Gestational Diabetes Melitus and Cord Blood Platelet Function Studied via the PFA-100 System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Collection and Patients
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westermeier, F.; Sáez, T.; Arroyo, P.; Toledo, F.; Gutiérrez, J.; Sanhueza, C.; Pardo, F.; Leiva, A.; Sobrevia, L. Insulin receptor isoforms: An integrated view focused on gestational diabetes mellitus. Diabetes Metab. Res. Rev. 2016, 32, 350–365. [Google Scholar] [CrossRef] [PubMed]
- Santilli, F.; Liani, R.; Di Fulvio, P.; Formoso, G.; Simeone, P.; Tripaldi, R.; Ueland, T.; Aukrust, P.; Davì, G. Increased circulating resistin is associated with insulin resistance, oxidative stress and platelet activation in type 2 diabetes mellitus. Thromb. Haemost. 2016, 116, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, Y.H.; Chen, Y.P.; Yuan, X.L.; Wang, J.; Zhu, H.; Lu, C.M. Maternal circulating concentrations of tumor necrosis factor-alpha, leptin, and adiponectin in gestational diabetes mellitus: A systematic review and meta-analysis. Sci. World J. 2014, 2014, 926932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerrits, A.J.; Gitz, E.; Koekman, C.A.; Visseren, F.L.; van Haeften, T.W.; Akkerman, J.W.N. Induction of insulin resistance by the adipokines resistin, leptin, plasminogen activator inhibitor-1 and retinol binding protein 4 in human megakaryocytes. Haematologica 2012, 97, 1149–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantham, P.; Aye, I.L.; Powell, T.L. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta 2015, 36, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Cowett, R.M. The Infant of the Diabetic Mother. Neo Rev. 2002, 3, e173–e189. [Google Scholar] [CrossRef]
- Politou, M.; Mougiou, V.; Kollia, M.; Sokou, R.; Kafalidis, G.; Iliodromiti, Z.; Valsami, S.; Boutsikou, T.; Iacovidou, N. High-Risk Pregnancies and Their Impact on Neonatal Primary Hemostasis. Semin. Thromb. Hemost. 2020, 46, 435–445. [Google Scholar] [CrossRef]
- Janes, S.L.; Goodall, A.H. Flow cytometric detection of circulating activated platelets and platelet hyper-responsiveness in pre-eclampsia and pregnancy. Clin. Sci. 1994, 86, 731–739. [Google Scholar] [CrossRef]
- Gioia, S.; Cerekja, A.; Larciprete, G.; Vallone, C.; Demaliaj, E.; Evangelista, M.T.; Guglietta, M.; Piazze, J. Gestational diabetes: Is it linked to platelets hyperactivity? Platelets 2009, 20, 140–141. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, H.; Sun, M.; Ju, H. Mean Platelet Volume and Gestational Diabetes Mellitus: A Systematic Review and Meta-Analysis. J. Diabetes Res. 2018, 2018, 1985026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, B.; Sha, D.; Xie, D.; Mohler, E.R., III; Berger, J.S. The relationship between diabetes, metabolic syndrome, and platelet activity as measured by mean platelet volume: The National Health And Nutrition Examination Survey, 1999–2004. Diabetes Care 2012, 35, 1074–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fashami, M.A.; Hajian, S.; Afrakhteh, M.; Khoob, M.K. Is there an association between platelet and blood inflammatory indices and the risk of gestational diabetes mellitus? Obstet. Gynecol. Sci. 2020, 63, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Knobler, H.; Savion, N.; Shenkman, B.; Kotev-Emeth, S.; Varon, D. Shear-Induced Platelet Adhesion and Aggregation on Subendothelium Are Increased in Diabetic Patients. Thromb. Res. 1998, 90, 181–190. [Google Scholar] [CrossRef]
- Strauss, T.; Sidlik-Muskatel, R.; Kenet, G. Developmental hemostasis: Primary hemostasis and evaluation of platelet function in neonates. Semin. Fetal Neonatal Med. 2011, 16, 301–304. [Google Scholar] [CrossRef]
- Israels, S.J.; Rand, M.L.; Michelson, A.D. Neonatal Platelet Function. Semin. Thromb. Hemost. 2003, 29, 363–372. [Google Scholar] [CrossRef]
- Harrison, P. Platelet function analysis. Blood Rev. 2005, 19, 111–123. [Google Scholar] [CrossRef]
- Israels, S.J.; Cheang, T.; McMillan-Ward, E.M.; Cheang, M. Evaluation of primary hemostasis in neonates with a new in vitro platelet function analyzer. J. Pediatr. 2001, 138, 116–119. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [Green Version]
- Carcao, M.D.; Blanchette, V.S.; Dean, J.; He, L.; Kern, M.; Stain, A.M.; Sparling, C.R.; Stephens, D.; Ryan, G.; Freedman, J.; et al. The Platelet Function Analyzer (PFA-100®): A novel in-vitro system for evaluation of primary haemostasis in children. Br. J. Haematol. 1998, 101, 70–73. [Google Scholar] [CrossRef]
- Favaloro, E. Clinical Utility of the PFA-100. Semin. Thromb. Hemost. 2008, 34, 709–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randriamboavonjy, V.; Fleming, I. Insulin, Insulin Resistance, and Platelet Signaling in Diabetes. Diabetes Care 2009, 32, 528–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, I.A.; Eybrechts, K.L.; Mocking, A.I.M.; Kroner, C.; Akkerman, J.-W.N. IRS-1 Mediates Inhibition of Ca2+ Mobilization by Insulin via the Inhibitory G-protein Gi. J. Biol. Chem. 2004, 279, 3254–3264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusak, T.; Misztal, T.; Rusak, M.; Branska-Januszewska, J.; Tomasiak, M. Involvement of hyperglycemia in the development of platelet procoagulant response. Blood Coagul. Fibrinolysis 2017, 28, 443–451. [Google Scholar] [CrossRef]
- Sudic, D.; Razmara, M.; Forslund, M.; Ji, Q.; Hjemdahl, P.; Li, N. High glucose levels enhance platelet activation: Involvement of multiple mechanisms. Br. J. Haematol. 2006, 133, 315–322. [Google Scholar] [CrossRef]
- Li, Y.; Woo, V.; Bose, R. Platelet hyperactivity and abnormal Ca2+ homeostasis in diabetes mellitus. Am. J. Physiol. Circ. Physiol. 2001, 280, H1480–H1489. [Google Scholar] [CrossRef]
- Nold, J.L.; Georgieff, M.K. Infants of diabetic mothers. Pediatr. Clin. N. Am. 2004, 51, 619–637. [Google Scholar] [CrossRef]
- Davlouros, P.; Xanthopoulou, I.; Mparampoutis, N.; Giannopoulos, G.; Deftereos, S.; Alexopoulos, D. Role of Calcium in Platelet Activation: Novel Insights and Pharmacological Implications. Med. Chem. 2016, 12, 131–138. [Google Scholar] [CrossRef]
- Favaloro, E.J. Clinical utility of closure times using the platelet function analyzer-100/200. Am. J. Hematol. 2017, 92, 398–404. [Google Scholar] [CrossRef] [Green Version]
- Glasser, L.; Sutton, N.; Schmeling, M.; Machan, J.T. A comprehensive study of umbilical cord blood cell developmental changes and reference ranges by gestation, gender and mode of delivery. J. Perinatol. 2015, 35, 469–475. [Google Scholar] [CrossRef]
- Wu, J.-H.; Chou, H.-C.; Chen, P.-C.; Jeng, S.F.; Chen, C.-Y.; Tsao, P.-N.; Hsieh, C.-J.; Huang, H.-M.; Hsieh, W.-S. Impact of delivery mode and gestational age on haematological parameters in Taiwanese preterm infants. J. Paediatr. Child Health 2009, 45, 332–336. [Google Scholar] [CrossRef]
- Nikischin, W.; Peter, M.; Oldigs, H.D. The influence of mode of delivery on hematologic values in the umbilical vein. Gynecol. Obstet. Investig. 1997, 43, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Bester, J.; Pretorius, E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci. Rep. 2016, 6, 32188. [Google Scholar] [CrossRef] [PubMed]
- Kaser, A.; Brandacher, G.; Steurer, W.; Kaser, S.; Offner, F.A.; Zoller, H.; Theurl, I.; Widder, W.; Molnar, C.; Ludwiczek, O.; et al. Interleukin-6 stimulates thrombopoiesis through thrombopoietin: Role in inflammatory thrombocytosis. Blood 2001, 98, 2720–2725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Donnell, J.; Laffan, M. The relationship between ABO histo-blood group, factor VIII and von Willebrand factor. Transfus. Med. 2001, 11, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.E.; O’Sullivan, J.M.; O’Donnell, J.S. The relationship between ABO blood group, von Willebrand factor, and primary hemostasis. Blood 2020, 136, 2864–2874. [Google Scholar] [CrossRef]
- Pujol-Moix, N.; Martinez-Perez, A.; Sabater-Lleal, M.; Llobet, D.; Vilalta, N.; Hamsten, A.; Souto, J.C.; Soria, J.M. Influence of ABO Locus on PFA-100 Collagen-ADP Closure Time Is Not Totally Dependent on the Von Willebrand Factor. Results of a GWAS on GAIT-2 Project Phenotypes. Int. J. Mol. Sci. 2019, 20, 3221. [Google Scholar] [CrossRef] [Green Version]
- Bednarek, F.J.; Bean, S.; Barnard, M.R.; Frelinger, A.; Michelson, A.D. The platelet hyporeactivity of extremely low birth weight neonates is age-dependent. Thromb. Res. 2009, 124, 42–45. [Google Scholar] [CrossRef]
- Uçar, T.; Gurman, C.; Arsan, S.; Kemahli, S. Platelet aggregation in term and preterm newborns. Pediatr. Hematol. Oncol. 2005, 22, 139–145. [Google Scholar] [CrossRef]
- Wiedmeier, S.E.; Henry, E.; Sola-Visner, M.C.; Christensen, R.D. Platelet reference ranges for neonates, defined using data from over 47 000 patients in a multihospital healthcare system. J. Perinatol. 2008, 29, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Levy-Shraga, Y.; Maayan-Metzger, A.; Lubetsky, A.; Shenkman, B.; Kuint, J.; Martinowitz, U.; Kenet, G. Platelet Function of Newborns as Tested by Cone and Plate(let) Analyzer Correlates with Gestational Age. Acta Haematol. 2006, 115, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Hedderson, M. Gestational diabetes mellitus and lesser degrees of pregnancy hyperglycemia: Association with increased risk of spontaneous preterm birth. Obstet. Gynecol. 2003, 102, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Billionnet, C.; Mitanchez, D.; Weill, A.; Nizard, J.; Alla, F.; Hartemann, A.; Jacqueminet, S. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia 2017, 60, 636–644. [Google Scholar] [CrossRef]
- Sharma, D.; Padmavathi, I.V.; Tabatabaii, S.A.; Farahbakhsh, N. Late preterm: A new high risk group in neonatology. J. Matern. Neonatal Med. 2019, 34, 2717–2730. [Google Scholar] [CrossRef] [PubMed]
- Roschitz, B.; Sudi, K.; Köstenberger, M.; Muntean, W. Shorter PFA-100 closure times in neonates than in adults: Role of red cells, white cells, platelets and von Willebrand factor. Acta Pediatr. 2001, 90, 664–670. [Google Scholar] [CrossRef]
- Saxonhouse, M.A.; Sola, M.C. Platelet function in term and preterm neonates. Clin. Perinatol. 2004, 31, 15–28. [Google Scholar] [CrossRef]
- Katz, J.A.; Moake, J.L.; McPherson, P.D.; Weinstein, M.J.; Moise, K.J.; Carpenter, R.J.; Sala, D.J. Relationship between human development and disappearance of unusually large von Willebrand factor multimers from plasma. Blood 1989, 73, 1854–1858. [Google Scholar] [CrossRef] [Green Version]
- Favaloro, E.J. Utility of the PFA-100 for assessing bleeding disorders and monitoring therapy: A review of analytical variables, benefits and limitations. Haemophilia 2001, 7, 170–179. [Google Scholar] [CrossRef]
- Andrew, M.; Paes, B.; Johnston, M. Development of the Hemostatic System in the Neonate and Young Infant. J. Pediatr. Hematol. 1990, 12, 95–104. [Google Scholar] [CrossRef]
- LeFevre, M.L.; U.S. Preventive Services Task Force. Low-dose aspirin use for the prevention of morbidity and mortality from preeclampsia: U.S. Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2014, 161, 819–826. [Google Scholar] [CrossRef]
- Ornelas, A.; Zacharias-Millward, N.; Menter, D.G.; Davis, J.; Lichtenberger, L.; Hawke, D.; Hawk, E.; Vilar, E.; Bhattacharya, P.; Millward, S. Beyond COX-1: The effects of aspirin on platelet biology and potential mechanisms of chemoprevention. Cancer Metastasis Rev. 2017, 36, 289–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hvas, A.-M.; Favaloro, E.J. Platelet function testing in pediatric patients. Expert Rev. Hematol. 2017, 10, 281–288. [Google Scholar] [CrossRef] [PubMed]
Type of Data | Variable | Control Group n = 118 | GDM Group n = 84 | p Value | |
---|---|---|---|---|---|
Gestational data | Preterm | 14 (11.86%) | 20 (23.8%) | 0.025 | |
IVF | 6 (5.08%) | 11 (13.09%) | 0.043 | ||
CS | 78 (66.1%) | 62 (44.29%) | 0.242 | ||
Forced delivery | 12 (10.16%) | 2 (2.38%) | 0.737 | ||
Pethidine | 5 (4.23%) | 4 (4.76%) | 0.830 | ||
Anesthesia (epidural) | 89 (75.42%) | 64 (76.19%) | 0.900 | ||
Anesthesia (general) | 1 (0.85%) | 4 (4.76%) | 0.078 | ||
Ampicillin peripartum | 12 (10.17%) | 5 (5.95%) | 0.322 | ||
Neonatal characteristics | Gender | Male | 55 (46.61%) | 48 (57.14%) | 0.140 |
Female | 63 (53.39%) | 36 (42.86%) | |||
Apgar 1′ < 5 | 0 (0%) | 1 (1.19%) | 0.006 | ||
Apgar 1′ 5–7 | 0 (0%) | 6 (7.14%) | |||
Apgar 1′ 8–10 | 118 (100%) | 77 (91.67%) | |||
Apgar 5′ 5–7 | 0 (0%) | 1 (1.19%) | |||
Apgar 5′ 8–10 | 118 (100%) | 83 (98.8%) | 0.235 | ||
Gestational age (weeks) | 39.07 (38.28–39.84) | 39 (37.14–39.7) | 0.101 | ||
Birth weight (g) | 3305 (3080–3560) | 3190 (2690–3560) | 0.080 | ||
Birth weight percentile | 50 (35–69) | 40.5 (19–73.5) | 0.044 | ||
Birth temperature | 36.3 (36.1–36.6) | 36.2 (36–36.5) | 0.341 | ||
Neonatal blood group O | 46 (38.98%) | 30 (35.71%) | 0.683 | ||
Maternal medication | Aspirin < 7 days before delivery | 2 (1.69%) | 11 (13.1%) | 0.003 | |
Aspirin > 7 days before delivery | 8 (6.78%) | 8 (9.52%) | |||
LMWH | 10 (8.47%) | 8 (9.52%) | 0.796 | ||
Diabetes treatment: diet | 0 (0%) | 56 (66.67%) | 0.0000 | ||
Diabetes treatment: insulin | 0 (0%) | 23 (27.38%) | |||
Diabetes treatment: pills | 0 (0%) | 2 (2.38%) | |||
Diabetes treatment: none | 0 (0%) | 3 (3.57%) | |||
Neonatal hematologic parameters | Neonatal WBCs (/μL) | 12350 (10,200–15,200) | |||
Neonatal Hct (%) | 45 (42.2–47.7) | 46.55 (43–49.85) | 0.065 | ||
Neonatal PLTs (×109/L) | 251 (207.5–296) | 260 (215.5–303) | 0.502 | ||
Neonatal MPV (fl) | 9.8 (8.4–10.5) | 9.5 (8.25–10.25) | 0.331 | ||
Neonatal VWF activity | 119.05 (97.4–137.7) | ||||
Maternal hematologic parameters | Maternal Hct (%) | 36 (34–38) | 37 (34–39) | 0.199 | |
Maternal PLTs (×109/L) | 199 (173–234) | 207 (180–260.5) | 0.150 | ||
Maternal MPV (fl) | 10.9 (10.4–11.8) | 11.3 (10.7–12) | 0.092 |
Variable | Levels | n | COL/EPI (Median, IQR) | p-Value | COL/ADP (Median, IQR) | p-Value |
---|---|---|---|---|---|---|
Group | Diabetes | 84 | 129 (100.5–164) | 0.0075 | 69 (63–78) | 0.168 |
Control | 118 | 112.5 (93–145) | 72 (64–80) |
Variable | Levels | n | COL/EPI CT (Median, IQR) | p-Value | COL/ADP CT (Median, IQR) | p-Value |
---|---|---|---|---|---|---|
Delivery mode | Cesarean Section | 62 | 129 (100–161) | 0.680 | 72 (64.5–78.5) | 0.023 |
Vaginal delivery | 22 | 132 (101–192) | 65 (60–69) | |||
Neonatal blood group | O | 30 | 137.5 (103–193) | 0.3801 | 73 (66–79) | 0.026 |
Non-O | 53 | 127 (99–155) | 66.5 (60.5–74) |
Variable | COL/EPI CT | COL/ADP CT |
---|---|---|
Gestational age | 0.09575 | −0.230 |
0.3862 | 0.037 | |
Neonatal WBCs | 0.09523 | −0.345 |
0.3889 | 0.002 | |
Neonatal VWF activity | −0.26577 | −0.364 |
0.1415 | 0.044 | |
PLTs | −0.02279 | −0.180 |
0.837 | 0.105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mougiou, V.; Boutsikou, T.; Sokou, R.; Kollia, M.; Valsami, S.; Pouliakis, A.; Boutsikou, M.; Politou, M.; Iacovidou, N.; Iliodromiti, Z. Gestational Diabetes Melitus and Cord Blood Platelet Function Studied via the PFA-100 System. Diagnostics 2022, 12, 1645. https://doi.org/10.3390/diagnostics12071645
Mougiou V, Boutsikou T, Sokou R, Kollia M, Valsami S, Pouliakis A, Boutsikou M, Politou M, Iacovidou N, Iliodromiti Z. Gestational Diabetes Melitus and Cord Blood Platelet Function Studied via the PFA-100 System. Diagnostics. 2022; 12(7):1645. https://doi.org/10.3390/diagnostics12071645
Chicago/Turabian StyleMougiou, Vasiliki, Theodora Boutsikou, Rozeta Sokou, Maria Kollia, Serena Valsami, Abraham Pouliakis, Maria Boutsikou, Marianna Politou, Nicoletta Iacovidou, and Zoe Iliodromiti. 2022. "Gestational Diabetes Melitus and Cord Blood Platelet Function Studied via the PFA-100 System" Diagnostics 12, no. 7: 1645. https://doi.org/10.3390/diagnostics12071645
APA StyleMougiou, V., Boutsikou, T., Sokou, R., Kollia, M., Valsami, S., Pouliakis, A., Boutsikou, M., Politou, M., Iacovidou, N., & Iliodromiti, Z. (2022). Gestational Diabetes Melitus and Cord Blood Platelet Function Studied via the PFA-100 System. Diagnostics, 12(7), 1645. https://doi.org/10.3390/diagnostics12071645