickok, G.; Poeppel, D. Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition 2004, 92, 67–99. [Google Scholar] [CrossRef] [PubMed]
- Vingerhoets, G.; Alderweireldt, A.-S.; Vandemaele, P.; Cai, Q.; Van der Haegen, L.; Brysbaert, M.; Achten, E. Praxis and language are linked: Evidence from co-lateralization in individuals with atypical language dominance. Cortex 2013, 49, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Braithwaite, E.K.; Jones, E.J.; Johnson, M.H.; Holmboe, K. Dynamic modulation of frontal theta power predicts cognitive ability in infancy. Dev. Cogn. Neurosci. 2020, 45, 100818. [Google Scholar] [CrossRef]
- Jones, E.J.; Goodwin, A.; Orekhova, E.; Charman, T.; Dawson, G.; Webb, S.; Johnson, M.H. Infant EEG theta modulation predicts childhood intelligence. Sci. Rep. 2020, 10, 11232. [Google Scholar] [CrossRef]
- Meyer, M.; Endedijk, H.M.; Van Ede, F.; Hunnius, S. Theta oscillations in 4-year-olds are sensitive to task engagement and task demands. Sci. Rep. 2019, 9, 6049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanagh, J.F.; Frank, M.J. Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 2014, 18, 414–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, L.-T.; Ranganath, C. Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. Neuroimage 2014, 85, 721–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katahira, K.; Yamazaki, Y.; Yamaoka, C.; Ozaki, H.; Nakagawa, S.; Nagata, N. EEG correlates of the flow state: A combination of increased frontal theta and moderate frontocentral alpha rhythm in the mental arithmetic task. Front. Psychol. 2018, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Kardos, Z.; Tóth, B.; Boha, R.; File, B.; Molnár, M. Age-related changes of frontal-midline theta is predictive of efficient memory maintenance. Neuroscience 2014, 273, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, L.; Kim, S.E.; Lee, J.M.; Brown, E.N.; Purdon, P.L.; Berde, C.B. Electroencephalographic markers of brain development during sevoflurane anaesthesia in children up to 3 years old. Br. J. Anaesth. 2018, 120, 1274–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perone, S.; Palanisamy, J.; Carlson, S.M. Age-related change in brain rhythms from early to middle childhood: Links to executive function. Dev. Sci. 2018, 21, e12691. [Google Scholar] [CrossRef] [PubMed]
- Uhlhaas, P.J.; Roux, F.; Rodriguez, E.; Rotarska-Jagiela, A.; Singer, W. Neural synchrony and the development of cortical networks. Trends Cogn. Sci. 2010, 14, 72–80. [Google Scholar] [CrossRef]
- Orekhova, E.; Stroganova, T.; Posikera, I.; Elam, M. EEG theta rhythm in infants and preschool children. Clin. Neurophysiol. 2006, 117, 1047–1062. [Google Scholar] [CrossRef]
- Matson, J.L.; Tureck, K.; Turygin, N.; Beighley, J.; Rieske, R. Trends and topics in early intensive behavioral interventions for toddlers with autism. Res. Autism Spectr. Disord. 2012, 6, 1412–1417. [Google Scholar] [CrossRef]
- Puerto, E.; Aguilar, J.; López, C.; Chávez, D. Using multilayer fuzzy cognitive maps to diagnose autism spectrum disorder. Appl. Soft Comput. 2019, 75, 58–71. [Google Scholar] [CrossRef]
- van Tongerloo, M.A.; Bor, H.H.; Lagro-Janssen, A.L. Detecting autism spectrum disorders in the general practitioner’s practice. J. Autism Dev. Disord. 2012, 42, 1531–1538. [Google Scholar] [CrossRef] [Green Version]
- Blumberg, S.J.; Zablotsky, B.; Avila, R.M.; Colpe, L.J.; Pringle, B.A.; Kogan, M.D. Diagnosis lost: Differences between children who had and who currently have an autism spectrum disorder diagnosis. Autism 2016, 20, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Maw, S.S.; Haga, C. Effectiveness of cognitive, developmental, and behavioral interventions for Autism Spectrum Disorder in preschool-aged children: A systematic review and meta-analysis. Heliyon 2018, 4, e00763. [Google Scholar] [CrossRef] [Green Version]
- Hardan, A.Y.; Gengoux, G.W.; Berquist, K.L.; Libove, R.A.; Ardel, C.M.; Phillips, J.; Frazier, T.W.; Minjarez, M.B. A randomized controlled trial of Pivotal Response Treatment Group for parents of children with autism. J. Child Psychol. Psychiatry 2015, 56, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Xu, Q.; Li, H.; Zhang, Y.; Wang, Y.; Rogers, S.J.; Xu, X. Effects of parent-implemented Early Start Denver Model intervention on Chinese Toddlers with autism spectrum disorder: A non-randomized controlled trial. Autism Res. 2018, 11, 654–666. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, M.; Simmonds, M.; Marshall, D.; Hodgson, R.; Stewart, L.A.; Rai, D.; Wright, K.; Ben-Itzchak, E.; Eikeseth, S.; Eldevik, S. Intensive behavioral interventions based on applied behaviour analysis for young children with autism: An international collaborative individual participant data meta-analysis. Autism 2021, 25, 1137–1153. [Google Scholar] [CrossRef] [PubMed]
- Pickles, A.; Le Couteur, A.; Leadbitter, K.; Salomone, E.; Cole-Fletcher, R.; Tobin, H.; Gammer, I.; Lowry, J.; Vamvakas, G.; Byford, S. Parent-mediated social communication therapy for young children with autism (PACT): Long-term follow-up of a randomised controlled trial. Lancet 2016, 388, 2501–2509. [Google Scholar] [CrossRef] [Green Version]
- Haglund, N.; Dahlgren, S.; Råstam, M.; Gustafsson, P.; Källén, K. Improvement of autism symptoms after comprehensive intensive early interventions in a clinical setting. Eur. Psychiatry 2017, 41, S127–S128. [Google Scholar] [CrossRef]
- Kupferstein, H. Evidence of increased PTSD symptoms in autistics exposed to applied behavior analysis. Adv. Autism 2018, 4, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Estes, A.; Munson, J.; Rogers, S.J.; Greenson, J.; Winter, J.; Dawson, G. Long-term outcomes of early intervention in 6-year-old children with autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Kolb, B.; Gibb, R. Brain plasticity and behaviour in the developing brain. J. Can. Acad. Child Adolesc. Psychiatry 2011, 20, 265. [Google Scholar]
- Brauer, J.; Anwander, A.; Perani, D.; Friederici, A.D. Dorsal and ventral pathways in language development. Brain Lang. 2013, 127, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Rogers, S.J.; Vismara, L.; Wagner, A.L.; McCormick, C.; Young, G.; Ozonoff, S. Autism treatment in the first year of life: A pilot study of infant start, a parent-implemented intervention for symptomatic infants. J. Autism Dev. Disord. 2014, 44, 2981–2995. [Google Scholar] [CrossRef] [Green Version]
- Vivanti, G.; Paynter, J.; Duncan, E.; Fothergill, H.; Dissanayake, C.; Rogers, S.J.; Victorian Aselcc the Victorian ASELCC Team. Effectiveness and feasibility of the Early Start Denver Model implemented in a group-based community childcare setting. J. Autism Dev. Disord. 2014, 44, 3140–3153. [Google Scholar] [CrossRef] [PubMed]
- Towle, P.O.; Patrick, P.A.; Ridgard, T.; Pham, S.; Marrus, J. Is Earlier Better? The Relationship between Age When Starting Early Intervention and Outcomes for Children with Autism Spectrum Disorder: A Selective Review. Autism Res. Treat. 2020, 2020, 7605876. [Google Scholar] [CrossRef] [PubMed]
- Goin-Kochel, R.P.; Mackintosh, V.H.; Myers, B.J. Parental reports on the efficacy of treatments and therapies for their children with autism spectrum disorders. Res. Autism Spectr. Disord. 2009, 3, 528–537. [Google Scholar] [CrossRef]
- Masi, A.; DeMayo, M.M.; Glozier, N.; Guastella, A.J. An overview of autism spectrum disorder, heterogeneity and treatment options. Neurosci. Bull. 2017, 33, 183–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasari, C. Assessing change in early intervention programs for children with autism. J. Autism Dev. Disord. 2002, 32, 447–461. [Google Scholar] [CrossRef]
- Maksimović, S.; Stanojević, N.; Fatić, S.; Punišić, S.; Adamović, T.; Petrović, N.; Nenadović, V. Multidisciplinary speech and language therapy approach in a child with multiple disabilities including blindness due to retinopathy of prematurity: A case study with a one year follow-up. Logop. Phoniatr. Vocol. 2021, 1–13. [Google Scholar] [CrossRef]
- Čuturić, N. Ljestvica Psihičkog Razvoja Rane Dječje Dobi Brunet-Lezine: Priručnik; Zavod za Produktivnost dela SR Slovenije Ljubljana: Ljubljana, Slovenia, 1973. [Google Scholar]
- Biro, M. Priručnik za REVISK (II Revidirano i Dopunjeno Izdanje); Društvo Psihologa Srbije: Beograd, Serbia, 1998. [Google Scholar]
- Gilliam, J. Gilliam Autism Rating Scale–Third Edition (GARS-3); Pro-Ed: Austin, TX, USA, 2013. [Google Scholar]
- Dunn, W. Child Sensory Profile–2 User’s Manual; Pearson: Bloomingt, MN, USA, 2014. [Google Scholar]
- Bishop, D.V. The Children’s Communication Checklist; Psychological Corporation London: London, UK, 2003; Volume 2. [Google Scholar]
- Adamović, T.; Jurišić-Škevin, A.; Madić, D.; Sovilj, M.; Jeličić, L.; Maksimović, S.; Subotić, M. Head righting reflex in newborns as the predictive factor of early child development: A longitudinal study. Early Child Dev. Care 2020, 192, 1–13. [Google Scholar] [CrossRef]
- Rakonjac, M.; Cuturilo, G.; Stevanovic, M.; Jelicic, L.; Subotic, M.; Jovanovic, I.; Drakulic, D. Differences in speech and language abilities between children with 22q11. 2 deletion syndrome and children with phenotypic features of 22q11. 2 deletion syndrome but without microdeletion. Res. Dev. Disabil. 2016, 55, 322–329. [Google Scholar] [CrossRef]
- Vujović, M.; Sovilj, M.; Plešinac, S.; Rakonjac, M.; Jeličić, L.; Adamović, T.; Stokić, M. Effect of antenatal maternal anxiety on the reactivity of fetal cerebral circulation to auditory stimulation, and early child development. Srp. Arh. Za Celok. Lek. 2019, 147, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Bogavac, I.; Jeličić, L.; Nenadović, V.; Subotić, M.; Janjić, V. The speech and language profile of a child with turner syndrome—A case study. Clin. Linguist. Phon. 2021, 1–14. [Google Scholar] [CrossRef]
- Jeličić, L.; Sovilj, M.; Bogavac, I.; Drobnjak, A.; Gouni, O.; Kazmierczak, M.; Subotić, M. The Impact of Maternal Anxiety on Early Child Development During the COVID-19 Pandemic. Front. Psychol. 2021, 12, 792053. [Google Scholar] [CrossRef] [PubMed]
- Shlens, J. A tutorial on independent component analysis. arXiv 2014, preprint. arXiv:1404.2986. [Google Scholar]
- Hoekstra, R.; Happé, F.; Baron-Cohen, S.; Ronald, A. Association between extreme autistic traits and intellectual disability: Insights from a general population twin study. Br. J. Psychiatry 2009, 195, 531–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, T.-K.; Lupton, M.; Fernandez-Pujals, A.M.; Starr, J.; Davies, G.; Cox, S.; Pattie, A.; Liewald, D.; Hall, L.; MacIntyre, D. Common polygenic risk for autism spectrum disorder (ASD) is associated with cognitive ability in the general population. Mol. Psychiatry 2016, 21, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Crespi, B.J. Autism as a disorder of high intelligence. Front. Neurosci. 2016, 10, 300. [Google Scholar] [CrossRef]
- Hill, W.D.; Davies, G.; Liewald, D.C.; McIntosh, A.M.; Deary, I.J.; Group, C.C.W. Age-dependent pleiotropy between general cognitive function and major psychiatric disorders. Biol. Psychiatry 2016, 80, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Morgan, L.; Wetherby, A.M.; Barber, A. Repetitive and stereotyped movements in children with autism spectrum disorders late in the second year of life. J. Child Psychol. Psychiatry 2008, 49, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Watt, N.; Wetherby, A.M.; Barber, A.; Morgan, L. Repetitive and stereotyped behaviors in children with autism spectrum disorders in the second year of life. J. Autism Dev. Disord. 2008, 38, 1518–1533. [Google Scholar] [CrossRef] [Green Version]
- Leekam, S.R.; Nieto, C.; Libby, S.J.; Wing, L.; Gould, J. Describing the sensory abnormalities of children and adults with autism. J. Autism Dev. Disord. 2007, 37, 894–910. [Google Scholar] [CrossRef]
- Falter, C.M.; Elliott, M.A.; Bailey, A.J. Enhanced visual temporal resolution in autism spectrum disorders. PLoS ONE 2012, 7, e32774. [Google Scholar] [CrossRef]
- Brosnan, M.J.; Gwilliam, L.R.; Walker, I. Brief report: The relationship between visual acuity, the embedded figures test and systemizing in autism spectrum disorders. J. Autism Dev. Disord. 2012, 42, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Cascio, C.; McGlone, F.; Folger, S.; Tannan, V.; Baranek, G.; Pelphrey, K.A.; Essick, G. Tactile perception in adults with autism: A multidimensional psychophysical study. J. Autism Dev. Disord. 2008, 38, 127–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, B.; Rogers, S.L.; Blissett, J.; Ludlow, A.K. The relationship between sensory sensitivity, food fussiness and food preferences in children with neurodevelopmental disorders. Appetite 2020, 150, 104643. [Google Scholar] [CrossRef] [PubMed]
- Papavasiliou, A.S.; Nikaina, I.; Rizou, J.; Alexandrou, S. The effect of a psycho-educational program on CARS scores and short sensory profile in autistic children. Eur. J. Paediatric Neurol. 2011, 15, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Panerai, S.; Ferri, R.; Catania, V.; Zingale, M.; Ruccella, D.; Gelardi, D.; Fasciana, D.; Elia, M. Sensory profiles of children with autism spectrum disorder with and without feeding problems: A comparative study in sicilian subjects. Brain Sci. 2020, 10, 336. [Google Scholar] [CrossRef]
- Kashefimehr, B.; Kayihan, H.; Huri, M. The effect of sensory integration therapy on occupational performance in children with autism. OTJR: Occup. Particip. Health 2018, 38, 75–83. [Google Scholar] [CrossRef]
- Wetherby, A.M.; Prizant, B.M. Communication and Symbolic Behavior Scales: Developmental Profile; Paul H Brookes Publishing Co.: Baltimore, MA, USA, 2002. [Google Scholar]
- Lyakso, E.; Frolova, O.; Matveev, Y. Speech Features and Electroencephalogram Parameters in 4-to 11-Year-Old Children. Front. Behav. Neurosci. 2020, 14, 30. [Google Scholar] [CrossRef]
- Whitehouse, A.J.; Bishop, D.V. Hemispheric division of function is the result of independent probabilistic biases. Neuropsychologia 2009, 47, 1938–1943. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.G.; Harvey, A.S.; Wellard, R.M.; Abbott, D.; Anderson, V.; Kean, M.; Saling, M.; Jackson, G.D. Language cortex activation in normal children. Neurology 2004, 63, 1035–1044. [Google Scholar] [CrossRef]
- Springer, J.A.; Binder, J.R.; Hammeke, T.A.; Swanson, S.J.; Frost, J.A.; Bellgowan, P.S.; Brewer, C.C.; Perry, H.M.; Morris, G.L.; Mueller, W.M. Language dominance in neurologically normal and epilepsy subjects: A functional MRI study. Brain A J. Neurol. 1999, 122, 2033–2046. [Google Scholar] [CrossRef] [Green Version]
- Szaflarski, J.P.; Holland, S.K.; Schmithorst, V.J.; Byars, A.W. fMRI study of language lateralization in children and adults. Hum. Brain Mapp. 2006, 27, 202–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, E.; Reilly, J.; Wulfeck, B.; Dronkers, N.; Opie, M.; Fenson, J.; Kriz, S.; Jeffries, R.; Miller, L.; Herbst, K. Differential effects of unilateral lesions on language production in children and adults. Brain Lang. 2001, 79, 223–265. [Google Scholar] [CrossRef] [PubMed]
- Olulade, O.A.; Seydell-Greenwald, A.; Chambers, C.E.; Turkeltaub, P.E.; Dromerick, A.W.; Berl, M.M.; Gaillard, W.D.; Newport, E.L. The neural basis of language development: Changes in lateralization over age. Proc. Natl. Acad. Sci. USA 2020, 117, 23477–23483. [Google Scholar] [CrossRef] [PubMed]
- Bal, V.H.; Kim, S.H.; Fok, M.; Lord, C. Autism spectrum disorder symptoms from ages 2 to 19 years: Implications for diagnosing adolescents and young adults. Autism Res. 2019, 12, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Klin, A.; Saulnier, C.A.; Sparrow, S.S.; Cicchetti, D.V.; Volkmar, F.R.; Lord, C. Social and communication abilities and disabilities in higher functioning individuals with autism spectrum disorders: The Vineland and the ADOS. J. Autism Dev. Disord. 2007, 37, 748–759. [Google Scholar] [CrossRef]
- Yasuhara, A. Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD). Brain Dev. 2010, 32, 791–798. [Google Scholar] [CrossRef]
- Luria, A.R. Restoration of Brain Functions after War Trauma; Pergamon Press: New York, NY, USA, 1964. [Google Scholar]
- Zwaigenbaum, L.; Bauman, M.L.; Choueiri, R.; Kasari, C.; Carter, A.; Granpeesheh, D.; Mailloux, Z.; Smith Roley, S.; Wagner, S.; Fein, D. Early intervention for children with autism spectrum disorder under 3 years of age: Recommendations for practice and research. Pediatrics 2015, 136, S60–S81. [Google Scholar] [CrossRef] [Green Version]
- Voos, A.C.; Pelphrey, K.A.; Tirrell, J.; Bolling, D.Z.; Wyk, B.V.; Kaiser, M.D.; McPartland, J.C.; Volkmar, F.R.; Ventola, P. Neural mechanisms of improvements in social motivation after pivotal response treatment: Two case studies. J. Autism Dev. Disord. 2013, 43, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ventola, P.; Yang, D.Y.; Friedman, H.E.; Oosting, D.; Wolf, J.; Sukhodolsky, D.G.; Pelphrey, K.A. Heterogeneity of neural mechanisms of response to pivotal response treatment. Brain Imaging Behav. 2015, 9, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Aaronson, B.; Estes, A.; Rogers, S.J.; Dawson, G.; Bernier, R. The Early Start Denver Model Intervention and Mu Rhythm Attenuation in Autism Spectrum Disorders. J. Autism Dev. Disord. 2021, 1–10, ahead of print. [Google Scholar]
- Jones, E.J.; Dawson, G.; Kelly, J.; Estes, A.; Webb, S.J. Parent-delivered early intervention in infants at risk for ASD: Effects on electrophysiological and habituation measures of social attention. Autism Res. 2017, 10, 961–972. [Google Scholar] [CrossRef]
- Elsabbagh, M. Linking risk factors and outcomes in autism spectrum disorder: Is there evidence for resilience? BMJ 2020, 368, l6880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Time | t0 | t1 | t2 | t3 | t4 | t5 |
---|---|---|---|---|---|---|
Age (in years) | 3;0 | 3;6 | 4;0 | 4;6 | 5;0 | 5;6 |
VIQ | 50 | 51 | 55 | 61 | 67 | 74 |
PIQ | 71 | 72 | 77 | 94 | 93 | 93 |
Time | t0 | t1 | t2 | t3 | t4 | t5 |
---|---|---|---|---|---|---|
Age (in months) | 36 | 42 | 48 | 54 | 60 | 66 |
Restricted/repetitive behaviors | 15 | 14 | 12 | 7 | 5 | 4 |
Social interaction | 14 | 13 | 14 | 9 | 7 | 3 |
Social communication | 12 | 12 | 12 | 8 | 7 | 5 |
Emotional responses | 14 | 14 | 9 | 7 | 5 | 3 |
Cognitive style | NA | NA | NA | 11 | 9 | 7 |
Maladaptive speech | NA | NA | NA | 10 | 8 | 5 |
Sum of the standard scores | 55 | 53 | 47 | 52 | 41 | 27 |
Autism Index | 126 | 123 | 112 | 89 | 72 | 52 |
Degree of difficulty | level 3 | level 3 | level 3 | level 2 | level 2 | / |
Sensory Profile | Time and Age (in Months) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
t0 | t1 | t2 | t3 | t4 | t5 | ||||||||
36 | 42 | 48 | 54 | 60 | 66 | ||||||||
Score | SD | Score | SD | Score | SD | Score | SD | Score | SD | Score | SD | ||
Quadrants | Seeking | 38 | X¯ | 35 | X¯ | 17 | −1 | 20 | X¯ | 28 | X¯ | 23 | X¯ |
Avoiding | 78 | +2 | 75 | +2 | 57 | +1 | 58 | +1 | 47 | +1 | 35 | X¯ | |
Sensitivity | 73 | +2 | 78 | +2 | 51 | +1 | 55 | +2 | 50 | +1 | 50 | +1 | |
Registration | 63 | +2 | 52 | +1 | 40 | X¯ | 40 | X¯ | 32 | X¯ | 30 | X¯ | |
Sensory section | Auditory | 36 | +2 | 36 | +2 | 26 | +1 | 28 | +1 | 28 | +1 | 11 | X¯ |
Visual | 6 | −1 | 7 | −1 | 12 | / | 10 | X¯ | 8 | −1 | 10 | X¯ | |
Tactile | 21 | X¯ | 23 | +1 | 5 | −1 | 20 | X¯ | 17 | X¯ | 9 | X¯ | |
Body position | 16 | +1 | 13 | X¯ | 8 | X¯ | 7 | X¯ | 8 | X¯ | 8 | X¯ | |
Movement | 10 | X¯ | 10 | X¯ | 5 | −1 | 7 | X¯ | 10 | X¯ | 8 | X¯ | |
Oral | 46 | +2 | 40 | +2 | 34 | +2 | 40 | +2 | 21 | X¯ | 20 | X¯ | |
Behavioral section | Conduct | 29 | +1 | 32 | +2 | 19 | X¯ | 34 | +2 | 28 | +1 | 19 | X¯ |
Social Emotional | 62 | +2 | 65 | +2 | 48 | +2 | 45 | +2 | 43 | +2 | 35 | X¯ | |
Attentional | 30 | +1 | 28 | +1 | 20 | X¯ | 18 | X¯ | 28 | +1 | 20 | X¯ |
Time | t0 | t1 | t2 | t3 | t4 | t5 |
---|---|---|---|---|---|---|
Age (in months) | 36 | 42 | 48 | 54 | 60 | 66 |
CCC-2: GCC | NA | NA | 2 | 17 | 28 | 43 |
CCC-2: SIDC | NA | NA | 2 | 16 | 35 | 41 |
SEPAC:ESLD | 9 | 13 | 22 | 30 | 41 | 51 |
Sensory Profile | GARS | EEG Findings | Speech–Language Profile | VIQ | PIQ | |
---|---|---|---|---|---|---|
t0 | 1 | 1 | 0 | 0 | 0 | 0 |
t1 | 0.963 | 0.98 | 0.199 | 0.01 | 0.042 | 0.043 |
t2 | 0.296 | 0.811 | 0.311 | 0.386 | 0.208 | 0.261 |
t3 | 0.518 | 0.5 | 0.762 | 0.625 | 0.458 | 1 |
t4 | 0.370 | 0.270 | 0.813 | 0.807 | 0.708 | 0.956 |
t5 | 0 | 0 | 1 | 1 | 1 | 0.956 |
Correlations | |||||||
---|---|---|---|---|---|---|---|
Sensory Profile | GARS | EEG Findings | Speech-Language Profile | VIQ | PIQ | ||
Sensory profile | Pearson Correlation | 1 | 0.846 * | −0.818 * | −0.907 * | −0.858 * | −0.732 |
Sig. (2-tailed) | 0.034 | 0.047 | 0.013 | 0.029 | 0.098 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | |
GARS | Pearson Correlation | 0.846 * | 1 | −0.968 ** | −0.979 ** | −0.999 ** | −0.910 * |
Sig. (2-tailed) | 0.034 | 0.002 | 0.001 | 0.000 | 0.012 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | |
EEG | Pearson Correlation | −0.818 * | −0.968 ** | 1 | 0.971 ** | 0.959 ** | 0.966 ** |
Sig. (2-tailed) | 0.047 | 0.002 | 0.001 | 0.002 | 0.002 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | |
Speech-language profile | Pearson Correlation | −0.907 * | −0.979 ** | 0.971 ** | 1 | 0.975 ** | 0.934 ** |
Sig. (2-tailed) | 0.013 | 0.001 | 0.001 | 0.001 | 0.006 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | |
VIQ | Pearson Correlation | −0.858 * | −0.999 ** | 0.959 ** | 0.975 ** | 1 | 0.889 * |
Sig. (2-tailed) | 0.029 | 0.000 | 0.002 | 0.001 | 0.018 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 | |
PIQ | Pearson Correlation | −0.732 | −0.910 * | 0.966 ** | 0.934 ** | 0.889 * | 1 |
Sig. (2-tailed) | 0.098 | 0.012 | 0.002 | 0.006 | 0.018 | ||
N | 6 | 6 | 6 | 6 | 6 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimović, S.; Jeličić, L.; Marisavljević, M.; Fatić, S.; Gavrilović, A.; Subotić, M. Can EEG Correlates Predict Treatment Efficacy in Children with Overlapping ASD and SLI Symptoms: A Case Report. Diagnostics 2022, 12, 1110. https://doi.org/10.3390/diagnostics12051110
Maksimović S, Jeličić L, Marisavljević M, Fatić S, Gavrilović A, Subotić M. Can EEG Correlates Predict Treatment Efficacy in Children with Overlapping ASD and SLI Symptoms: A Case Report. Diagnostics. 2022; 12(5):1110. https://doi.org/10.3390/diagnostics12051110
Chicago/Turabian StyleMaksimović, Slavica, Ljiljana Jeličić, Maša Marisavljević, Saška Fatić, Aleksandar Gavrilović, and Miško Subotić. 2022. "Can EEG Correlates Predict Treatment Efficacy in Children with Overlapping ASD and SLI Symptoms: A Case Report" Diagnostics 12, no. 5: 1110. https://doi.org/10.3390/diagnostics12051110
APA StyleMaksimović, S., Jeličić, L., Marisavljević, M., Fatić, S., Gavrilović, A., & Subotić, M. (2022). Can EEG Correlates Predict Treatment Efficacy in Children with Overlapping ASD and SLI Symptoms: A Case Report. Diagnostics, 12(5), 1110. https://doi.org/10.3390/diagnostics12051110