End-to-End Deep Learning Approach for Perfusion Data: A Proof-of-Concept Study to Classify Core Volume in Stroke CT
Abstract
Share and Cite
Mittermeier, A.; Reidler, P.; Fabritius, M.P.; Schachtner, B.; Wesp, P.; Ertl-Wagner, B.; Dietrich, O.; Ricke, J.; Kellert, L.; Tiedt, S.; et al. End-to-End Deep Learning Approach for Perfusion Data: A Proof-of-Concept Study to Classify Core Volume in Stroke CT. Diagnostics 2022, 12, 1142. https://doi.org/10.3390/diagnostics12051142
Mittermeier A, Reidler P, Fabritius MP, Schachtner B, Wesp P, Ertl-Wagner B, Dietrich O, Ricke J, Kellert L, Tiedt S, et al. End-to-End Deep Learning Approach for Perfusion Data: A Proof-of-Concept Study to Classify Core Volume in Stroke CT. Diagnostics. 2022; 12(5):1142. https://doi.org/10.3390/diagnostics12051142
Chicago/Turabian StyleMittermeier, Andreas, Paul Reidler, Matthias P. Fabritius, Balthasar Schachtner, Philipp Wesp, Birgit Ertl-Wagner, Olaf Dietrich, Jens Ricke, Lars Kellert, Steffen Tiedt, and et al. 2022. "End-to-End Deep Learning Approach for Perfusion Data: A Proof-of-Concept Study to Classify Core Volume in Stroke CT" Diagnostics 12, no. 5: 1142. https://doi.org/10.3390/diagnostics12051142
APA StyleMittermeier, A., Reidler, P., Fabritius, M. P., Schachtner, B., Wesp, P., Ertl-Wagner, B., Dietrich, O., Ricke, J., Kellert, L., Tiedt, S., Kunz, W. G., & Ingrisch, M. (2022). End-to-End Deep Learning Approach for Perfusion Data: A Proof-of-Concept Study to Classify Core Volume in Stroke CT. Diagnostics, 12(5), 1142. https://doi.org/10.3390/diagnostics12051142