Characterization of Dysfunctional Lens Index and Opacity Grade in a Healthy Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. i-Trace System
2.3. Statistical Analysis
3. Results
3.1. Dysfunctional Lens Index
3.2. Opacity Grade
3.3. Relationship between DLI and Opacity Grade
3.4. Relationship of DLI with Pupil Diameter and Wavefront Aberrations
3.5. Relationship of Opacity Grade with Pupil Diameter and Wavefront Aberrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waring, G.O.; Rocha, K.M. Characterization of the dysfunctional lens syndrome and a review of the literature. Curr. Ophthalmol. Rep. 2018, 6, 249–255. [Google Scholar] [CrossRef]
- Fernández, J.; Rodríguez-Vallejo, M.; Martínez, J.; Tauste, A.; Piñero, D.P. From Presbyopia to Cataracts: A Critical Review on Dysfunctional Lens Syndrome. J. Ophthalmol. 2018, 2018, 4318405. [Google Scholar] [CrossRef] [PubMed]
- Kaweri, L.; Wavikar, C.; James, E.; Pandit, P.; Bhuta, N. Review of current status of refractive lens exchange and role of dysfunctional lens index as its new indication. Indian J. Ophthalmol. 2020, 68, 2797–2803. [Google Scholar] [CrossRef]
- Mercer, R.N.; Milliken, C.M.; Waring, G.O., IV; Rocha, K.M. Future trends in presbyopia correction. J. Refract. Surg. 2021, 37, S28–S34. [Google Scholar] [CrossRef] [PubMed]
- Goh, J.; Lim, Z.W.; Fang, X.; Anees, A.; Nusinovici, S.; Rim, T.H.; Cheng, C.Y.; Tham, Y.C. Artificial Intelligence for Cataract Detection and Management. Asia. Pac. J. Ophthalmol. 2020, 9, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Artal, P.; Benito, A.; Pérez, G.M.; Alcón, E.; De Casas, A.; Pujol, J.; Marín, J.M. An objective scatter index based on double-pass retinal images of a point source to classify cataracts. PLoS ONE 2011, 6, e16823. [Google Scholar] [CrossRef] [Green Version]
- Mello, G.R.; Rocha, K.M.; Santhiago, M.R.; Smadja, D.; Krueger, R.R. Applications of wavefront technology. J. Cataract Refract. Surg. 2012, 38, 1671–1683. [Google Scholar] [CrossRef]
- Li, Z.; Yu, L.; Chen, D.; Chang, P.; Wang, D.; Zhao, Y.; Liu, S.; Zhao, Y.E. Dysfunctional Lens Index Serves as a Novel Surgery Decision-Maker for Age-Related Nuclear Cataracts. Curr. Eye Res. 2019, 44, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Castillo, A.; Verdejo, A.; Palomino, C.; Escalada, A.; Carmona, D.; Ceballos, S. Principles and Clinical Applications of Ray-Tracing aberrometry (Part I). J. Emmetropia 2012, 2, 96–110. [Google Scholar]
- Bradley, J.C.; Bentley, K.C.; Mughal, A.I.; Bodhireddy, H.; Brown, S.M. Dark-adapted pupil diameter as a function of age measured with the NeurOptics pupillometer. J. Refract. Surg. 2011, 27, 202–207. [Google Scholar] [CrossRef]
- Fleissig, E.; Cohen, S.; Iglicki, M.; Goldstein, M.; Zur, D. Changes in choroidal thickness in clinically significant pseudophakic cystoid macular edema. Retina 2018, 38, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Iglicki, M.; Busch, C.; Loewenstein, A.; Fung, A.T.; Invernizzi, A.; Mariussi, M.; Arias, R.; Gabrielle, P.H.; Cebeci, Z.; Okada, M.; et al. Underdiagnosed optic disk pit maculopathy: Spectral domain optical coherence tomography features for accurate diagnosis. Retina 2019, 39, 2161–2166. [Google Scholar] [CrossRef] [PubMed]
- Iglicki, M.; Zur, D.; Negri, H.P.; Esteves, J.; Arias, R.; Holsman, E.; Loewenstein, A.; Busch, C. Results in comparison between 30 gauge ultrathin wall and 27 gauge needle in sutureless intraocular lens flanged technique in diabetic patients: 24-month follow-up study. Acta Diabetol. 2020, 57, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Holgueras, A.; Marcos, M.; Martínez-Plaza, E.; López-Miguel, A.; Mansilla, A.; Maldonado, M.J. Mesopic Disability Glare in Stage-Two Dysfunctional Lens Syndrome. Ophthalmol. Ther. 2022, 11, 677–687. [Google Scholar] [CrossRef]
- Faria-Correia, F.; Ramos, I.; Lopes, B.; Monteiro, T.; Franqueira, N.; Ambrósio, R., Jr. Comparison of Dysfunctional Lens Index and Scheimpflug Lens Densitometry in the Evaluation of Age-Related Nuclear Cataracts. J. Refract. Surg. 2016, 32, 244–248. [Google Scholar] [CrossRef]
- Faria-Correia, F.; Ramos, I.; Lopes, B.; Monteiro, T.; Franqueira, N.; Ambrósio, R., Jr. Correlations of Objective Metrics for Quantifying Dysfunctional Lens Syndrome With Visual Acuity and Phacodynamics. J. Refract. Surg. 2017, 33, 79–83. [Google Scholar] [CrossRef]
- de Souza, R.G.; Golla, A.; Khan, M.; de Oca, I.M.; Khandelwal, S.; Al-Mohtaseb, Z. Association of optical cataract indices with cataract severity and visual function. Int. Ophthalmol. 2022, 42, 27–33. [Google Scholar] [CrossRef]
- Nguyen, P.; Chopra, V. Applications of optical coherence tomography in cataract surgery. Curr. Opin. Ophthalmol. 2013, 24, 47–52. [Google Scholar] [CrossRef]
- Applegate, R.A.; Marsack, J.D.; Ramos, R.; Sarver, E.J. Interaction between aberrations to improve or reduce visual performance. J. Cataract Refract. Surg. 2003, 29, 1487–1495. [Google Scholar] [CrossRef]
- Rocha, K.M.; Nosé, W.; Bottós, K.; Bottós, J.; Morimoto, L.; Soriano, E. Higher-order aberrations of age-related cataract. J. Cataract Refract. Surg. 2007, 33, 1442–1446. [Google Scholar] [CrossRef]
- Lombardo, M.; Lombardo, G. Wave aberration of human eyes and new descriptors of image optical quality and visual performance. J. Cataract Refract. Surg. 2010, 36, 313–331. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, N.; Ormonde, S.E.; Sherwin, T.; McGhee, C.N. Higher-order aberrations of lenticular opacities. J. Cataract. Refract. Surg. 2004, 30, 1642–1648. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, M.R.; Momeni-Moghaddam, H.; Naroo, S.S.; Ghavamsaeedi, H.; Vahedi, A. Dysfunctional lens syndrome. Int. Ophthalmol. 2018, 38, 1759–1763. [Google Scholar] [CrossRef] [PubMed]
Right Eyes | Left Eyes | |||||
---|---|---|---|---|---|---|
Parameters | Group 1 | Group 2 | p-Value | Group 1 | Group 2 | p-Value |
Sphere (D) | −2.90 ± 3.05 | −0.09 ± 2.65 | <0.001 | −3.51 ± 3.97 | −0.04 ± 1.94 | <0.001 |
Cylinder (D) | −1.18 ± 0.96 | −1.27 ± 0.78 | 0.33 | −1.08 ± 1.08 | −1.32 ± 0.75 | 0.09 |
Axis (mm) | 93.70 ± 63.19 | 113.52 ± 33.67 | 0.38 | 90.43 ± 62.61 | 90.09 ± 42.37 | 0.82 |
Angle kappa distance (mm) | 0.30 ± 0.16 | 0.40 ± 0.25 | 0.14 | 0.41 ± 0.15 | 0.31 ± 0.11 | 0.01 |
Angle kappa (degrees) | 205.48 ± 43.33 | 178.43 ± 55.68 | 0.06 | 192.87 ± 153.26 | 242.78 ± 135.82 | 0.04 |
Angle alpha distance (mm) | 0.41 ± 0.12 | 0.43 ± 0.11 | 0.57 | 0.31 ± 0.12 | 0.33 ± 0.13 | 0.96 |
Angle alpha (degrees) | 183.42 ± 25.72 | 186.26 ± 7.42 | 0.71 | 321.17 ± 95.91 | 206.09 ± 170.55 | 0.007 |
Pupil diameter (mm) | 5.83 ± 1.17 | 4.86 ± 0.82 | <0.001 | 5.52 ± 1.26 | 4.71 ± 1.09 | 0.012 |
Limbal diameter (mm) | 11.49 ± 0.39 | 11.53 ± 0.38 | 0.74 | 11.55 ± 0.43 | 11.52 ± 0.44 | 0.69 |
Q value | −0.30 ± 0.35 | −0.23 ± 0.43 | 0.12 | −0.23 ± 0.12 | −0.08 ± 0.55 | 0.12 |
Simk steep (D) | 43.50 ± 2.02 | 42.74 ± 2.09 | 0.18 | 43.23 ± 1.86 | 42.90 ± 1.86 | 0.85 |
Simk flat (D) | 42.30 ± 2.12 | 41.79 ± 1.94 | 0.28 | 42.23 ± 1.95 | 42.00 ± 1.76 | 0.53 |
Simk flat axis (D) | 89.79 ± 78.34 | 114.13 ± 52.39 | 0.54 | 83.83 ± 74.71 | 95.17 ± 58.76 | 0.50 |
Simk average (D) | 42.89 ± 2.04 | 42.26 ± 2.00 | 0.25 | 42.72 ± 1.86 | 42.44 ± 1.77 | 0.65 |
Inferior-superior difference (D) | 0.14 ± 0.45 | 0.26 ± 0.87 | 0.55 | 0.29 ± 0.48 | 0.42 ± 1.13 | 0.64 |
3 mm | 6 mm | ||||||
---|---|---|---|---|---|---|---|
Parameters (µm) | Corneal | Internal | Ocular | Corneal | Internal | Ocular | |
Z3−1 | AE | −0.002 ± 0.015 | −0.006 ± 0.039 | −0.007 ± 0.039 | −0.006 ± 0.038 | −0.003 ± 0.067 | −0.010 ± 0.074 |
RE | −0.03 × 10−1 ± 0.015 | −0.005 ± 0.027 | −0.005 ± 0.027 | −0.04 × 10−1 ± 0.041 | −0.09 × 10−2 ± 0.063 | −0.007 ± 0.073 | |
LE | −0.003 ± 0.015 | −0.008 ± 0.050 | −0.011 ± 0.051 | −0.009 ± 0.036 | −0.005 ± 0.070 | −0.013 ± 0.076 | |
Z31 | AE | 0.01 × 10−2 ± 0.010 | 0.006 ± 0.030 | 0.006 ± 0.030 | 0.02 × 10−2 ± 0.031 | 0.006 ± 0.055 | 0.004 ± 0.061 |
RE | −0.003 ± 0.007 | 0.008 ± 0.034 | 0.006 ± 0.034 | −0.007 ± 0.020 | 0.013 ± 0.060 | 0.006 ± 0.066 | |
LE | 0.003 ± 0.013 | 0.004 ± 0.025 | 0.007 ± 0.027 | 0.009 ± 0.039 | −0.001 ± 0.047 | 0.001 ± 0.057 | |
Z40 | AE | 0.003 ± 0.003 | 0.003 ± 0.017 | 0.005 ± 0.017 | 0.013 ± 0.011 | 0.010 ± 0.073 | 0.027 ± 0.081 |
RE | 0.003 ± 0.003 | 0.004 ± 0.021 | 0.007 ± 0.021 | 0.013 ± 0.014 | 0.012 ± 0.076 | 0.028 ± 0.084 | |
LE | 0.003 ± 0.002 | 0.05 × 10−2 ± 0.011 | 0.003 ± 0.011 | 0.013 ± 0.008 | 0.009 ± 0.070 | 0.027 ± 0.079 | |
Z60 | AE | 0.000 ± 0.000 | −0.04 × 10−2 ± 0.003 | −0.04 × 10−2 ± 0.003 | −0.04 × 10−3 ± 0.10 × 10−2 | −0.001 ± 0.011 | −0.08 × 10−2 ± 0.011 |
RE | −0.001 × 10−3 ± 0.001 | −0.04 × 10−2 ± 0.003 | −0.04 × 10−2 ± 0.001 | −0.01 × 10−2 ± 0.001 | −0.003 ± 0.012 | −0.003 ± 0.013 | |
LE | −0.001 × 10−3 ± 0.07 × 10−3 | 0.04 × 10−2 ± 0.003 | −0.04 × 10−2 ± 0.003 | 0.08 × 10−3 ± 0.07 × 10−1 | 0.04 × 10−2 ± 0.009 | 0.002 ± 0.008 | |
Primary Coma RMS | AE | 0.013 ± 0.012 | 0.037 ± 0.046 | 0.032 ± 0.039 | 0.036 ± 0.034 | 0.064 ± 0.069 | 0.066 ± 0.071 |
RE | 0.013 ± 0.010 | 0.037 ± 0.048 | 0.030 ± 0.032 | 0.036 ± 0.029 | 0.065 ± 0.079 | 0.064 ± 0.074 | |
LE | 0.013 ± 0.015 | 0.036 ± 0.045 | 0.036 ± 0.047 | 0.038 ± 0.039 | 0.063 ± 0.055 | 0.068 ± 0.068 | |
Secondary Coma RMS | AE | 0.03 × 10−2 ± 0.002 × 10−2 | 0.005 ± 0.007 | 0.005 ± 0.007 | 0.001 ± 0.002 | 0.017 ± 0.025 | 0.016 ± 0.027 |
RE | 0.03 × 10−2 ± 0.02 × 10−2 | 0.005 ± 0.006 | 0.005 ± 0.006 | 0.002 ± 0.003 | 0.017 ± 0.022 | 0.016 ± 0.023 | |
LE | 0. 03 × 10−2 ± 0.01 × 10−2 | 0.005 ± 0.008 | 0.005 ± 0.008 | 0.002 ± 0.001 | 0.017 ± 0.029 | 0.017 ± 0.031 | |
Coma-like RMS | AE | 0.013 ± 0.012 | 0.038 ± 0.047 | 0.033 ± 0.040 | 0.037 ± 0.034 | 0.068 ± 0.071 | 0.070 ± 0.074 |
RE | 0.013 ± 0.010 | 0.038 ± 0.048 | 0.031 ± 0.032 | 0.036 ± 0.028 | 0.047 ± 0.080 | 0.068 ± 0.076 | |
LE | 0.013 ± 0.015 | 0.036 ± 0.045 | 0.037 ± 0.047 | 0.038 ± 0.039 | 0.067 ± 0.060 | 0.072 ± 0.072 | |
Spherical-like RMS | AE | 0.004 ± 0.004 | 0.009 ± 0.015 | 0.010 ± 0.015 | 0.014 ± 0.011 | 0.029 ± 0.068 | 0.036 ± 0.079 |
RE | 0.004 ± 0.004 | 0.010 ± 0.019 | 0.011 ± 0.019 | 0.014 ± 0.013 | 0.031 ± 0.071 | 0.037 ± 0.081 | |
LE | 0.004 ± 0.002 | 0.008 ± 0.008 | 0.008 ± 0.008 | 0.013 ± 0.008 | 0.027 ± 0.065 | 0.034 ± 0.077 | |
HOAs RMS | AE | 0.021 ± 0.020 | 0.057 ± 0.061 | 0.057 ± 0.059 | 0.063 ± 0.057 | 0.117 ± 0.115 | 0.121 ± 0.122 |
RE | 0.022 ± 0.021 | 0.061 ± 0.067 | 0.058 ± 0.063 | 0.065 ± 0.065 | 0.126 ± 0.131 | 0.126 ± 0.135 | |
LE | 0.021 ± 0.018 | 0.053 ± 0.053 | 0.055 ± 0.053 | 0.061 ± 0.047 | 0.107 ± 0.092 | 0.115 ± 0.104 |
Mean ± SD | 95% CI | Median [IQR] | Range | |||
---|---|---|---|---|---|---|
Dysfunctional Lens Index | All subjects | AE | 7.91 ± 2.70 | 7.38/8.44 | 9.40 [6.34–10.00] | 0.90/10.00 |
RE | 7.84 ± 2.80 | 7.09/8.59 | 9.17 [6.45–10.00] | 0.93/10.00 | ||
LE | 7.99 ± 2.61 | 7.22/8.77 | 9.55 [6.27–10.00] | 0.90/10.00 | ||
Group 1 | AE | 8.89 ± 2.00 | 8.36/9.43 | 10.00 [8.22–10.00] | 2.00/10.00 | |
RE | 9.18 ± 1.42 | 8.67/9.68 | 10.00 [8.42–10.00] | 4.63/10.00 | ||
LE | 8.49 ± 2.60 | 7.36/9.62 | 10.00 [7.93–10.00] | 2.00/10.00 | ||
Group 2 | AE | 6.71 ± 2.97 | 5.83/7.60 | 6.95 [4.24–9.93] | 0.90/10.00 | |
RE | 5.93 ± 3.19 | 4.55/7.31 | 6.34 [2.60–8.98] | 0.93/10.00 | ||
LE | 7.49 ± 2.57 | 6.38/8.61 | 8.46 [5.61–10.00] | 0.90/10.00 | ||
Opacity Grade | All subjects | AE | 1.33 ± 0.91 | 1.16/1.51 | 1.00 [0.50–1.50] | 0.50/4.00 |
RE | 1.29 ± 0.89 | 1.05/1.52 | 1.00 [0.50–1.50] | 0.50/4.00 | ||
LE | 1.39 ± 0.94 | 1.11/1.67 | 1.00 [0.50–2.00] | 0.50/4.00 | ||
Group 1 | AE | 1.21 ± 0.63 | 1.05/1.38 | 1.00 [0.50–1.50] | 0.50/3.00 | |
RE | 1.09 ± 0.57 | 0.89/1.29 | 1.00 [0.50–1.50] | 0.50/2.50 | ||
LE | 1.39 ± 0.69 | 1.09/1.69 | 1.00 [1.00–2.00] | 0.50/3.00 | ||
Group 2 | AE | 1.48 ± 1.15 | 1.14/1.82 | 1.00 [0.50–2.00] | 0.50/4.00 | |
RE | 1.57 ± 1.17 | 1.06/2.07 | 1.00 [0.50–2.50] | 0.50/4.00 | ||
LE | 1.39 ± 1.15 | 0.90/1.89 | 1.00 [0.50–2.00] | 0.50/4.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Plaza, E.; Ruiz-Fortes, P.; Soto-Negro, R.; Hernández-Rodríguez, C.J.; Molina-Martín, A.; Arias-Puente, A.; Piñero, D.P. Characterization of Dysfunctional Lens Index and Opacity Grade in a Healthy Population. Diagnostics 2022, 12, 1167. https://doi.org/10.3390/diagnostics12051167
Martínez-Plaza E, Ruiz-Fortes P, Soto-Negro R, Hernández-Rodríguez CJ, Molina-Martín A, Arias-Puente A, Piñero DP. Characterization of Dysfunctional Lens Index and Opacity Grade in a Healthy Population. Diagnostics. 2022; 12(5):1167. https://doi.org/10.3390/diagnostics12051167
Chicago/Turabian StyleMartínez-Plaza, Elena, Pedro Ruiz-Fortes, Roberto Soto-Negro, Carlos J. Hernández-Rodríguez, Ainhoa Molina-Martín, Alfonso Arias-Puente, and David P. Piñero. 2022. "Characterization of Dysfunctional Lens Index and Opacity Grade in a Healthy Population" Diagnostics 12, no. 5: 1167. https://doi.org/10.3390/diagnostics12051167
APA StyleMartínez-Plaza, E., Ruiz-Fortes, P., Soto-Negro, R., Hernández-Rodríguez, C. J., Molina-Martín, A., Arias-Puente, A., & Piñero, D. P. (2022). Characterization of Dysfunctional Lens Index and Opacity Grade in a Healthy Population. Diagnostics, 12(5), 1167. https://doi.org/10.3390/diagnostics12051167