The Role of PROX1 in Neoplasia: A Key Player Often Overlooked
Abstract
:1. Introduction
2. PROX1 Expression in Cancer
2.1. Central Nervous System (CNS) Tumors
2.2. Oral Cancer
2.3. Thyroid Cancer
2.4. Lung Cancer
2.5. Breast Cancer
2.6. Esophageal Cancer
2.7. Gastric Cancer
2.8. Colon Cancer
2.9. Hepatobiliary Cancer
2.10. Pancreatic Cancer
2.11. Soft Tissue Tumors
2.12. Renal Cell Carcinoma (RCC)
2.13. Bladder Carcinoma
2.14. Gynecological Cancer
3. The Role of PROX1 in Pathogenesis, Diagnosis, Prognosis, and Therapy of Cancer
3.1. PROX1 as a Lymph-Specific Marker
3.2. PROX1 as a Diagnostic and Histological Marker
3.3. PROX1 in the Pathogenesis and Therapy of Cancer
3.4. PROX1 as a Prognostic Marker in Cancer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wigle, J.T.; Harvey, N.; Detmar, M.; Lagutina, I.; Grosveld, G.; Gunn, M.D.; Jackson, D.G.; Oliver, G. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002, 21, 1505–1513. [Google Scholar] [CrossRef] [PubMed]
- Petrova, T.V.; Mäkinen, T.; Mäkelä, T.P.; Saarela, J.; Virtanen, I.; Ferrell, R.E.; Finegold, D.N.; Kerjaschki, D.; Ylä-Herttuala, S.; Alitalo, K. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 2002, 21, 4593–4599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, N.C.; Dillard, M.E.; Baluk, P.; McDonald, D.M.; Harvey, N.L.; Frase, S.L.; Oliver, G. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 2008, 22, 3282–3291. [Google Scholar] [CrossRef] [Green Version]
- Gale, N.W.; Prevo, R.; Espinosa, J.; Ferguson, D.J.; Dominguez, M.G.; Yancopoulos, G.D.; Thurston, G.; Jackson, D.G. Normal Lymphatic Development and Function in Mice Deficient for the Lymphatic Hyaluronan Receptor LYVE-1. Mol. Cell. Biol. 2007, 27, 595–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, Y.-K.; Harvey, N.; Noh, Y.-H.; Schacht, V.; Hirakawa, S.; Detmar, M.; Oliver, G. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn. 2002, 225, 351–357. [Google Scholar] [CrossRef] [PubMed]
- François, M.; Caprini, A.; Hosking, B.; Orsenigo, F.; Wilhelm, D.; Browne, C.; Paavonen, K.; Karnezis, T.; Shayan, R.; Downes, M.; et al. Sox18 induces development of the lymphatic vasculature in mice. Nature 2008, 456, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Mishima, K.; Watabe, T.; Saito, A.; Yoshimatsu, Y.; Imaizumi, N.; Masui, S.; Hirashima, M.; Morisada, T.; Oike, Y.; Araie, M.; et al. Prox1 Induces Lymphatic Endothelial Differentiation via Integrin α9 and Other Signaling Cascades. Mol. Biol. Cell 2007, 18, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Tammela, T.; Alitalo, K. Lymphangiogenesis: Molecular Mechanisms and Future Promise. Cell 2010, 140, 460–476. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.W.; Min, M.; Larrieu-Lahargue, F.; Canron, X.; Kunstfeld, R.; Nguyen, L.; Henderson, J.E.; Bikfalvi, A.; Detmar, M.; Hong, Y.-K. Prox1 Promotes Lineage-specific Expression of Fibroblast Growth Factor (FGF) Receptor-3 in Lymphatic Endothelium: A Role for FGF Signaling in Lymphangiogenesis. Mol. Biol. Cell 2006, 17, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, Y.; Zhang, J.; Wei, Y.; Mahoud, S.; Bakheet, A.M.H.; Wang, L.; Zhou, S.; Tang, J. Pathway-related molecules of VEGFC/D-VEGFR3/NRP2 axis in tumor lymphangiogenesis and lymphatic metastasis. Clin. Chim. Acta 2016, 461, 165–171. [Google Scholar] [CrossRef]
- Srinivasan, R.S.; Escobedo, N.; Yang, Y.; Interiano, A.; Dillard, M.E.; Finkelstein, D.; Mukatira, S.; Gil, H.J.; Nurmi, H.; Alitalo, K.; et al. The Prox1-Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 2014, 28, 2175–2187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D. Parallels of Resistance between Angiogenesis and Lymphangiogenesis Inhibition in Cancer Therapy. Cells 2020, 9, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauniyar, K.; Jha, S.K.; Jeltsch, M. Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels. Front. Bioeng. Biotechnol. 2018, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Feng, X.; Stein, L. A human functional protein interaction network and its application to cancer data analysis. Genome Biol. 2010, 11, R53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Dowhan, D.H.; Liang, D.; Moore, D.D.; Overbeek, P.A. CREB-binding protein/p300 co-activation of crystallin gene expression. J. Biol. Chem. 2002, 277, 24081–24089. [Google Scholar] [CrossRef] [Green Version]
- Deckert, M.; Brunn, A.; Montesinos-Rongen, M.; Siebert, R. Absence of Lymphatic Vessels in PCNSL May Contribute to Confinement of Tumor Cells to the Central Nervous System. J. Neuropathol. Exp. Neurol. 2016, 75, 499–502. [Google Scholar] [CrossRef] [Green Version]
- Song, E.; Mao, T.; Dong, H.; Boisserand, L.S.B.; Antila, S.; Bosenberg, M.; Alitalo, K.; Thomas, J.-L.; Iwasaki, A. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 2020, 577, 689–694. [Google Scholar] [CrossRef]
- Elsir, T.; Eriksson, A.; Orrego, A.; Lindström, M.S.; Nistér, M. Expression of PROX1 Is a common feature of high-grade malignant astrocytic gliomas. J. Neuropathol. Exp. Neurol. 2010, 69, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Elsir, T.; Qu, M.; Berntsson, S.G.; Orrego, A.; Olofsson, T.; Lindström, M.S.; Nistér, M.; von Deimling, A.; Hartmann, C.; Ribom, D.; et al. PROX1 is a predictor of survival for gliomas WHO grade II. Br. J. Cancer 2011, 104, 1747–1754. [Google Scholar] [CrossRef] [Green Version]
- Ishii, H.; Chikamatsu, K.; Sakakura, K.; Miyata, M.; Furuya, N.; Masuyama, K. Primary tumor induces sentinel lymph node lymphangiogenesis in oral squamous cell carcinoma. Oral Oncol. 2010, 46, 373–378. [Google Scholar] [CrossRef]
- Sasahira, T.; Ueda, N.; Yamamoto, K.; Kurihara, M.; Matsushima, S.; Bhawal, U.K.; Kirita, T.; Kuniyasu, H. Prox1 and FOXC2 act as regulators of lymphangiogenesis and angiogenesis in oral squamous cell carcinoma. PLoS ONE 2014, 9, e92534. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.F.S.D.; de Oliveira Rodini, C.; de Aquino Xavier, F.C.; Paiva, K.B.; Severino, P.; Moyses, R.A.; López, R.M.; DeCicco, R.; Rocha, L.A.; Carvalho, M.B.; et al. PROX1 gene is differentially expressed in oral cancer and reduces cellular proliferation. Medicine 2014, 93, e192. [Google Scholar] [CrossRef]
- Choi, D.; Ramu, S.; Park, E.; Jung, E.; Yang, S.; Jung, W.; Choi, I.; Lee, S.; Kim, K.E.; Seong, Y.J.; et al. Aberrant Activation of Notch Signaling Inhibits PROX1 Activity to Enhance the Malignant Behavior of Thyroid Cancer Cells. Cancer Res. 2016, 76, 582–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gepia. Gene Expression Profiling Interactive Analyis. 2017. Available online: http://gepia.cancer-pku.cn/ (accessed on 1 May 2022).
- Rudzińska, M.; Czarnocka, B. The Impact of Transcription Factor Prospero Homeobox 1 on the Regulation of Thyroid Cancer Malignancy. Int. J. Mol. Sci. 2020, 21, 3220. [Google Scholar] [CrossRef]
- Zhu, S.-H.; Shan, C.-J.; Wu, Z.-F.; Xu, S.-Z. Proliferation of small cell lung cancer cell line reduced by knocking-down PROX1 via shRNA in lentivirus. Anticancer Res. 2013, 33, 3169–3175. [Google Scholar] [PubMed]
- Kowalczuk, O.; Laudanski, J.; Laudanski, W.; Niklinska, W.E.; Kozlowski, M.; Niklinski, J. Lymphatics-associated genes are downregulated at transcription level in non-small cell lung cancer. Oncol. Lett. 2018, 15, 6752–6762. [Google Scholar] [CrossRef] [Green Version]
- Van der Auwera, I.; Van Laere, S.J.; Van den Eynden, G.G.; Benoy, I.; van Dam, P.; Colpaert, C.G.; Fox, S.B.; Turley, H.; Harris, A.L.; Van Marck, E.A.; et al. Increased angiogenesis and lymphangiogenesis in inflammatory versus noninflammatory breast cancer by real-time reverse transcriptase-PCR gene expression quantification. Clin. Cancer Res. 2004, 10, 7965–7971. [Google Scholar] [CrossRef] [Green Version]
- Frewer, N.C.; Ye, L.; Sun, P.-H.; Owen, S.; Ji, K.; Frewer, K.A.; Hargest, R.; Jiang, W.G. Potential implication of IL-24 in lymphangiogenesis of human breast cancer. Int. J. Mol. Med. 2013, 31, 1097–1104. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.-C.; Ni, X.-J.; Wang, M.-H.; Zha, X.-M.; Zhao, Y.; Wang, S. Tumor-derived VEGF-C, but not VEGF-D, promotes sentinel lymph node lymphangiogenesis prior to metastasis in breast cancer patients. Med. Oncol. 2012, 29, 2594–2600. [Google Scholar] [CrossRef]
- Agarwal, B.; Saxena, R.; Morimiya, A.; Mehrotra, S.; Badve, S. Lymphangiogenesis does not occur in breast cancer. Am. J. Surg. Pathol. 2005, 29, 1449–1455. [Google Scholar] [CrossRef]
- Versmold, B.; Felsberg, J.; Mikeska, T.; Ehrentraut, D.; Köhler, J.; Hampl, J.A.; Röhn, G.; Niederacher, D.; Betz, B.; Hellmich, M.; et al. Epigenetic silencing of the candidate tumor suppressor gene PROX1 in sporadic breast cancer. Int. J. Cancer 2007, 121, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Loges, S.; Clausen, H.; Reichelt, U.; Bubenheim, M.; Erbersdobler, A.; Schurr, P.; Yekebas, E.; Schuch, G.; Izbicki, J.; Pantel, K.; et al. Determination of microvessel density by quantitative real-time PCR in esophageal cancer: Correlation with histologic methods, angiogenic growth factor expression, and lymph node metastasis. Clin. Cancer Res. 2007, 13, 76–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokobori, T.; Bao, P.; Fukuchi, M.; Altan, B.; Ozawa, D.; Rokudai, S.; Bai, T.; Kumakura, Y.; Honjo, H.; Hara, K.; et al. Nuclear PROX1 is Associated with Hypoxia-Inducible Factor 1α Expression and Cancer Progression in Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2015, 22 (Suppl. 3), 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Taban, O.; Cimpean, A.M.; Raica, M.; Olariu, S. PROX1 expression in gastric cancer: From hypothesis to evidence. Anticancer Res. 2014, 34, 3439–3446. [Google Scholar] [PubMed]
- Park, K.-J.; Cho, S.-B.; Park, Y.-L.; Kim, N.; Park, S.-Y.; Myung, D.-S.; Lee, W.-S.; Kweon, S.-S.; Joo, Y.-E. Prospero homeobox 1 mediates the progression of gastric cancer by inducing tumor cell proliferation and lymphangiogenesis. Gastric Cancer 2017, 20, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Ueta, K.; Otowa, Y.; Kakeji, Y.; Hirashima, M. PROX1 Is Associated with Cancer Progression and Prognosis in Gastric Cancer. Anticancer Res. 2018, 38, 6139–6145. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, A.; Böckelman, C.; Hagström, J.; Kokkola, A.; Kallio, P.; Haglund, C. High PROX1 expression in gastric cancer predicts better survival. PLoS ONE 2017, 12, e0183868. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Ji, S.; Ma, F.; Ma, Q.; Lu, X.; Chen, X. miR-489 acts as a tumor suppressor in human gastric cancer by targeting PROX1. Am. J. Cancer Res. 2016, 6, 2021–2030. [Google Scholar]
- Parr, C.; Jiang, W.G. Quantitative analysis of lymphangiogenic markers in human colorectal cancer. Int. J. Oncol. 2003, 23, 533–539. [Google Scholar] [CrossRef]
- Petrova, T.V.; Nykänen, A.; Norrmén, C.; Ivanov, K.I.; Andersson, L.C.; Haglund, C.; Puolakkainen, P.; Wempe, F.; von Melchner, H.; Gradwohl, G.; et al. Transcription factor PROX1 induces colon cancer progression by promoting the transition from benign to highly dysplastic phenotype. Cancer Cell 2008, 13, 407–419. [Google Scholar] [CrossRef]
- Skog, M.; Bono, P.; Lundin, M.; Lundin, J.; Louhimo, J.; Linder, N.; Petrova, T.V.; Andersson, L.C.; Joensuu, H.; Alitalo, K.; et al. Expression and prognostic value of transcription factor PROX1 in colorectal cancer. Br. J. Cancer 2011, 105, 1346–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, M.-H.; Huang, C.-C.; Pan, M.-R.; Chen, H.-H.; Hung, W.-C. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin. Cancer Res. 2012, 18, 6416–6425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.-L.; Myung, E.; Park, S.-Y.; Kim, N.; Oak, C.-Y.; Myung, D.-S.; Cho, S.-B.; Lee, W.-S.; Kweon, S.-S.; Kim, H.-S.; et al. Impact of prospero homeobox-1 on tumor cell behavior and prognosis in colorectal cancer. Am. J. Cancer Res. 2015, 5, 3286–3300. [Google Scholar] [PubMed]
- Abdelrahman, A.E.; El-Azony, A.; Elsebai, E.; Ibrahim, H.M. Prognostic Impact of LGR5, Prox1, and Notch1 Biomarkers in Stage II to III Colon Cancer. Appl. Immunohistochem. Mol. Morphol. AIMM 2022, 30, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-M.; Han, W.-X.; Wang, H.-Y.; He, Q. Correlation between lymphatic endothelial markers and lymph node status or N-staging of colorectal cancer. World J. Surg. Oncol. 2017, 15, 204. [Google Scholar] [CrossRef] [Green Version]
- Jernman, J.; Kallio, P.; Hagström, J.; Välimäki, M.J.; Haapasalo, H.; Alitalo, K.; Arola, J.; Haglund, C. PROX1 is involved in progression of rectal neuroendocrine tumors, NETs. Virchows Arch. 2015, 467, 279–284. [Google Scholar] [CrossRef]
- Mouta Carreira, C.; Nasser, S.M.; di Tomaso, E.; Padera, T.P.; Boucher, Y.; Tomarev, S.I.; Jain, R.K. LYVE-1 is not restricted to the lymph vessels: Expression in normal liver blood sinusoids and down-regulation in human liver cancer and cirrhosis. Cancer Res. 2001, 61, 8079–8084. [Google Scholar]
- Shimoda, M.; Takahashi, M.; Yoshimoto, T.; Kono, T.; Ikai, I.; Kubo, H. A homeobox protein, prox1, is involved in the differentiation, proliferation, and prognosis in hepatocellular carcinoma. Clin. Cancer Res. 2006, 12, 6005–6011. [Google Scholar] [CrossRef] [Green Version]
- Laerm, A.; Helmbold, P.; Goldberg, M.; Dammann, R.; Holzhausen, H.-J.; Ballhausen, W.G. Prospero-related homeobox 1 (PROX1) is frequently inactivated by genomic deletions and epigenetic silencing in carcinomas of the bilary system. J. Hepatol. 2007, 46, 89–97. [Google Scholar] [CrossRef]
- Schneider, M.; Büchler, P.; Giese, N.; Giese, T.; Wilting, J.; Büchler, M.W.; Friess, H. Role of lymphangiogenesis and lymphangiogenic factors during pancreatic cancer progression and lymphatic spread. Int. J. Oncol. 2006, 28, 883–890. [Google Scholar] [CrossRef]
- Saukkonen, K.; Hagström, J.; Mustonen, H.; Juuti, A.; Nordling, S.; Kallio, P.; Alitalo, K.; Seppänen, H.; Haglund, C. PROX1 and β-catenin are prognostic markers in pancreatic ductal adenocarcinoma. BMC Cancer 2016, 16, 472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miettinen, M.; Wang, Z.-F. Prox1 transcription factor as a marker for vascular tumors-evaluation of 314 vascular endothelial and 1086 nonvascular tumors. Am. J. Surg. Pathol. 2012, 36, 351–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mankey, C.C.; McHugh, J.B.; Thomas, D.G.; Lucas, D.R. Can lymphangiosarcoma be resurrected? A clinicopathological and immunohistochemical study of lymphatic differentiation in 49 angiosarcomas. Histopathology 2010, 56, 364–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadj-Hamou, N.-S.; Laé, M.; Almeida, A.; de la Grange, P.; Kirova, Y.; Sastre-Garau, X.; Malfoy, B. A transcriptome signature of endothelial lymphatic cells coexists with the chronic oxidative stress signature in radiation-induced post-radiotherapy breast angiosarcomas. Carcinogenesis 2012, 33, 1399–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldewijns, M.M.; Roskams, T.; Ballet, V.; Van den Eynden, G.G.; Van Laere, S.J.; Van der Auwera, I.; Lerut, E.; De Bruïne, A.P.; Thijssen, V.L.; Vermeulen, P.B.; et al. A low frequency of lymph node metastasis in clear-cell renal cell carcinoma is related to low lymphangiogenic activity. BJU Int. 2009, 103, 1626–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolenz, C.; Auer, M.; Ströbel, P.; Heinzelbecker, J.; Schubert, C.; Trojan, L. The lymphatic system in clinically localized urothelial carcinoma of the bladder: Morphologic characteristics and predictive value. Urol. Oncol. 2013, 31, 1606–1614. [Google Scholar] [CrossRef] [PubMed]
- Sotiropoulou, N.; Bravou, V.; Kounelis, S.; Damaskou, V.; Papaspirou, E.; Papadaki, H. Tumour expression of lymphangiogenic growth factors but not lymphatic vessel density is implicated in human cervical cancer progression. Pathology 2010, 42, 629–636. [Google Scholar] [CrossRef]
- Cai, L.; Yang, S.; Ding, H.; Cai, J.; Wang, Z. Tumor-associated lymphatic endothelial cell promotes invasion of cervical cancer cells. APMIS 2013, 121, 1162–1168. [Google Scholar] [CrossRef]
Tissues | Methods | Results | Ref. |
---|---|---|---|
20 PCNSL samples 8 DLBCLsamples 20 GBM samples | IHC | PROX1 expression (in LEC)
| [16] |
56 grade I–IV astrocytic glioma samples | IHC | PROX1 expression (in CC)
| [18] |
116 grade II glioma samples | IHC |
| [19] |
23 metastasis-free SLNs of 10 OSCC Controls: 10 LNs | RT-PCR | Positive correlation between the expression levels of the lymphatic markers (PROX1, VEGFR-3 and LYVE-1) in SLNs from OSCC patients (in SLNs) no difference in VEGFR-2 and PROX-1 levels to controls, only LYVE-1 higher than controls (p < 0.01) | [20] |
163 OSCC samples Controls: 5 normal oral mucosa specimens | IHC RT-PCR | PROX1 expression (in CC-nuclear)
| [21] |
40 OSCC samples Controls: non-tumor margins | IHC RT-PCR | PROX1 gene and protein expression (in CC)
| [22] |
97 TC samples Controls: 4 normal thyroid tissues | IHC Western blot | PROX1 expression downregulated in TC tissues (in CC) | [23] |
11 FTC samples Controls: 11 normal thyroid samples | RT-PCR | PROX1 expression (in CC)
| [25] |
Tissues | Methods | Results | Refs. |
---|---|---|---|
16 Inflammatory and 20 non-inflammatory BC specimens (non-stage-matched) | real-time RT-PCR | PROX1 expression (in LEC)
| [28] |
127 BC samples | IHC | High PROX-1 expression (in CC) inversely correlated with IL-24 expression (insignificantly) | [29] |
63 SLNs from T1N0-T2N0 BC patients Controls: 30 LNs | real-time RT-PCR | PROX-1 expression (in SLNs)
| [30] |
32 in situ ductal BC samples, 55 BC samples Controls: 23 normal breast samples, 7 fibrocystic lesion samples | IHC |
| [31] |
33 primary BC samples Controls: paired normal breast tissues | real-time RT-PCR |
| [32] |
Tissues | Methods | Results | Refs |
---|---|---|---|
28 colon cancer samples Controls: 28 normal colon samples | RT-PCR | PROX1 expression (DNA extracted from CC)
| [40] |
241 human cancer samples Controls: 241 paired normal samples | Gene profiling array: PROX-1 mRNA | PROX1 expression in CC
| [41] |
517 colon cancer samples | IHC |
| [42] |
136 colon cancer samples | IHC | PROX1 expression (in CC) correlated with
| [43] |
528 colon cancer samples Controls: 528 paired normal colon samples | IHC |
| [44] |
60 cases of colon cancer stages II to III—samples | IHC | PROX1 expression (in CC) associated with
| [45] |
47 colon cancer samples Controls: 47 paracancerous tissue samples | quantitative RT-PCR | High PROX1 expression in both cancer (in CC) and paracancerous tissues without significant differences | [46] |
50 gastric cancer samples | IHC mRNA-scope |
| [35] |
327 gastric cancer samples | IHC |
| [36] |
99 gastric cancer samples | IHC | PROX1 expression (in CC) associated with
| [37] |
283 gastric cancer samples | IHC |
| [38] |
54 esophageal carcinoma samples | quantitative RT-PCR MVD assessment | PROX1 expression in CC and LEC
| [33] |
117 esophageal cancer samples | IHC |
| [34] |
25 HCC samples, 17 liver metastases samples (from the GI tract, pancreas, and ovary cancers) | IHC | PROX1 expression in LEC
| [48] |
52 HCC samples Controls: 52 non-cancerous liver tissue samples | Semiquantitative RT-PCR IHC | PROX1 overexpression (in CC) correlated with
| [49] |
36 PDAC samples Controls: 30 normal pancreatic tissues | quantitative RT-PCR IHC | PROX1 expression in both CC and LEC
| [51] |
156 PDAC samples | IHC | PROX1 expression in CC
| [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntikoudi, E.; Pergaris, A.; Kykalos, S.; Politi, E.; Theocharis, S. The Role of PROX1 in Neoplasia: A Key Player Often Overlooked. Diagnostics 2022, 12, 1624. https://doi.org/10.3390/diagnostics12071624
Ntikoudi E, Pergaris A, Kykalos S, Politi E, Theocharis S. The Role of PROX1 in Neoplasia: A Key Player Often Overlooked. Diagnostics. 2022; 12(7):1624. https://doi.org/10.3390/diagnostics12071624
Chicago/Turabian StyleNtikoudi, Evangelia, Alexandros Pergaris, Stylianos Kykalos, Ekaterini Politi, and Stamatios Theocharis. 2022. "The Role of PROX1 in Neoplasia: A Key Player Often Overlooked" Diagnostics 12, no. 7: 1624. https://doi.org/10.3390/diagnostics12071624
APA StyleNtikoudi, E., Pergaris, A., Kykalos, S., Politi, E., & Theocharis, S. (2022). The Role of PROX1 in Neoplasia: A Key Player Often Overlooked. Diagnostics, 12(7), 1624. https://doi.org/10.3390/diagnostics12071624