Systematic Review on Post-Mortem Protein Alterations: Analysis of Experimental Models and Evaluation of Potential Biomarkers of Time of Death
Abstract
:1. Introduction
2. Materials and Methods
- -
- Quantitative and/or qualitative post-mortem evaluation of proteins on animal or human tissues;
- -
- English language;
- -
- Year of publication from 2001–2021.
3. Results
3.1. Database Searching
3.2. Analysis on Animal Samples
3.2.1. Analysis of Experimental Animal Models
3.2.2. Analysis of Biological Animal Samples
3.2.3. PMI Examined in Animal Studies
3.2.4. Methods Used in Animal Studies
3.2.5. Results Obtained in Animal Studies
3.3. Analysis on Human Samples
3.3.1. Analysis of Human Experimental Models
3.3.2. Analysis of Human Biological Samples
3.3.3. PMI Examined in Human Studies
3.3.4. Type of Method Used in Human Studies
3.3.5. Results Obtained in Human Studies
3.4. Overall Analysis of Animal and Human Data
4. Discussion
4.1. Comparison of Experimental Models in the Literature
- -
- Early PMI, i.e., a range that can be evaluated in hours (0–24 h from death);
- -
- Intermediate PMI, which is a range that can be calculated in days or weeks (time between 1 day–1 month);
- -
- Late PMI, i.e., a range that can be measured in months or years (1 month–2 years).
4.2. Parameters Evaluated and Comparison of the Results in the Early–Intermediate PMI
4.3. Parameters Evaluated and Comparison of the Results in the Late PMI
4.4. Limitations of Post-Mortem Protein Investigations
- -
- The temperature, which can alter the kinetics of protein degradation. We want to highlight the importance of these data as we believe it is necessary to focus research on proteins that have good resistance to thermal variations. Therefore, we believe it is crucial that the studies always analyze models with different sample exposure temperatures in order to evaluate, how much this variable could influence the kinetics of the studied protein;
- -
- The effects of extrinsic variables, such as the cause of death, which can influence the variation of proteins such as troponins;
- -
- Low levels of evidence related to the lack of statistical significance of the markers examined;
- -
- Still missing evaluation of many tissues;
- -
- The scarcity of data relating to biological fluids. We emphasize the importance of identifying markers in post-mortem fluids, such as blood, considering the easy sampling, even through an external body examination;
- -
- The lack of human models examining “time 0”. All human models concerned corpses found at an unknown time after death, which were subjected to environmental variables or refrigeration. This limitation can affect the accuracy of the model on humans.
4.5. Proposals and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crostack, C.; Sehner, S.; Raupach, T.; Anders, S. Re-establishment of rigor mortis: Evidence for a considerably longer post-mortem time span. Int. J. Leg. Med. 2017, 131, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
- Bray, M. The eye as a chemical indicator of environmental temperature at the time of death. J. Forensic Sci. 1984, 29, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Foster, S.N.; Smith, P.R.; Biggs, M.; Rutty, G.N.; Hollingbury, F.E.; Morley, S.R. Estimation of postmortem interval using vitreous potassium levels in cases of fatal road traffic collision. Arch. Med. Sadowej Kryminol. 2016, 66, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Van den Berge, M.; Wiskerke, D.; Gerretsen, R.R.; Tabak, J.; Sijen, T. DNA and RNA profiling of excavated human remains with varying postmortem intervals. Int. J. Leg. Med. 2016, 130, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Gramlich, I.; Polzin, S.; Patzelt, D. Quantification of mRNA degradation as possible indicator of postmortem interval--a pilot study. Leg. Med. 2003, 5, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Young, S.T.; Wells, J.D.; Hobbs, G.R.; Bishop, C.P. Estimating postmortem interval using RNA degradation and morphological changes in tooth pulp. Forensic Sci. Int. 2013, 229, 163.e1–163.e6. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.H.; Ma, J.L.; Pan, H.; Zeng, Y.; Tao, L.; Zhang, H.; Li, W.C.; Ma, K.J.; Chen, L. Estimation of the human postmortem interval using an established rat mathematical model and multi-RNA markers. Forensic Sci. Med. Pathol. 2017, 13, 20–27. [Google Scholar] [CrossRef]
- Cafarelli, T.M.; Desbuleux, A.; Wang, Y.; Choi, S.G.; De Ridder, D.; Vidal, M. Mapping, modeling, and characterization of protein-protein interactions on a proteomic scale. Curr. Opin. Struct. Biol. 2017, 44, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Mondello, C.; Cardia, L.; Ventura-Spagnolo, E. Immunohistochemical detection of early myocardial infarction: A systematic review. Int. J. Leg. Med. 2017, 131, 411–421. [Google Scholar] [CrossRef]
- Geissenberger, J.; Ehrenfellner, B.; Monticelli, F.C.; Pittner, S.; Steinbacher, P. Dismembered porcine limbs as a proxy for postmortem muscle protein degradation. Int. J. Leg. Med. 2021, 135, 1627–1636. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Qian, H.; Shang, Q.; Xiao, J.; Liang, M.; Gao, B.; Li, T.; Liu, X. PP2A-C may be a promising candidate for postmortem interval estimation. Int. J. Leg. Med. 2021, 135, 837–944. [Google Scholar] [CrossRef] [PubMed]
- Welson, N.N.; Gaber, S.S.; Batiha, G.E.-S.; Ahmed, S.M. Evaluation of time passed since death by examination of oxidative stress markers, histopathological, and molecular changes of major organs in male albino rats. Int. J. Leg. Med. 2020, 135, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, Y.; Zhang, J.; Guan, C.; Liu, L.; Ren, L. Biomarkers of myocardial injury in rats after cantharidin poisoning: Application for postmortem diagnosis and estimation of postmortem interval. Sci. Rep. 2020, 10, 1–9. [Google Scholar]
- Pittner, S.; Bugelli, V.; Weitgasser, K.; Zissler, A.; Sanit, S.; Lutz, L.; Monticelli, F.; Campobasso, C.P.; Steinbacher, P.; Amendt, J. A field study to evaluate PMI estimation methods for advanced decomposition stages. Int. J. Leg. Med. 2020, 134, 1361–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.M.; Zissler, A.; Kim, E.; Ehrenfellner, B.; Cho, E.; Lee, S.I.; Steinbacher, P.; Yun, K.N.; Shin, J.H.; Kim, J.Y.; et al. Postmortem proteomics to discover biomarkers for forensic PMI estimation. Int. J. Leg. Med. 2019, 133, 899–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Procopio, N.; Williams, A.; Chamberlain, A.T.; Buckley, M. Forensic proteomics for the evaluation of the post-mortem decay in bones. J. Proteom. 2018, 177, 21–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrenfellner, B.; Zissler, A.; Steinbacher, P.; Monticelli, F.C.; Pittner, S. Are animal models predictive for human postmortem muscle protein degradation? Int. J. Leg. Med. 2017, 131, 1615–1621. [Google Scholar] [CrossRef] [PubMed]
- Procopio, N.; Chamberlain, A.T.; Buckley, M. Intra- and Interskeletal Proteome Variations in Fresh and Buried Bones. J. Proteome Res. 2017, 16, 2016–2029. [Google Scholar] [CrossRef]
- Hahor, W.; Thongprajukaew, K.; Yoonram, K.; Rodjaroen, S. Gastrointestinal Functionality of Aquatic Animal (Oreochromis niloticus) Carcass in Water Allows Estimating Time of Death. J. Forensic Sci. 2016, 61, 1647–1655. [Google Scholar] [CrossRef]
- Lee, D.-G.; Yang, K.E.; Hwang, J.W.; Kang, H.-S.; Lee, S.-Y.; Choi, S.; Shin, J.; Jang, I.-S.; An, H.J.; Chung, H.; et al. Degradation of Kidney and Psoas Muscle Proteins as Indicators of Post-Mortem Interval in a Rat Model, with Use of Lateral Flow Technology. PLoS ONE 2016, 11, e0160557. [Google Scholar] [CrossRef] [Green Version]
- Pittner, S.; Monticelli, F.C.; Pfisterer, A.; Zissler, A.; Sänger, A.M.; Stoiber, W.; Steinbacher, P. Postmortem degradation of skeletal muscle proteins: A novel approach to determine the time since death. Int. J. Leg. Med. 2016, 130, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Foditsch, E.E.; Saenger, A.M.; Monticelli, F.C. Skeletal muscle proteins: A new approach to delimitate the time since death. Int. J. Leg. Med. 2016, 130, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Boaks, A.; Siwek, D.; Mortazavi, F. The temporal degradation of bone collagen: A histochemical approach. Forensic Sci. Int. 2014, 240, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Kawahara, K.I.; Biswas, K.K.; Ito, T.; Tancharoen, S.; Shiomi, N.; Koda, Y.; Matsuda, F.; Morimoto, Y.; Oyama, Y.; et al. HMGB1: A new marker for estimation of the postmortem interval. Exp. Ther. Med. 2010, 1, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Poloz, Y.O.; O’Day, D.H. Determining time of death: Temperature-dependent postmortem changes in calcineurin A, MARCKS, CaMKII, and protein phosphatase 2A in mouse. Int. J. Leg. Med. 2009, 123, 305–314. [Google Scholar] [CrossRef]
- Curcio, C.; Asheld, J.J.; Chabla, J.M.; Ayubcha, D.; Hallas, B.H.; Horowitz, J.M.; Torres, G. Expression profile of Bag 1 in the postmortem brain. J. Chem. Neuroanat. 2006, 32, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Sabucedo, A.J.; Furton, K.G. Estimation of postmortem interval using the protein marker cardiac Troponin I. Forensic Sci. Int. 2003, 134, 11–16. [Google Scholar] [CrossRef]
- Kang, S.; Kassam, N.; Gauthier, M.L.; O’Day, D.H. Post-mortem changes in calmodulin binding proteins in muscle and lung. Forensic Sci. Int. 2003, 131, 140–147. [Google Scholar] [CrossRef]
- Peyron, P.-A.; Hirtz, C.; Baccino, E.; Ginestet, N.; Tiers, L.; Martinez, A.Y.; Lehmann, S.; Delaby, C. Tau protein in cerebrospinal fluid: A novel biomarker of the time of death? Int. J. Leg. Med. 2021, 135, 2081–2089. [Google Scholar] [CrossRef]
- Mickleburgh, H.L.; Schwalbe, E.C.; Bonicelli, A.; Mizukami, H.; Sellitto, F.; Starace, S.; Wescott, D.J.; Carter, D.O.; Procopio, N. Human Bone Proteomes before and after Decomposition: Investigating the Effects of Biological Variation and Taphonomic Alteration on Bone Protein Profiles and the Implications for Forensic Proteomics. J. Proteome Res. 2021, 20, 2533–2546. [Google Scholar] [CrossRef]
- Hu, B.; Chen, Y.; Zhu, J. Immunohistochemical study on the depletion of desmin, actin and myoglobin in autolyzed and putrefied normal human myocardia. Romanian J. Leg. Med. 2020, 28, 121–126. [Google Scholar] [CrossRef]
- Pittner, S.; Bugelli, V.; Benbow, M.E.; Ehrenfellner, B.; Zissler, A.; Campobasso, C.P.; Oostra, R.-J.; Aalders, M.C.G.; Zehner, R.; Lutz, L.; et al. The applicability of forensic time since death estimation methods for buried bodies in advanced decomposition stages. PLoS ONE 2020, 15, e0243395. [Google Scholar] [CrossRef] [PubMed]
- Pittner, S.; Gotsmy, W.; Zissler, A.; Ehrenfellner, B.; Baumgartner, D.; Schrüfer, A.; Steinbacher, P.; Monticelli, F. Intra- and intermuscular variations of postmortem protein degradation for PMI estimation. Int. J. Leg. Med. 2020, 134, 1775–1782. [Google Scholar] [CrossRef] [PubMed]
- Mazzotti, M.; Fais, P.; Palazzo, C.; Fersini, F.; Ruggeri, A.; Falconi, M.; Pelotti, S.; Teti, G. Determining the time of death by morphological and immunohistochemical evaluation of collagen fibers in postmortem gingival tissues. Leg. Med. 2019, 39, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Bonete, G.; Perez-Carceles, M.D.; Maurandi-Lopez, A.; Perez-Martinez, C.; Luna, A. Association between protein profile and postmortem interval in human bone remains. J. Proteom. 2019, 192, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Lesnikova, I.; Schreckenbach, M.N.; Kristensen, M.P.; Papanikolaou, L.L.; Hamilton-Dutoit, S. Usability of Immunohistochemistry in Forensic Samples With Varying Decomposition. Am. J. Forensic Med. Pathol. 2018, 39, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Fais, P.; Mazzotti, M.C.; Teti, G.; Boscolo-Berto, R.; Pelotti, S.; Falconi, M. HIF1α protein and mRNA expression as a new marker for post mortem interval estimation in human gingival tissue. J. Anat. 2018, 232, 1031–1037. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Martínez, C.; Pérez-Cárceles, M.D.; Legaz, I.; Prieto-Bonete, G.; Luna, A. Quantification of nitrogenous bases, DNA and Collagen type I for the estimation of the postmortem interval in bone remains. Forensic Sci. Int. 2017, 281, 106–112. [Google Scholar] [CrossRef]
- Ortmann, J.; Doberentz, E.; Madea, B. Immunohistochemical methods as an aid in estimating the time since death. Forensic Sci. Int. 2017, 273, 71–79. [Google Scholar] [CrossRef]
- Pittner, S.; Ehrenfellner, B.; Zissler, A.; Racher, V.; Trutschnig, W.; Bathke, A.C.; Sänger, A.M.; Stoiber, W.; Steinbacher, P.; Monticelli, F.C. First application of a protein-based approach for time since death estimation. Int. J. Leg. Med. 2017, 131, 479–483. [Google Scholar] [CrossRef] [Green Version]
- Campell, Z.K.; Kwon, I.; Finley, S.J.; Lee, Y.; Javan, G.T. Talin: A potential protein biomarker in postmortem investigations. J. Forensic Leg. Med. 2016, 44, 188–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blair, J.A.; Wang, C.; Hernandez, D.; Siedlak, S.L.; Rodgers, M.S.; Achar, R.K.; Fahmy, L.M.; Torres, S.L.; Petersen, R.B.; Zhu, X.; et al. Individual Case Analysis of Postmortem Interval Time on Brain Tissue Preservation. PLoS ONE 2016, 11, e0151615. [Google Scholar]
- Kumar, S.; Ali, W.; Bhattacharya, S.; Verma, A.K. The effect of elapsed time on cardiac troponin-T (cTnT) degradation and its dependency on the cause of death. J. Forensic Leg. Med. 2016, 40, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ali, W.; Singh, U.S.; Verma, A.K.; Bhattacharya, S.; Kumar, A.; Singh, R.; Rupani, R. Time-dependent Degradation Pattern of Cardiac Troponin T in Cases of Death by Burn. West Indian Med. J. 2015, 64, 226–229. [Google Scholar] [PubMed] [Green Version]
- Pittner, S.; Ehrenfellner, B.; Monticelli, F.C.; Zissler, A.; Sänger, A.M.; Stoiber, W.; Steinbacher, P. Postmortem muscle protein degradation in humans as a tool for PMI delimitation. Int. J. Leg. Med. 2016, 130, 1547–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Ali, W.; Singh, U.S.; Kumar, A.; Bhattacharya, S.; Verma, A.K.; Rupani, R. Temperature-Dependent Postmortem Changes in Human Cardiac Troponin-T (cTnT): An Approach in Estimation of Time Since Death. J. Forensic Sci. 2016, 61 (Suppl. 1), S241–S245. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ali, W.; Bhattacharya, S.; Singh, U.S.; Kumar, A.; Verma, A.K. The effect of elapsed time on cardiac troponin-T (cTnT) degradation and its relation to postmortem interval in cases of electrocution. J. Forensic Leg. Med. 2015, 34, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Ali, W.; Singh, U.S.; Kumar, A.; Bhattacharya, S.; Verma, A.K. The effect of elapsed time on the cardiac Troponin-T (cTnT) proteolysis in case of death due to burn: A study to evaluate the potential forensic use of cTnT to determine the postmortem interval. Sci. Justice 2015, 55, 189–194. [Google Scholar] [CrossRef]
- Sinha, M.; Lalwani, S.; Mir, R.; Sharma, S.; Dogra, T.D.; Singh, T. A Preliminary Molecular Study on Protein Profile of Vital Organs: A New Direction for Post Mortem Interval Determination. J. Indian Acad. Forensic Med. 2012, 34, 292–294. [Google Scholar]
- Chandana, R.; Mythri, R.B.; Mahadevan, A.; Shankar, S.K.; Srinivas Bharath, M.M. Biochemical analysis of protein stability in human brain collected at different post-mortem intervals. Indian J. Med. Res. 2009, 129, 189–199. [Google Scholar]
- Kasuda, S.; Kudo, R.; Morimura, Y.; Tatsumi, K.; Sakurai, Y.; Shima, M.; Hatake, K. von Willebrand factor in cadaveric urine for forensic investigation. Leg. Med. 2009, 11, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Tavichakorntrakool, R.; Prasongwattana, V.; Sriboonlue, P.; Puapairoj, A.; Pongskul, J.; Khuntikeo, N.; Hanpanich, W.; Yenchitsomanus, P.T.; Wongkham, C.; Thongboonkerd, V. Serial analyses of postmortem changes in human skeletal muscle: A case study of alterations in proteome profile, histology, electrolyte contents, water composition, and enzyme activity. Proteom. Clin. Appl. 2008, 2, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Uemura, K.; Shintani-Ishida, K.; Saka, K.; Nakajima, M.; Ikegaya, H.; Kikuchi, Y.; Yoshida, K. Biochemical blood markers and sampling sites in forensic autopsy. J. Forensic Leg. Med. 2008, 15, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Crecelius, A.; Götz, A.; Arzberger, T.; Fröhlich, T.; Arnold, G.J.; Ferrer, I.; Kretzschmar, H.A. Assessing quantitative post-mortem changes in the gray matter of the human frontal cortex proteome by 2-D DIGE. Proteomics 2008, 8, 1276–1291. [Google Scholar] [CrossRef] [PubMed]
- Thaik-Oo, M.; Tanaka, E.; Tsuchiya, T.; Kominato, Y.; Honda, K.; Yamazaki, K.; Misawa, S. Estimation of Postmortem Interval from Hypoxic Inducible Levels of Vascular Endothelial Growth Factor. J. Forensic Sci. 2002, 47, 186–189. [Google Scholar] [CrossRef]
- Dogan, K.H.; Unaldi, M.; Demirci, S. Evaluation of Postmortem Cerebrospinal Fluid S100B Protein and Serotonin Levels: Comparison of Suicidal Versus Nonsuicidal Deaths in Konya, Turkey. J. Forensic Sci. 2016, 61, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Palmiere, C.; Augsburger, M.; Mangin, P. High-mobility group box-1 protein determination in postmortem samples. Forensic Sci. Int. 2014, 239, 103–106. [Google Scholar] [CrossRef]
- Li, D.R.; Michiue, T.; Zhu, B.L.; Ishikawa, T.; Quan, L.; Zhao, D.; Yoshida, C.; Chen, J.H.; Wang, Q.; Komatsu, A.; et al. Evaluation of postmortem S100B levels in the cerebrospinal fluid with regard to the cause of death in medicolegal autopsy. Leg. Med. 2009, 11 (Suppl. 1), S273–S275. [Google Scholar] [CrossRef]
- Prieto-Castelló, M.J.; Hernández del Rincón, J.P.; Pérez-Sirvent, C.; Alvarez-Jiménez, P.; Pérez-Cárceles, M.D.; Osuna, E.; Luna, A. Application of biochemical and X-ray diffraction analyses to establish the postmortem interval. Forensic Sci. Int. 2007, 172, 112–128. [Google Scholar] [CrossRef]
- Astrup, B.S.; Thomsen, J.L. The routine use of C-reactive protein in forensic investigations. Forensic Sci. Int. 2007, 172, 49–55. [Google Scholar] [CrossRef]
- Wehner, F.; Steinriede, A.; Martin, D.; Wehner, H.D. Two-tailed delimitation of the time of death by immunohistochemical detection of somatostatin and GFAP. Forensic Sci. Med. Pathol. 2006, 2, 241–247. [Google Scholar] [CrossRef]
- Stan, A.D.; Ghose, S.; Gao, X.M.; Roberts, R.C.; Lewis-Amezcua, K.; Hatanpaa, K.J.; Tamminga, C.A. Human postmortem tissue: What quality markers matter? Brain Res. 2006, 1123, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, M.Q.; Zhu, B.L.; Ishida, K.; Quan, L.; Oritani, S.; Maeda, H. Serum C-reactive protein levels in postmortem blood--an analysis with special reference to the cause of death and survival time. Forensic Sci. Int. 2002, 130, 160–166. [Google Scholar] [CrossRef]
- Nogami, M.; Takatsu, A.; Endo, N.; Ishiyama, I. Immunohistochemical localization of heat shock protein 70 in the human medulla oblongata in forensic autopsies. Leg. Med. 1999, 1, 198–203. [Google Scholar] [CrossRef]
- Osawa, M.; Yukawa, N.; Saito, T.; Huang, X.L.; Kusakabe, T.; Takeichi, S. Increased complex formation of Gc globulin with actin in plasma from human cadavers. Forensic Sci. Int. 1998, 96, 39–45. [Google Scholar] [CrossRef]
- Gonzalvo, M.C.; Gil, F.; Hernandez, A.F.; Rodrigo, L.; Villanueva, E.; Pla, A. Human liver paraoxonase (PON1): Subcellular distribution and characterization. J. Biochem. Mol. Toxicol. 1998, 12, 61–69. [Google Scholar] [CrossRef]
- Harada, K.; Sorimachi, Y.; Yoshida, K. Proteolysis of ankyrin and Na+/K(+)-ATPase in postmortem rat brain: Is calpain involved? Forensic Sci. Int. 1997, 86, 77–85. [Google Scholar] [CrossRef]
- Jungbauer, C.; Hupf, J.; Giannitsis, E.; Frick, J.; Slagman, A.; Ehret, C.; Herbert, N.; Jung, C.; Zerback, R.; Bertsch, T.; et al. Analytical and Clinical Validation of a Point-of-Care Cardiac Troponin T Test with an Improved Detection Limit. Clin. Lab. 2017, 63, 633–645. [Google Scholar] [CrossRef]
- Alderson, T.R.; Benesch, J.L.P.; Baldwin, A.J. Proline isomerization in the C-terminal region of HSP27. Cell Stress Chaperones 2017, 22, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Ay, H.; Arsava, E.M.; Saribaş, O. Creatine kinase-MB elevation after stroke is not cardiac in origin: Comparison with troponin T levels. Stroke 2002, 33, 286–289. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Kushiyama, A.; Sun, J.; Kikuchi, T.; Yamazaki, H.; Iwamoto, Y.; Koriyama, H.; Yoshida, S.; Shimamura, M.; Higuchi, M.; et al. Glial fibrillary acidic protein (GFAP) is a novel biomarker for the prediction of autoimmune diabetes. FASEB J. 2017, 31, 4053–4063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Wang, Y.; Ma, J.; Lai, X.; Fang, J.; Li, G.; Xu, L.; Pan, G.; Chen, Z. Exogenous MSCs ameliorate hypoxia/reoxygenation injury in renal tubular epithelial cells through JAK/STAT signaling pathway-mediated regulation of HMGB1. Am. J. Transl. Res. 2017, 9, 2412–2420. [Google Scholar] [PubMed]
- Zhang, J.; Li, B.; Wang, Q.; Li, C.; Zhang, Y.; Lin, H.; Wang, Z. Characterization of postmortem biochemical changes in rabbit plasma using ATR-FTIR combined with chemometrics: A preliminary study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 173, 733–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aquila, I.; Boca, S.; Caputo, F.; Sacco, M.A.; Gratteri, S.; Fineschi, V.; Ricci, P. An Unusual Case of Sudden Death: Is There a Relationship Between Thyroid Disorders and Fatal Pulmonary Thromboembolism? A Case Report and Review of Literature. Am. J. Forensic Med. Pathol. 2017, 38, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Woess, C.; Unterberger, S.H.; Roider, C.; Ritsch-Marte, M.; Pemberger, N.; Cemper-Kiesslich, J.; Hatzer-Grubwieser, P.; Parson, W.; Pallua, J.D. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains. PLoS ONE 2017, 12, e0174552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aquila, I.; Sacco, M.A.; Gratteri, S.; Raffaele, R.; Ricci, P. The Forensic Application of Proteomics for The Study Of The Time of Death: An Operative Experimental Model For PMI Estimation. J. Integr. OMICS 2018, 8, 56–59. [Google Scholar] [CrossRef]
Authors | Animal | Sample | N. of Cases | Post-Mortem Interval (PMI) Evaluated for Analysis of Marker | Method | Protein Marker Investigated | Correlation of the Protein with Increasing PMI Analyzed | Result |
---|---|---|---|---|---|---|---|---|
Geissenberger J et al., 2021 [10] | Pigs | Skeletal muscle | 6 | 0–240 h | Western blotting | Alpha-tubulin Alpha-actinin, GAPDH Vinculin | Degradation | ↓ |
Tropomyosin | Stability | - | ||||||
Wang J et al., 2021 [11] | Mice | Skeletal muscle | 60 | 0–96 h | Western blotting | PP2A-B P-PP2A-C (Tyr-307) | Degradation | ↓ |
PP2A-C | Stability | - | ||||||
Welson NN et al., 2021 [12] | Rats | Myocardium Kidney Testes | 42 | 0–120 h | Tissue levels measurement | Malonaldehyde (MDA), | Increase | ↑ |
Superoxide dismutase (SOD) Reduced glutathione (GSH) | Decrease | ↓ | ||||||
Immunohistochemical staining | B cell lymphoma 2 (BCL2) | Staining reduction | ↓ | |||||
Zhang Y et al., 2020 [13] | Rats | Serum | 54 | 6–168 h | ELISA | TN-T VEGF HIF-1α | VEGF/HIF-1α showed a significant relation with PMI | |
Pittner S et al., 2020 [14] | Pigs | Skeletal muscle | 8 | 0–14 days | Western blotting | Cardiac troponin T Vinculin Desmin | Degradation | ↓ |
Tropomyosin | Stability | - | ||||||
Choi KM et al., 2019 [15] | Rats and mice | Skeletal muscle | 25 | 0–96 h | LC/MS–MS analysis Western blotting | GAPDH eEF1A2 | Decrease and degradation | ↓ |
Procopio et al., 2018 [16] | Pigs | Bone | 4 | 1 month-1 year | LC/MS–MS analysis | Bone proteome | Variations in the decay rate of several proteins | |
Ehrenfellner et al., 2017 [17] | Pigs and mice | Muscle tissues | 3 | 0–10 days | Western blotting | Alpha actinin, Alpha tubulin, Fast skeletal muscle troponin T Vinculin, Desmin, Cardiac troponin T | Degradation | ↓ |
Tropomyosin | Stability | - | ||||||
Procopio et al., 2017 [18] | Pigs | Bone | 5 | 12 days–24 months | LC/MS–MS analysis | Alpha-1 antitrypsin Chromogranin-A | Increase | ↑ |
Fetuin-A | Decrease | ↓ | ||||||
Hahor et al., 2016 [19] | Fishes | Gastrointestinal tracts | - | 0–48 h | Specific activity Assays | Pepsin activity Trypsin activity Chymotrypsin activity Amylase activity Lipase activity | Decrease | ↓ |
Protein measurement with the Folin phenol reagent | Stomach and intestinal protein concentrations in the crude enzyme extracts | |||||||
Lee et al., 2016 [20] | Rats | Kidney Skeletal muscle | 48 | 0–96 h | Western blotting Immunohistochemistry | Glycogen synthase (GS) Glycogen synthase kinase-3β AMP-activated protein kinase α Caspase 3 Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) | Degradation | ↓ |
p53 β-catenin | Stability | - | ||||||
Pittner et al., 2016 [21] | Pigs | Skeletal muscle | 3 | 0–240 h | Western blotting | Titin Nebulin Desmin Cardiac troponin T SERCA1 Calpain | Degradation | ↓ |
Tropomyosin α-actinin | Stability | - | ||||||
Foditsch et al., 2016 [22] | Pigs | Skeletal muscle | 2 | 0–21 days | Western blotting SDS-PAGE gel analyses | Desmin Nebulin Titin SERCA 1 μ-calpain | Degradation | ↓ |
α-actinin Calsequestrin-1 Laminin Troponin T-C SERCA 2 | Stability | - | ||||||
Boaks et al., 2014 [23] | Pigs | Bone | 5 | 0–12 months | Spectrophotometry | Co/NCo proteins (collagenous and non-collagenous) | Reduction | ↓ |
Kikuchi et al., 2010 [24] | Rats | Blood | 90 | 0–7 days | ELISA | HMGB-1 | Increase | ↑ |
Poloz et al., 2009 [25] | Mice | Skeletal muscle | 4 | 0–96 h | Western blotting | CnA | Degradation | ↓ |
PP2A CaMKII | Reduction | ↓ | ||||||
Lung | MARCKS PP2A | Reduction | ↓ | |||||
Curcio et al., 2006 [26] | Rats | Brain | - | 4 h | Western blotting | Bag 1 | No correlation | X |
Sabucedo et al., 2003 [27] | Bovines | Myocardium | 3 | 0–6 days | Western blotting | Intact cTnI degraded | Reduction | ↓ |
Kang et al., 2003 [28] | Rats | Brain Lung Heart Kidney Liver Skeletal muscle Spleen | 16 | 0–96 h | Calmodulin binding overlay technique (CaMBOT) | Calmodulin (CaM) binding proteins (CaMBPs) | No correlation | X |
Lung Muscle | Western blotting | Ca2+/CaM-dependent kinase II (CaMKII) | No correlation | X | ||||
Calcineurin A (CNA) | Degradation | ↓ | ||||||
Lung | Western blotting | Myristoylated alanine-rich C-kinase substrate (MARCKS) | Reduction | ↓ | ||||
Inducible nitric oxide synthase (iNOS) | No correlation | X |
Authors and Year of Publication | Sample | Number of Cases Examined | Post-Mortem Interval (PMI) Evaluated for Analysis of Marker | Method | Marker Analysed | Correlation of the Protein with Increasing PMI | Result |
---|---|---|---|---|---|---|---|
Peyron PA et al., 2021 [29] | Cerebrospinal fluid | 82 | 2.0–11.8 h | ELISA | Tau p-tau | Increase | ↑ |
Mickleburgh HL et al., 2021 [30] | Bone | 4 | Date of burial-3 years after burial | LC/MS–MS analysis | Complement C3 collagen alpha-1(III) chain (CO3A1) Complement C9 (CO9) Collagen alpha-2(XI) chain (COBA 2) Matrix Gla protein (MGP) Decorin (PGS2) Transthyretin (TTHY) | Decrease | ↓ |
Hu B.-J., 2020 [31] | Myocardium | 5 | 1–28 days | Immunohistochemistry | Desmin Actin Myoglobin | Staining reduction | ↓ |
Pittner S et al., 2020 [32] | Skeletal muscle | 2 | Date of burial-105 days after burial | Western blotting | Tropomyosin GAPDH eEF1A2 | Decrease | ↓ |
Alpha-tubulin Alpha-actinin Vinculin | Degradation and decrease | ↓ | |||||
Pittner S et al., 2020 [33] | Skeletal muscle | 3 | 2.4–42 days | Western blotting | Alpha-tubulin Alpha-actinin Vinculin | Degradation | ↓ |
Mazzotti MC et al., 2019 [34] | Gingival tissues | 10 | 3–9 days | Immunohistochemistry | Collagen type I protein Collagen type III protein | Staining reduction | ↓ |
Choi KM et al., 2019 [15] | Skeletal muscle | 3 | 15–>336 h | Western Blotting | GAPDH eEF1A2 | Degradation | ↓ |
Prieto-Bonete G et al., 2019 [35] | Bone | 40 | 5–20 years | LC/MS–MS analysis | 275 proteins | Specific proteins have been identified in different PMI | |
Lesnikova et al., 2018 [36] | Liver Lung Brain | 40 | 1–>14 days | Immunohistochemistry | Vimentin S100 PCK CD45 | Staining reduction | ↓ |
Fais et al., 2018 [37] | Gingival tissues | 10 | 1–8 days | Immunohistochemistry | Hypoxia inducible factor (HIF-1α) | Decrease | ↓ |
Pérez-Martínez et al., 2017 [38] | Bone | 80 | 5–47 years | HPLC/MS/MS | Collagen type I protein | Decrease | ↓ |
Ehrenfellner et al., 2017 [17] | Skeletal muscle | 3 | 0.5–40 days | Western blotting | Alpha actinin Alpha tubulin Fast skeletal muscle troponin T Vinculin Desmin Cardiac troponin T | Degradation | ↓ |
Tropomyosin | Stability | - | |||||
Ortmann et al., 2017 [39] | Pancreas | 105 | Several h—22 days | Immunohistochemistry | Insulin Glucagon Thyreoglobulin | Staining reduction | ↓ |
Thyroid | Calcitonin | ||||||
Pittner et al., 2017 [40] | Skeletal muscle | 2 | - | Western blotting | Desmin Cardiac troponin T (cTnT) Calpain | Degradation | ↓ |
Tropomyosin | Stability | - | |||||
Campell et al., 2016 [41] | Brain | 16 | 6–72 h | Immunoblotting | Talin | Decrease | ↓ |
Blair et al., 2016 [42] | Brain | 2 | 4.5–48 h | Western blotting | Alpha tubulin | Decrease | ↓ |
β-actin GAPDH PHF1 AT8 Tau-5 | No correlation | X | |||||
NeuN | Decrease (not in all examined cases) | ↓ | |||||
6 | Immunohistochemistry | GFAP Collagen COX-1 PHF1 AT8 Collagen IV | No correlation | X | |||
Alpha tubulin | Staining reduction (not in all examined cases) | ↓ | |||||
Kumar et al., 2016 [43,44] | Myocardium | 60 | 5–230 h | Western blotting | Cardiac troponin-T | Degradation | ↓ |
Pittner et al., 2016 [45] | Skeletal muscle | 40 | 3.5–92.8 h | Western blotting Zymography | Tropomyosin | Stability | - |
Cardiac troponin-T Desmin Calpain | Degradation | ↓ | |||||
Kumar et al., 2016 [46] | Myocardium | 6 | 15–189 h | Western blotting | Cardiac troponin-T | Degradation | ↓ |
Kumar et al., 2015 [47] | Myocardium | 5 | 5–230 h | Western blotting | Cardiac troponin-T | Degradation | ↓ |
Kumar et al., 2015 [48] | Myocardium | 9 | 8–88.4 h | Western blotting | Cardiac troponin-T | Degradation | ↓ |
Sinha et al., 2012 [49] | Myocardium Pancreas Brain Lungs Liver Kidney | 20 | 0–10 days | SDS-PAGE analysis | Transferrin Albumin Alpha-1 antitrypsin Haptoglobulin Glyceraldehyde dehydrogenase Glutathione S-transferase Hemoglobin subunits alpha and beta | Degradation | ↓ |
Chandana et al., 2009 [50] | Brain | 9 | 4–18 h | Western blotting | GFAP Synatophysin (SP) Neurofilament (NF) | Increase No correlation Increase | ↑ X ↑ |
Kasuda et al., 2009 [51] | Urine | 44 | 6–48 h | ELISA | von Willebrand factor | Increase | ↑ |
Blood | No correlation | X | |||||
Tavichakor-ntrakool et al., 2008 [52] | Skeletal muscle | 1 | 1.4–48 h | Q-TOF MS/MS | Heat shock protein 27 | Reduction | ↓ |
Myoglobin | No correlation | X | |||||
M. creatine kinase | Increase | ↑ | |||||
LDH assay | LDH activity | Increase | ↑ | ||||
Uemura et al., 2008 [53] | Blood | 164 | 0–72 h | Latex aggregation method | HbA1c | No correlation | X |
Rate assay | C-reactive protein | ||||||
Biuret method | Pseudocholine esterase | ||||||
JSCC standardization method | t-Protein ɣ-GTP | ||||||
Crecelius et al., 2008 [54] | Brain | 3 | 2 h (after autopsy)–48 h | Western blotting 2-D DIGE | Peroxiredoxin 1 Stathmin | Reduction | ↓ |
GFAP | Increase | ↑ | |||||
Thaik-Oo et al., 2002 [55] | Brain | 19 | 1–120 h | - | Vascular endothelial growth factor (VEGF) | Decrease (after 40 h) | ↓ |
Lungs Kidneys | Decrease (after 24 h) | ↓ | |||||
Heart | No correlation | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacco, M.A.; Cordasco, F.; Scalise, C.; Ricci, P.; Aquila, I. Systematic Review on Post-Mortem Protein Alterations: Analysis of Experimental Models and Evaluation of Potential Biomarkers of Time of Death. Diagnostics 2022, 12, 1490. https://doi.org/10.3390/diagnostics12061490
Sacco MA, Cordasco F, Scalise C, Ricci P, Aquila I. Systematic Review on Post-Mortem Protein Alterations: Analysis of Experimental Models and Evaluation of Potential Biomarkers of Time of Death. Diagnostics. 2022; 12(6):1490. https://doi.org/10.3390/diagnostics12061490
Chicago/Turabian StyleSacco, Matteo Antonio, Fabrizio Cordasco, Carmen Scalise, Pietrantonio Ricci, and Isabella Aquila. 2022. "Systematic Review on Post-Mortem Protein Alterations: Analysis of Experimental Models and Evaluation of Potential Biomarkers of Time of Death" Diagnostics 12, no. 6: 1490. https://doi.org/10.3390/diagnostics12061490