The Effect of Fatigue on Lower Limb Joint Stiffness at Different Walking Speeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Walking Training
2.3. Instruments
2.4. Data Reduction
2.5. Statistical Analysis
3. Results
3.1. Hip Joint
3.2. Knee Joint
3.3. Ankle Joint
4. Discussion
4.1. The Effect of Fatigue on Stiffness
4.2. The Effect of Walking Speed on Stiffness
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vaz De Almeida, M.D.; Graça, P.; Afonso, C.; D’Amicis, A.; Lappalainen, R.; Damkjaer, S. Physical activity levels and body weight in a nationally representative sample in the European Union. Public Health Nutr. 1999, 2, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, H.M.; Babakir-Mina, M. Population-level Interventions Based on Walking and Cycling as a Means to Increase Physical Activity. Phys. Act. Health 2021, 5, 55–63. [Google Scholar] [CrossRef]
- Murtagh, E.M.; Nichols, L.; Mohammed, M.A.; Holder, R.; Nevill, A.M.; Murphy, M.H. The effect of walking on risk factors for cardiovascular disease: An updated systematic review and meta-analysis of randomised control trials. Prev. Med. 2015, 72, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, J.; Cen, X.; Yu, P. Effects of Eccentric Exercise on Skeletal Muscle Injury: From an Ultrastructure Aspect: A Review. Phys. Act. Health 2021, 5, 15–20. [Google Scholar] [CrossRef]
- Murtagh, E.M.; Boreham, C.A.; Murphy, M.H. Speed and exercise intensity of recreational walkers. Prev. Med. 2002, 35, 397–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haskell, W.L. Health consequences of physical activity: Understanding and challenges regarding dose-response. Med. Sci. Sports Exerc. 1994, 26, 49–660. [Google Scholar] [CrossRef]
- Excellence, H. Walking and Cycling: Local Measures to Promote Walking and Cycling as Forms of Travel or Recreation; NHS (National Institute for Health and Clinical Excellence): London, UK, 2012. [Google Scholar]
- Mueller-Schotte, S.; Bleijenberg, N.; van der Schouw, Y.T.; Schuurmans, M.J. Fatigue as a long-term risk factor for limitations in instrumental activities of daily living and/or mobility performance in older adults after 10 years. Clin. Interv. Aging 2016, 11, 1579–1587. [Google Scholar] [CrossRef] [Green Version]
- Enoka, R.M.; Duchateau, J. Translating fatigue to human performance. Med. Sci. Sports Exerc. 2016, 48, 2228. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.M. Central and peripheral factors in fatigue. J. Sports Sci. 1995, 13 (Suppl. 1), S49–S53. [Google Scholar] [CrossRef]
- Serpell, B.G.; Scarvell, J.M.; Ball, N.B.; Smith, P.N. Vertical stiffness and muscle strain in professional Australian football. J. Sports Sci. 2014, 32, 1924–1930. [Google Scholar] [CrossRef] [PubMed]
- Hébert-Losier, K.; Eriksson, A. Leg stiffness measures depend on computational method. J. Biomech. 2014, 47, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.H.; Ryew, C.C. Relationship between dimensionless leg stiffness and kinetic variables during gait performance, and its modulation with body weight. Korean J. Sport Biomech. 2016, 26, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Latash, M.L.; Zatsiorsky, V.M. Joint stiffness: Myth or reality? Hum. Mov. Sci. 1993, 12, 653–692. [Google Scholar] [CrossRef]
- Shamaei, K.; Sawicki, G.S.; Dollar, A.M. Estimation of quasi-stiffness and propulsive work of the human ankle in the stance phase of walking. PLoS ONE 2013, 8, e59935. [Google Scholar] [CrossRef] [Green Version]
- Maloney, S.J.; Fletcher, I.M. Lower limb stiffness testing in athletic performance: A critical review. Sports Biomech. 2021, 20, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Hobara, H.; Inoue, K.; Muraoka, T.; Omuro, K.; Sakamoto, M.; Kanosue, K. Leg stiffness adjustment for a range of hopping frequencies in humans. J. Biomech. 2010, 43, 506–511. [Google Scholar] [CrossRef]
- Kelly, L.A.; Lichtwark, G.; Cresswell, A.G. Active regulation of longitudinal arch compression and recoil during walking and running. J. R. Soc. Interface 2015, 12, 20141076. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Collins, S.H. The passive series stiffness that optimizes torque tracking for a lower-limb exoskeleton in human walking. Front. Neurorobotics 2017, 11, 68. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.J.; Crowell, H.P., III; Davis, I.M. Lower extremity stiffness: Implications for performance and injury. Clin. Biomech. 2003, 18, 511–517. [Google Scholar] [CrossRef]
- Granata, K.; Padua, D.; Wilson, S. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J. Electromyogr. Kinesiol. 2002, 12, 127–135. [Google Scholar] [CrossRef]
- Williams, D.; McClay Davis, I.; Scholz, J.; Hamill, J.; Buchanan, T. Lower extremity stiffness in runners with different foot types. Gait Posture 2003, 18, 511–517. [Google Scholar]
- Williams, D., III; McClay, I.; Hamill, J. Arch structure and injury patterns in runners. Clin. Biomech 2001, 16, 341–347. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Y.; Shen, W.W. Lower extremities kinematics variety of young women jogging with different heel height. Int. J. Biomed. Eng. Technol. 2013, 12, 240–251. [Google Scholar] [CrossRef]
- McMahon, T.A.; Cheng, G.C. The mechanics of running: How does stiffness couple with speed? J. Biomech. 1990, 23, 65–78. [Google Scholar] [CrossRef]
- Hamill, J.; Derrick, T.; McClay, I. Joint stiffness during running with different footfall patterns. Arch. Physiol. Biochem. 2000, 108, 47. [Google Scholar]
- Voloshin, A.; Wosk, J. An in vivo study of low back pain and shock absorption in the human locomotor system. J. Biomech. 1982, 15, 21–27. [Google Scholar] [CrossRef]
- Abernethy, B.; Hanna, A.; Plooy, A. The attentional demands of preferred and non-preferred gait patterns. Gait Posture 2002, 15, 256–265. [Google Scholar] [CrossRef]
- Lark, S.D.; Buckley, J.G.; Bennett, S.; Jones, D.; Sargeant, A.J. Joint torques and dynamic joint stiffness in elderly and young men during stepping down. Clin. Biomech. 2003, 18, 848–855. [Google Scholar] [CrossRef]
- Mager, F.; Richards, J.; Hennies, M.; Dötzel, E.; Chohan, A.; Mbuli, A.; Capanni, F. Determination of ankle and metatarsophalangeal stiffness during walking and jogging. J. Appl. Biomech. 2018, 34, 448–453. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Muraki, T.; Kuramatsu, Y.; Furusawa, Y.; Izumi, S.-I. The contribution of quasi-joint stiffness of the ankle joint to gait in patients with hemiparesis. Clin. Biomech. 2012, 27, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Hahn, M.E. Modulation of lower extremity joint stiffness, work and power at different walking and running speeds. Hum. Mov. Sci. 2018, 58, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.G.; Wagenaar, R.C.; LaFiandra, M.E.; Kubo, M.; Obusek, J.P. Increased musculoskeletal stiffness during load carriage at increasing walking speeds maintains constant vertical excursion of the body center of mass. J. Biomech. 2003, 36, 465–471. [Google Scholar] [CrossRef]
- Goldberg, E.J.; Neptune, R.R. Compensatory strategies during normal walking in response to muscle weakness and increased hip joint stiffness. Gait Posture 2007, 25, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Dettmers, C.; Sulzmann, M.; Ruchay-Plössl, A.; Gütler, R.; Vieten, M. Endurance exercise improves walking distance in MS patients with fatigue. Acta Neurol. Scand. 2009, 120, 251–257. [Google Scholar] [CrossRef]
- García-Pinillos, F.; Cartón-Llorente, A.; Jaén-Carrillo, D.; Delgado-Floody, P.; Carrasco-Alarcón, V.; Martínez, C.; Roche-Seruendo, L.E. Does fatigue alter step characteristics and stiffness during running? Gait Posture 2020, 76, 259–263. [Google Scholar] [CrossRef]
- Arampatzis, A.; Brüggemann, G.P.; Metzler, V. The effect of speed on leg stiffness and joint kinetics in human running. J. Biomech. 1999, 32, 1349–1353. [Google Scholar] [CrossRef]
- Akl, A.-R.; Baca, A.; Richards, J.; Conceição, F. Leg and lower limb dynamic joint stiffness during different walking speeds in healthy adults. Gait Posture 2020, 82, 294–300. [Google Scholar] [CrossRef]
- Hayes, P.R.; Caplan, N. Leg stiffness decreases during a run to exhaustion at the speed at O 2max. Eur. J. Sport Sci. 2014, 14, 556–562. [Google Scholar] [CrossRef]
- Gabriel, R.C.; Abrantes, J.; Granata, K.; Bulas-Cruz, J.; Melo-Pinto, P.; Filipe, V. Dynamic joint stiffness of the ankle during walking: Gender-related differences. Phys. Ther. Sport 2008, 9, 16–24. [Google Scholar] [CrossRef]
- Williams, N. The Borg Rating of Perceived Exertion (RPE) scale. Occup. Med. 2017, 67, 404–405. [Google Scholar] [CrossRef] [Green Version]
- Koblbauer, I.F.; van Schooten, K.S.; Verhagen, E.A.; van Dieën, J.H. Kinematic changes during running-induced fatigue and relations with core endurance in novice runners. J. Sci. Med. Sport 2014, 17, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Fu, W.; Shao, E.; Li, L.; Song, L.; Wang, W.; Liu, Y. Acute Effects of Midsole Bending Stiffness on Lower Extremity Biomechanics during Layup Jumps. Appl. Sci. 2020, 10, 397. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Park, S. In Leg stiffness increases with gait speed to maximize propulsion energy during push-off. In Proceedings of the 35th American Society of Biomechanics, Long Beach, CA, USA, 10–13 August 2011. [Google Scholar]
- Bezodis, I.N.; Kerwin, D.G.; Salo, A. Lower-limb mechanics during the support phase of maximum-velocity sprint running. Med. Sci. Sports Exerc. 2008, 40, 707–715. [Google Scholar] [CrossRef]
- Quan, W.; Ren, F.; Sun, D.; Fekete, G.; He, Y. Do Novice Runners Show Greater Changes in Biomechanical Parameters? Appl. Bionics Biomech. 2021, 2021, 8894636. [Google Scholar] [CrossRef] [PubMed]
- Houdijk, H.; Doets, H.C.; van Middelkoop, M.; Veeger, H.D. Joint stiffness of the ankle during walking after successful mobile-bearing total ankle replacement. Gait Posture 2008, 27, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Zeni, J.A., Jr.; Higginson, J.S. Dynamic knee joint stiffness in subjects with a progressive increase in severity of knee osteoarthritis. Clin. Biomech. 2009, 24, 366–371. [Google Scholar] [CrossRef] [Green Version]
- Hobara, H.; Baum, B.S.; Kwon, H.-J.; Miller, R.H.; Ogata, T.; Kim, Y.H.; Shim, J.K. Amputee locomotion: Spring-like leg behavior and stiffness regulation using running-specific prostheses. J. Biomech. 2013, 46, 2483–2489. [Google Scholar] [CrossRef] [Green Version]
- Teixeira-Salmela, L.F.; Nadeau, S.; Milot, M.-H.; Gravel, D.; Requião, L.F. Effects of cadence on energy generation and absorption at lower extremity joints during gait. Clin. Biomech. 2008, 23, 769–778. [Google Scholar] [CrossRef]
- Augustsson, J.; Thomeé, R.; Lindén, C.; Folkesson, M.; Tranberg, R.; Karlsson, J. Single-leg hop testing following fatiguing exercise: Reliability and biomechanical analysis. Scand. J. Med. Sci. Sports 2006, 16, 111–120. [Google Scholar] [CrossRef]
- Andriacchi, T.; Ogle, J.; Galante, J. Walking speed as a basis for normal and abnormal gait measurements. J. Biomech. 1977, 10, 261–268. [Google Scholar] [CrossRef]
- Graf, A.; Judge, J.O.; Õunpuu, S.; Thelen, D.G. The effect of walking speed on lower-extremity joint powers among elderly adults who exhibit low physical performance. Arch. Phys. Med. Rehabil. 2005, 86, 2177–2183. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.R.T.; Araújo, V.L.; Khuu, A.; Lee, S.; Lewis, C.L.; Souza, T.R.; Holt, K.G.; Fonseca, S.T. Effects of sex and walking speed on the dynamic stiffness of lower limb joints. J. Biomech. 2021, 129, 110803. [Google Scholar] [CrossRef] [PubMed]
- Frigo, C.; Crenna, P.; Jensen, L. Moment-angle relationship at lower limb joints during human walking at different velocities. J. Electromyogr. Kinesiol. 1996, 6, 177–190. [Google Scholar] [CrossRef]
- Schache, A.G.; Brown, N.A.; Pandy, M.G. Modulation of work and power by the human lower-limb joints with increasing steady-state locomotion speed. J. Exp. Biol. 2015, 218, 2472–2481. [Google Scholar] [CrossRef] [Green Version]
- Whittington, B.; Silder, A.; Heiderscheit, B.; Thelen, D.G. The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking. Gait Posture 2008, 27, 628–634. [Google Scholar] [CrossRef] [Green Version]
- Ismailidis, P.; Egloff, C.; Hegglin, L.; Pagenstert, G.; Kernen, R.; Eckardt, A.; Ilchmann, T.; Mündermann, A.; Nüesch, C. Kinematic changes in patients with severe knee osteoarthritis are a result of reduced walking speed rather than disease severity. Gait Posture 2020, 79, 256–261. [Google Scholar] [CrossRef]
- Ferber, R.; Osternig, L.R.; Woollacott, M.H.; Wasielewski, N.J.; Lee, J.-H. Reactive balance adjustments to unexpected perturbations during human walking. Gait Posture 2002, 16, 238–248. [Google Scholar] [CrossRef]
- Sawicki, G.S.; Lewis, C.L.; Ferris, D.P. It pays to have a spring in your step. Exerc. Sport Sci. Rev. 2009, 37, 130. [Google Scholar] [CrossRef]
- Kuitunen, S.; Komi, P.V.; Kyröläinen, H. Knee and ankle joint stiffness in sprint running. Med. Sci. Sports Exerc. 2002, 34, 166–173. [Google Scholar] [CrossRef]
- He, Y.; Fekete, G. The Effect of Cryotherapy on Balance Recovery at Different Moments after Lower Extremity Muscle Fatigue. Phys. Act. Health 2021, 5, 255–270. [Google Scholar] [CrossRef]
- Adamczyk, P.G.; Roland, M.; Hahn, M.E. Sensitivity of biomechanical outcomes to independent variations of hindfoot and forefoot stiffness in foot prostheses. Human Mov. Sci. 2017, 54, 154–171. [Google Scholar] [CrossRef]
- Major, M.J.; Twiste, M.; Kenney, L.P.; Howard, D. The effects of prosthetic ankle stiffness on ankle and knee kinematics, prosthetic limb loading, and net metabolic cost of trans-tibial amputee gait. Clin. Biomech. 2014, 29, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J.; Baker, L.; Long, A.; Karavas, N.; Menard, N.; Galiana, I.; Walsh, C.J. Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking. J. Neuroeng. Rehabil. 2018, 15, 66. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, G.S.; Beck, O.N.; Kang, I.; Young, A.J. The exoskeleton expansion: Improving walking and running economy. J. Neuroeng. Rehabil. 2020, 17, 25. [Google Scholar] [CrossRef]
- Xiang, L.; Mei, Q.; Wang, A.; Shim, V.; Fernandez, J.; Gu, Y. Evaluating function in the hallux valgus foot following a 12-week minimalist footwear intervention: A pilot computational analysis. J. Biomech. 2022, 132, 110941. [Google Scholar] [CrossRef]
- Xu, D.; Quan, W.; Zhou, H.; Sun, D.; Baker, J.S.; Gu, Y. Explaining the differences of gait patterns between high and low-mileage runners with machine learning. Sci. Rep. 2022, 12, 2981. [Google Scholar] [CrossRef]
Normal Speed (°/Nm Kg −1) | 25% Faster Speed (°/Nm Kg −1) | Maximum Speed (°/Nm Kg −1) | Speed × Training Significance | Speed Significance | Training Significance | ||
---|---|---|---|---|---|---|---|
Hip Joint | Non-Fatigued | 0.0042 (0.0015) | 0.0072 (0.0020) | 0.0268 (0.0035) | p < 0.001 | p < 0.001 | p < 0.001 |
Fatigued | 0.0128 (0.0035) | 0.0145 (0.0035) | 0.0353 (0.0033) | p < 0.001 | |||
Knee Joint | Non-Fatigued | 0.0691 (0.0146) | 0.0817 (0.0133) | 0.1371 (0.0303) | p < 0.001 | p < 0.001 | p < 0.001 |
Fatigued | 0.0476 (0.0153) | 0. 0602 (0.0143) | 0.0746 (0.0106) | p < 0.001 | |||
Ankle Joint | Non-Fatigued | 0.0688 (0.0112) | 0.0786 (0.0112) | 0.0334 (0.0151) | p > 0.05 | p > 0.05 | p < 0.001 Only at maximum speed |
Fatigued | 0.0686 (0.0117) | 0.0784 (0.0141) | 0.0541 (0.0208) | p > 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, E.; Lu, Z.; Cen, X.; Zheng, Z.; Sun, D.; Gu, Y. The Effect of Fatigue on Lower Limb Joint Stiffness at Different Walking Speeds. Diagnostics 2022, 12, 1470. https://doi.org/10.3390/diagnostics12061470
Shao E, Lu Z, Cen X, Zheng Z, Sun D, Gu Y. The Effect of Fatigue on Lower Limb Joint Stiffness at Different Walking Speeds. Diagnostics. 2022; 12(6):1470. https://doi.org/10.3390/diagnostics12061470
Chicago/Turabian StyleShao, Enze, Zhenghui Lu, Xuanzhen Cen, Zhiyi Zheng, Dong Sun, and Yaodong Gu. 2022. "The Effect of Fatigue on Lower Limb Joint Stiffness at Different Walking Speeds" Diagnostics 12, no. 6: 1470. https://doi.org/10.3390/diagnostics12061470
APA StyleShao, E., Lu, Z., Cen, X., Zheng, Z., Sun, D., & Gu, Y. (2022). The Effect of Fatigue on Lower Limb Joint Stiffness at Different Walking Speeds. Diagnostics, 12(6), 1470. https://doi.org/10.3390/diagnostics12061470