The Impact of Matrix Metalloproteinase-11 Polymorphisms on Colorectal Cancer Progression and Clinicopathological Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Sample Preparation and DNA Extraction
2.3. Selection of MMP-11 SNPs
2.4. MMP-11 SNPs Genotyping
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of Study Cohorts
3.2. MMP-11 Gene Polymorphisms were Associated with the Clinicopathological Characteristics of CRC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Ma, X.; Chakravarti, D.; Shalapour, S.; DePinho, R.A. Genetic and biological hallmarks of colorectal cancer. Genes Dev. 2021, 35, 787–820. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.P.; Lee, J.C.; Leu, T.H.; Hidajah, A.C.; Chang, Y.H.; Li, C.Y. Association of gout and colorectal cancer in Taiwan: A nationwide population-based cohort study. BMJ Open 2019, 9, e028892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef]
- Sninsky, J.A.; Shore, B.M.; Lupu, G.V.; Crockett, S.D. Risk Factors for Colorectal Polyps and Cancer. Gastrointest. Endosc. Clin. N. Am. 2022, 32, 195–213. [Google Scholar] [CrossRef]
- Kim, S.E.; Paik, H.Y.; Yoon, H.; Lee, J.E.; Kim, N.; Sung, M.K. Sex- and gender-specific disparities in colorectal cancer risk. World J. Gastroenterol. 2015, 21, 5167–5175. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.; Swaminathan, R.; Brenner, H.; Chen, K.; Chia, K.S.; Chen, J.G.; Law, S.C.; Ahn, Y.O.; Xiang, Y.B.; Yeole, B.B.; et al. Cancer survival in Africa, Asia, and Central America: A population-based study. Lancet Oncol. 2010, 11, 165–173. [Google Scholar] [CrossRef]
- Taylor, D.P.; Burt, R.W.; Williams, M.S.; Haug, P.J.; Cannon-Albright, L.A. Population-based family history-specific risks for colorectal cancer: A constellation approach. Gastroenterology 2010, 138, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Jess, T.; Rungoe, C.; Peyrin-Biroulet, L. Risk of colorectal cancer in patients with ulcerative colitis: A meta-analysis of population-based cohort studies. Clin. Gastroenterol. Hepatol. 2012, 10, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.S.; Chen, T.Y.; Giovannucci, E. Cigarette smoking and colorectal cancer incidence and mortality: Systematic review and meta-analysis. Int. J. Cancer 2009, 124, 2406–2415. [Google Scholar] [CrossRef] [PubMed]
- Fedirko, V.; Tramacere, I.; Bagnardi, V.; Rota, M.; Scotti, L.; Islami, F.; Negri, E.; Straif, K.; Romieu, I.; La Vecchia, C.; et al. Alcohol drinking and colorectal cancer risk: An overall and dose-response meta-analysis of published studies. Ann. Oncol. 2011, 22, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.S.; Lau, R.; Aune, D.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Red and processed meat and colorectal cancer incidence: Meta-analysis of prospective studies. PLoS ONE 2011, 6, e20456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Yang, Y.; Wang, F.; Zhang, P.; Shi, C.; Zou, Y.; Qin, H. Obesity and risk of colorectal cancer: A systematic review of prospective studies. PLoS ONE 2013, 8, e53916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Ben, Q.; Shen, H.; Lu, W.; Zhang, Y.; Zhu, J. Diabetes mellitus and incidence and mortality of colorectal cancer: A systematic review and meta-analysis of cohort studies. Eur. J. Epidemiol. 2011, 26, 863–876. [Google Scholar] [CrossRef]
- Keller, D.S.; Windsor, A.; Cohen, R.; Chand, M. Colorectal cancer in inflammatory bowel disease: Review of the evidence. Tech. Coloproctol. 2019, 23, 3–13. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Su, S.C.; Lin, C.W.; Chao, Y.H.; Yang, W.E.; Yang, S.F. Pathological and therapeutic aspects of matrix metalloproteinases: Implications in childhood leukemia. Cancer Metastasis Rev. 2019, 38, 829–837. [Google Scholar] [CrossRef]
- Yang, J.S.; Lin, C.W.; Su, S.C.; Yang, S.F. Pharmacodynamic considerations in the use of matrix metalloproteinase inhibitors in cancer treatment. Expert Opin. Drug Metab. Toxicol. 2016, 12, 191–200. [Google Scholar] [CrossRef]
- Su, S.C.; Hsieh, M.J.; Yang, W.E.; Chung, W.H.; Reiter, R.J.; Yang, S.F. Cancer metastasis: Mechanisms of inhibition by melatonin. J. Pineal Res. 2017, 62, e12370. [Google Scholar] [CrossRef]
- Su, C.W.; Lin, C.W.; Yang, W.E.; Yang, S.F. TIMP-3 as a therapeutic target for cancer. Ther. Adv. Med. Oncol. 2019, 11, 1758835919864247. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Huang, S.; Guo, J.; Zhou, L.; You, L.; Zhang, T.; Zhao, Y. Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (Review). Int. J. Oncol. 2016, 48, 1783–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matziari, M.; Dive, V.; Yiotakis, A. Matrix metalloproteinase 11 (MMP-11; stromelysin-3) and synthetic inhibitors. Med. Res. Rev. 2007, 27, 528–552. [Google Scholar] [CrossRef] [PubMed]
- Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int. J. Mol. Sci. 2016, 17, 868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kossakowska, A.E.; Huchcroft, S.A.; Urbanski, S.J.; Edwards, D.R. Comparative analysis of the expression patterns of metalloproteinases and their inhibitors in breast neoplasia, sporadic colorectal neoplasia, pulmonary carcinomas and malignant non-Hodgkin’s lymphomas in humans. Br. J. Cancer 1996, 73, 1401–1408. [Google Scholar] [CrossRef] [Green Version]
- Scheau, C.; Badarau, I.A.; Costache, R.; Caruntu, C.; Mihai, G.L.; Didilescu, A.C.; Constantin, C.; Neagu, M. The Role of Matrix Metalloproteinases in the Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma. Anal. Cell. Pathol. 2019, 2019, 9423907. [Google Scholar] [CrossRef] [Green Version]
- Greco, M.; Arcidiacono, B.; Chiefari, E.; Vitagliano, T.; Ciriaco, A.G.; Brunetti, F.S.; Cuda, G.; Brunetti, A. HMGA1 and MMP-11 Are Overexpressed in Human Non-melanoma Skin Cancer. Anticancer Res. 2018, 38, 771–778. [Google Scholar] [CrossRef]
- Motrescu, E.R.; Rio, M.C. Cancer cells, adipocytes and matrix metalloproteinase 11: A vicious tumor progression cycle. Biol. Chem. 2008, 389, 1037–1041. [Google Scholar] [CrossRef]
- Johnson, L.D.; Hunt, D.M.; Kim, K.; Nachtigal, M. Amplification of stromelysin-3 transcripts from carcinomas of the colon. Hum. Pathol. 1996, 27, 964–968. [Google Scholar] [CrossRef]
- Pang, L.; Wang, D.W.; Zhang, N.; Xu, D.H.; Meng, X.W. Elevated serum levels of MMP-11 correlate with poor prognosis in colon cancer patients. Cancer Biomark. 2016, 16, 599–607. [Google Scholar] [CrossRef]
- Morini, S.R.; Denadai, M.V.; Waisberg, J.; Lopes Filho, G.J.; Matos, D.; Saad, S.S. Metalloproteinases and colorectal cancer. Correlation of gene expression and clinical-pathological parameters. Acta Cir. Bras. 2020, 35, e202000707. [Google Scholar] [CrossRef]
- Koberle, B.; Koch, B.; Fischer, B.M.; Hartwig, A. Single nucleotide polymorphisms in DNA repair genes and putative cancer risk. Arch. Toxicol. 2016, 90, 2369–2388. [Google Scholar] [CrossRef]
- International HapMap, C. The International HapMap Project. Nature 2003, 426, 789–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.W.; Yang, S.F.; Chuang, C.Y.; Lin, H.P.; Hsin, C.H. Association of matrix metalloproteinase-11 polymorphisms with susceptibility and clinicopathologic characteristics for oral squamous cell carcinoma. Head Neck 2015, 37, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Hsu, C.J.; Lee, H.L.; Chou, C.H.; Su, C.M.; Yang, S.F.; Tang, C.H. Impact of matrix metalloproteinase-11 gene polymorphisms upon the development and progression of hepatocellular carcinoma. Int. J. Med. Sci. 2018, 15, 653–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saad, H.; Zahran, M.A.; Hendy, O.; Abdel-Samiee, M.; Bedair, H.M.; Abdelsameea, E. Matrix Metalloproteinase-11 Gene Polymorphisms as a Risk for Hepatocellular Carcinoma Development in Egyptian Patients. Asian Pac. J. Cancer Prev. 2020, 21, 3725–3734. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.Y.; Chou, Y.E.; Lin, C.Y.; Wang, S.S.; Chien, M.H.; Tang, C.H.; Lin, J.C.; Wen, Y.C.; Yang, S.F. Impact of Matrix Metalloproteinase-11 Gene Polymorphisms on Biochemical Recurrence and Clinicopathological Characteristics of Prostate Cancer. Int. J. Environ. Res. Public Health 2020, 17, 8603. [Google Scholar] [CrossRef]
- Li, C.C.; Hsieh, M.J.; Wang, S.S.; Hung, S.C.; Lin, C.Y.; Kuo, C.W.; Yang, S.F.; Chou, Y.E. Impact of Matrix Metalloproteinases 11 Gene Variants on Urothelial Cell Carcinoma Development and Clinical Characteristics. Int. J. Environ. Res. Public Health 2020, 17, 475. [Google Scholar] [CrossRef] [Green Version]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef]
- Chung, T.T.; Pan, M.S.; Kuo, C.L.; Wong, R.H.; Lin, C.W.; Chen, M.K.; Yang, S.F. Impact of RECK gene polymorphisms and environmental factors on oral cancer susceptibility and clinicopathologic characteristics in Taiwan. Carcinogenesis 2011, 32, 1063–1068. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, P.C.; Chen, M.K.; Su, S.C.; Ueng, K.C.; Chen, Y.C.; Hsieh, Y.H.; Liu, Y.F.; Tsai, H.T.; Yang, S.F. Hypoxia inducible factor-1alpha gene polymorphism G1790A and its interaction with tobacco and alcohol consumptions increase susceptibility to hepatocellular carcinoma. J. Surg. Oncol. 2010, 102, 163–169. [Google Scholar] [CrossRef] [PubMed]
- The Lancet Oncology. Colorectal cancer: A disease of the young? Lancet Oncol. 2017, 18, 413. [Google Scholar] [CrossRef]
- Patel, S.G.; Ahnen, D.J. Colorectal Cancer in the Young. Curr. Gastroenterol. Rep. 2018, 20, 15. [Google Scholar] [CrossRef] [PubMed]
- Mauri, G.; Sartore-Bianchi, A.; Russo, A.G.; Marsoni, S.; Bardelli, A.; Siena, S. Early-onset colorectal cancer in young individuals. Mol. Oncol. 2019, 13, 109–131. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.G.; Murphy, C.C.; Lieu, C.H.; Hampel, H. Early age onset colorectal cancer. Adv. Cancer Res. 2021, 151, 1–37. [Google Scholar] [CrossRef]
- Siegel, R.; DeSantis, C.; Virgo, K.; Stein, K.; Mariotto, A.; Smith, T.; Cooper, D.; Gansler, T.; Lerro, C.; Fedewa, S.; et al. Cancer treatment and survivorship statistics, 2012. CA Cancer J. Clin. 2012, 62, 220–241. [Google Scholar] [CrossRef] [Green Version]
- Baxter, N.N.; Kennedy, E.B.; Bergsland, E.; Berlin, J.; George, T.J.; Gill, S.; Gold, P.J.; Hantel, A.; Jones, L.; Lieu, C.; et al. Adjuvant Therapy for Stage II Colon Cancer: ASCO Guideline Update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 892–910. [Google Scholar] [CrossRef]
- Leijssen, L.G.J.; Dinaux, A.M.; Taylor, M.S.; Deshpande, V.; Kunitake, H.; Bordeianou, L.G.; Berger, D.L. Perineural Invasion Is a Prognostic but not a Predictive Factor in Nonmetastatic Colon Cancer. Dis. Colon Rectum 2019, 62, 1212–1221. [Google Scholar] [CrossRef]
- Skancke, M.; Arnott, S.M.; Amdur, R.L.; Siegel, R.S.; Obias, V.J.; Umapathi, B.A. Lymphovascular Invasion and Perineural Invasion Negatively Impact Overall Survival for Stage II Adenocarcinoma of the Colon. Dis. Colon Rectum 2019, 62, 181–188. [Google Scholar] [CrossRef]
- Hansen, I.O.; Jess, P. Possible better long-term survival in left versus right-sided colon cancer-a systematic review. Dan. Med. J. 2012, 59, A4444. [Google Scholar]
- Pal, S.K.; Hurria, A. Impact of age, sex, and comorbidity on cancer therapy and disease progression. J. Clin. Oncol. 2010, 28, 4086–4093. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Wang, P.H.; Lee, Y.C.; Lee, C.Y.; Yang, S.F.; Shen, H.P.; Hsiao, Y.H. Impact of matrix metalloproteinase-11 gene polymorphisms on development and clinicopathologcial variables of uterine cervical cancer in Taiwanese women. Int. J. Med. Sci. 2019, 16, 774–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hases, L.; Ibrahim, A.; Chen, X.; Liu, Y.; Hartman, J.; Williams, C. The Importance of Sex in the Discovery of Colorectal Cancer Prognostic Biomarkers. Int. J. Mol. Sci. 2021, 22, 1354. [Google Scholar] [CrossRef] [PubMed]
- Hang, D.; Shen, H. Sex Hormone and Colorectal Cancer: The Knowns and Unknowns. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1302–1304. [Google Scholar] [CrossRef]
- Hang, D.; He, X.; Kvaerner, A.S.; Chan, A.T.; Wu, K.; Ogino, S.; Hu, Z.; Shen, H.; Giovannucci, E.L.; Song, M. Plasma sex hormones and risk of conventional and serrated precursors of colorectal cancer in postmenopausal women. BMC Med. 2021, 19, 18. [Google Scholar] [CrossRef]
- Yang, W.; Giovannucci, E.L.; Hankinson, S.E.; Chan, A.T.; Ma, Y.; Wu, K.; Fuchs, C.S.; Lee, I.M.; Sesso, H.D.; Lin, J.H.; et al. Endogenous sex hormones and colorectal cancer survival among men and women. Int. J. Cancer 2020, 147, 920–930. [Google Scholar] [CrossRef]
- Lin, J.H.; Zhang, S.M.; Rexrode, K.M.; Manson, J.E.; Chan, A.T.; Wu, K.; Tworoger, S.S.; Hankinson, S.E.; Fuchs, C.; Gaziano, J.M.; et al. Association between sex hormones and colorectal cancer risk in men and women. Clin. Gastroenterol. Hepatol. 2013, 11, 419–424.e1. [Google Scholar] [CrossRef] [Green Version]
- Bouras, E.; Papandreou, C.; Tzoulaki, I.; Tsilidis, K.K. Endogenous sex steroid hormones and colorectal cancer risk: A systematic review and meta-analysis. Discov. Oncol. 2021, 12, 8. [Google Scholar] [CrossRef]
- Mountain, D.J.; Freeman, B.M.; Kirkpatrick, S.S.; Beddies, J.W.; Arnold, J.D.; Freeman, M.B.; Goldman, M.H.; Stevens, S.L.; Klein, F.A.; Grandas, O.H. Androgens regulate MMPs and the cellular processes of intimal hyperplasia. J. Surg. Res. 2013, 184, 619–627. [Google Scholar] [CrossRef]
- Morales-Vasquez, F.; Castillo-Sanchez, R.; Gomora, M.J.; Almaraz, M.A.; Pedernera, E.; Perez-Montiel, D.; Rendon, E.; Lopez-Basave, H.N.; Roman-Basaure, E.; Cuevas-Covarrubias, S.; et al. Expression of metalloproteinases MMP-2 and MMP-9 is associated to the presence of androgen receptor in epithelial ovarian tumors. J. Ovarian Res. 2020, 13, 86. [Google Scholar] [CrossRef]
- Eiro, N.; Fernandez-Gomez, J.; Sacristan, R.; Fernandez-Garcia, B.; Lobo, B.; Gonzalez-Suarez, J.; Quintas, A.; Escaf, S.; Vizoso, F.J. Stromal factors involved in human prostate cancer development, progression and castration resistance. J. Cancer Res. Clin. Oncol. 2017, 143, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Horstman, A.M.; Dillon, E.L.; Urban, R.J.; Sheffield-Moore, M. The role of androgens and estrogens on healthy aging and longevity. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2012, 67, 1140–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman-Gruen, D.; Barrett-Connor, E. Sex differences in the association of endogenous sex hormone levels and glucose tolerance status in older men and women. Diabetes Care 2000, 23, 912–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zumoff, B.; Strain, G.W.; Miller, L.K.; Rosner, W. Twenty-four-hour mean plasma testosterone concentration declines with age in normal premenopausal women. J. Clin. Endocrinol. Metab. 1995, 80, 1429–1430. [Google Scholar] [CrossRef] [PubMed]
- Koga, Y.; Yasunaga, M.; Moriya, Y.; Akasu, T.; Fujita, S.; Yamamoto, S.; Kozu, T.; Baba, H.; Matsumura, Y. Detection of colorectal cancer cells from feces using quantitative real-time RT-PCR for colorectal cancer diagnosis. Cancer Sci. 2008, 99, 1977–1983. [Google Scholar] [CrossRef]
- Lech, G.; Slotwinski, R.; Slodkowski, M.; Krasnodebski, I.W. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances. World J. Gastroenterol. 2016, 22, 1745–1755. [Google Scholar] [CrossRef]
- Yang, B.; Gao, J.; Rao, Z.; Shen, Q. Clinicopathological and prognostic significance of α5β1-integrin and MMP-14 expressions in colorectal cancer. Neoplasma 2013, 60, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wu, G.; Ye, F.; Chen, G.; Fan, Q.; Dong, H.; Zhu, X.; Wu, C. High expression of MMP19 is associated with poor prognosis in patients with colorectal cancer. BMC Cancer 2019, 19, 448. [Google Scholar] [CrossRef] [Green Version]
- Nimri, L.; Barak, H.; Graeve, L.; Schwartz, B. Restoration of caveolin-1 expression suppresses growth, membrane-type-4 metalloproteinase expression and metastasis-associated activities in colon cancer cells. Mol. Carcinog. 2013, 52, 859–870. [Google Scholar] [CrossRef]
Variable | Controls (N = 479) n (%) | Patients (N = 479) n (%) | p Value |
---|---|---|---|
Age (yrs) | |||
<65 | 278 (58.0%) | 251 (52.4%) | 0.079 |
≥65 | 201 (42.0%) | 228 (47.6%) | |
Gender | |||
Male | 294 (61.4%) | 282 (58.9%) | 0.428 |
Female | 185 (38.6%) | 197 (41.1%) | |
Tumor location | |||
Rectum | 110 (23.0%) | ||
Left colon | 222 (46.3%) | ||
Right colon | 147 (30.7%) | ||
Stage | |||
I + II | 229 (47.8%) | ||
III + IV | 250 (52.2%) | ||
Tumor T status | |||
T1–T2 | 116 (24.2%) | ||
T3–T4 | 363 (75.8%) | ||
Lymph node status | |||
N0 | 239 (49.9%) | ||
N1 + N2 | 240(50.1%) | ||
Metastasis | |||
M0 | 402 (83.9%) | ||
M1 | 77 (16.1%) | ||
Lymphovascular invasion | |||
No | 267 (55.7%) | ||
Yes | 212 (44.3%) | ||
Perineural invasion | |||
No | 272 (56.8%) | ||
Yes | 207 (43.2%) | ||
Pathologic grading | |||
Well | 6 (1.3%) | ||
Moderately | 437 (91.2%) | ||
Poorly | 36 (7.5%) |
Variable | Controls (N = 479) n (%) | Patients (N = 479) n (%) | OR (95% CI) | AOR (95% CI) |
---|---|---|---|---|
rs131451 | ||||
TT | 162 (33.8%) | 161 (33.6%) | 1.000 (reference) | 1.000 (reference) |
TC | 234 (48.9%) | 246 (51.4%) | 1.058 (0.798–1.403) | 1.065 (0.802–1.413) |
CC | 83 (17.3%) | 72 (15.0%) | 0.873 (0.595–1.281) | 0.889 (0.605–1.306) |
TC + CC | 317 (66.2%) | 318 (66.4%) | 1.009 (0.772–1.319) | 1.019 (0.779–1.333) |
rs738791 | ||||
CC | 234 (48.9%) | 213 (44.5%) | 1.000 (reference) | 1.000 (reference) |
CT | 196 (40.9%) | 214 (44.7%) | 1.199 (0.917–1.569) | 1.204 (0.920–1.575) |
TT | 49 (10.2%) | 52 (10.9%) | 1.166 (0.757–1.796) | 1.202 (0.778–1.856) |
CT + TT | 245 (51.1%) | 266 (55.5%) | 1.193 (0.925–1.538) | 1.203 (0.933–1.553) |
rs2267029 | ||||
GG | 266 (55.5%) | 263 (54.9%) | 1.000 (reference) | 1.000 (reference) |
GA | 185 (38.6%) | 188 (39.2%) | 1.028 (0.789–1.340) | 1.022 (0.784–1.333) |
AA | 28 (5.9%) | 28 (5.9%) | 1.011 (0.583–1.755) | 1.033 (0.594–1.794) |
GA + AA | 213 (44.5%) | 216 (45.1%) | 1.026 (0.795–1.323) | 1.024 (0.793–1.321) |
rs738792 | ||||
TT | 246 (51.4%) | 241 (50.3%) | 1.000 (reference) | 1.000 (reference) |
TC | 195 (40.7%) | 203 (42.4%) | 1.063 (0.815–1.385) | 1.070 (0.820–1.396) |
CC | 38 (7.9%) | 35 (7.3%) | 0.940 (0.575–1.538) | 0.955 (0.583–1.564) |
TC + CC | 233 (48.6%) | 238 (49.7%) | 1.043 (0.809–1.343) | 1.051 (0.815–1.355) |
rs28382575 | ||||
TT | 457 (95.4%) | 446 (93.1%) | 1.000 (reference) | 1.000 (reference) |
TC | 22 (4.6%) | 33 (6.9%) | 1.537 (0.882–2.677) | 1.596 (0.914–2.787) |
CC | 0 (0%) | 0 (0.0%) | --- | --- |
TC + CC | 22 (4.6%) | 33 (6.9%) | 1.537 (0.882–2.677) | 1.596 (0.914–2.787) |
Variable | All (N = 479) | Rectum (N = 110) | Colon (N = 369) | ||||||
---|---|---|---|---|---|---|---|---|---|
TT (N = 241) | TC + CC (N = 238) | p Value | TT (N = 60) | TC + CC (N = 50) | p Value | TT (N = 181) | TC + CC (N = 188) | p Value | |
Stages | |||||||||
I + II | 115 (47.7%) | 114 (47.9%) | p = 0.892 | 31 (51.7%) | 29 (58.0%) | p = 0.482 | 84 (46.4%) | 85 (45.2%) | p = 0.945 |
III + IV | 126 (52.3%) | 124 (52.1%) | 29 (48.3%) | 21 (42.0%) | 97 (53.6%) | 103 (54.8%) | |||
Tumor T status | |||||||||
T1 + T2 | 62 (25.7%) | 54 (22.7%) | p = 0.805 | 20 (33.3%) | 16 (32.0%) | p = 0.569 | 42 (23.2%) | 38 (20.2%) | p = 0.885 |
T3 + T4 | 179 (74.3%) | 184 (77.3%) | 40 (66.7%) | 34 (68.0%) | 139 (76.8%) | 150 (79.8%) | |||
Lymph node status | |||||||||
Negative | 119 (49.4%) | 120 (50.4%) | p = 0.630 | 32 (53.3%) | 30 (60.0%) | p = 0.411 | 87 (48.1%) | 90 (47.9%) | p = 0.643 |
Positive | 122 (50.6%) | 118 (49.6%) | 28 (46.7%) | 20 (40.0%) | 94 (51.9%) | 98 (52.1%) | |||
Metastasis | |||||||||
Negative | 204 (84.6%) | 198 (83.2%) | p = 0.955 | 46 (76.7%) | 45 (90.0%) | p = 0.090 | 158 (87.3%) | 153 (81.4%) | p = 0.212 |
Positive | 37 (15.4%) | 40 (16.8%) | 14 (23.3%) | 5 (10.0%) | 23 (12.7%) | 35 (18.6%) | |||
Lymphovascular invasion | |||||||||
No | 136 (56.4%) | 131 (55.0%) | p = 0.457 | 38 (63.3%) | 33 (66.0%) | p = 0.830 | 98 (54.1%) | 98 (52.1%) | p = 0.426 |
Yes | 105 (43.6%) | 107 (45.0%) | 22 (36.7%) | 17 (34.0%) | 83 (45.9%) | 90 (47.9%) | |||
Perineural invasion | |||||||||
No | 147 (61.0%) | 125 (52.5%) | p = 0.051 | 39 (65.0%) | 34 (68.0%) | p = 0.998 | 108 (59.7%) | 91 (48.4%) | p = 0.025 a |
Yes | 94 (39.0%) | 113 (47.5%) | 21 (35.0%) | 16 (32.0%) | 73 (40.3%) | 97 (51.6%) | |||
Cell differentiation | |||||||||
Well/Moderately | 227 (94.2%) | 216 (90.8%) | p = 0.164 | 60 (100%) | 49 (98.0%) | ----- | 167 (92.3%) | 167 (88.8%) | p = 0.323 |
Poorly | 14 (5.8%) | 22 (9.2%) | 0 (0.0%) | 1 (2.0%) | 14 (7.7%) | 21 (11.2%) |
Variable | All (N = 479) | Male (N = 282) | Female (N = 197) | ||||||
---|---|---|---|---|---|---|---|---|---|
TT (N = 161) | TC + CC (N = 318) | p Value | TT (N = 96) | TC + CC (N = 186) | p value | TT (N = 65) | TC + CC (N = 132) | p Value | |
Stages | |||||||||
I + II | 80 (49.7%) | 149 (46.9%) | p = 0.317 | 51 (53.1%) | 94 (50.5%) | p = 0.812 | 29 (44.6%) | 55 (41.7%) | p = 0.134 |
III + IV | 81 (50.3%) | 169 (53.1%) | 45 (46.9%) | 92 (49.5%) | 36 (55.4%) | 77 (58.3%) | |||
Tumor T status | |||||||||
T1 + T2 | 47 (29.2%) | 69 (21.7%) | p = 0.216 | 34 (35.4%) | 43 (23.1%) | p = 0.028 a | 13 (20.0%) | 26 (19.7%) | p = 0.999 |
T3 + T4 | 114 (70.8%) | 249 (78.3%) | 62 (64.6%) | 143 (76.9%) | 52 (80.0%) | 106 (80.3%) | |||
Lymph node status | |||||||||
Negative | 81 (50.3%) | 158 (49.7%) | p = 0.238 | 52 (54.2%) | 99 (53.2%) | p = 0.545 | 29 (44.6%) | 59 (44.7%) | p = 0.172 |
Positive | 80 (49.7%) | 160 (50.3%) | 44 (45.8%) | 87 (46.8%) | 36 (55.4%) | 73 (55.3%) | |||
Metastasis | |||||||||
Negative | 135 (83.9%) | 267 (84.0%) | p = 0.380 | 84 (87.5%) | 157 (84.4%) | p = 0.663 | 51 (78.5%) | 110 (83.3%) | p = 0.152 |
Positive | 26 (16.1%) | 51 (16.0%) | 12 (12.5%) | 29 (15.6%) | 14 (21.5%) | 22 (16.7%) | |||
Lymphovascular invasion | |||||||||
No | 95 (59.0%) | 172 (54.1%) | p = 0.942 | 59 (61.5%) | 104 (55.9%) | p = 0.697 | 36 (55.4%) | 68 (51.5%) | p = 0.554 |
Yes | 66 (41.0%) | 146 (45.9%) | 37 (38.5%) | 82 (44.1%) | 29 (44.6%) | 64 (48.5%) | |||
Perineural invasion | |||||||||
No | 99 (61.5%) | 173 (54.4%) | p = 0.341 | 66 (68.8%) | 104 (55.9%) | p = 0.040 b | 33 (50.8%) | 69 (52.3%) | p = 0.849 |
Yes | 62 (38.5%) | 145 (45.6%) | 30 (31.2%) | 82 (44.1%) | 32 (49.2%) | 63 (47.7%) | |||
Cell differentiation | |||||||||
Well/Moderately | 154 (95.7%) | 289 (90.9%) | p = 0.096 | 91 (94.8%) | 165 (88.7%) | p = 0.129 | 63 (96.9%) | 124 (93.9%) | p = 0.371 |
Poorly | 7 (4.3%) | 29 (9.1%) | 5 (5.2%) | 21 (11.3%) | 2 (3.1%) | 8 (6.1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-C.; Shiu, B.-H.; Su, S.-C.; Huang, C.-C.; Ting, W.-C.; Chang, L.-C.; Yang, S.-F.; Chou, Y.-E. The Impact of Matrix Metalloproteinase-11 Polymorphisms on Colorectal Cancer Progression and Clinicopathological Characteristics. Diagnostics 2022, 12, 1685. https://doi.org/10.3390/diagnostics12071685
Huang H-C, Shiu B-H, Su S-C, Huang C-C, Ting W-C, Chang L-C, Yang S-F, Chou Y-E. The Impact of Matrix Metalloproteinase-11 Polymorphisms on Colorectal Cancer Progression and Clinicopathological Characteristics. Diagnostics. 2022; 12(7):1685. https://doi.org/10.3390/diagnostics12071685
Chicago/Turabian StyleHuang, Hsien-Cheng, Bei-Hao Shiu, Shih-Chi Su, Chi-Chou Huang, Wen-Chien Ting, Lun-Ching Chang, Shun-Fa Yang, and Ying-Erh Chou. 2022. "The Impact of Matrix Metalloproteinase-11 Polymorphisms on Colorectal Cancer Progression and Clinicopathological Characteristics" Diagnostics 12, no. 7: 1685. https://doi.org/10.3390/diagnostics12071685
APA StyleHuang, H.-C., Shiu, B.-H., Su, S.-C., Huang, C.-C., Ting, W.-C., Chang, L.-C., Yang, S.-F., & Chou, Y.-E. (2022). The Impact of Matrix Metalloproteinase-11 Polymorphisms on Colorectal Cancer Progression and Clinicopathological Characteristics. Diagnostics, 12(7), 1685. https://doi.org/10.3390/diagnostics12071685