Is There a Difference in Facial Emotion Recognition after Stroke with vs. without Central Facial Paresis?
Abstract
:1. Introduction
Emotion Processing and the Role of Facial Feedback
2. Materials and Methods
2.1. Participants
2.2. Materials
2.2.1. Visual Facial Emotion Recognition
2.2.2. Auditory Emotion Recognition
2.2.3. Subjective Facial Emotion Recognition: Self-Assessment Questionnaires, Emotion Recognition
2.2.4. Sunnybrook Facial Grading System for Diagnosing Facial Paresis
2.3. Statistical Analysis
3. Results
3.1. Accuracy of Facial Emotion Recognition
3.2. Accuracy of Auditory Emotion Recognition
3.3. Comparison of Accuracy of Facial and Auditory Emotion Recognition
3.4. Time Taken for Facial Emotion Recognition
3.5. Time Taken for Auditory Emotion Recognition
3.6. Comparison of Time Taken for Facial and Auditory Emotion Recognition
3.7. Subjective Judgement of Emotion Recognition from the Perspective of Participants with Central Facial Paresis
3.8. Further Analysis
4. Discussion
4.1. The Relevance of Assessment of Emotion Recognition
4.2. Limitations of the Study
5. Conclusions
- -
- After a stroke, participants with central facial paresis were significantly less accurate in visually recognising basic emotions compared with stroke patients without facial paresis and compared with a sample of healthy controls;
- -
- Auditory emotion recognition in both stroke groups was less accurate than in the control sample;
- -
- The facial emotion recognition accuracy of participants with central facial paresis was significantly worse than the auditory accuracy of emotion recognition;
- -
- Since visual emotion recognition was clearly worse than auditory emotion recognition in participants with facial paresis after stroke, facial mimicry probably plays an important role in communication with patients after stroke;
- -
- The results of our observational study may indicate the overall effects of stroke on emotion recognition and support the FFH, which is a practical and appropriate model implemented in clinical assessments and interventions;
- -
- Future research should investigate patients with facial palsy without stroke to further explore the impact of facial feedback on emotion recognition.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sociodemographic Information | Study Group Patients with Facial Paresis, n = 34 | Control Group Patients without Facial Paresis, n = 29 |
---|---|---|
Gender | Male: n = 18; 53% | Male: n = 20; 69% |
Female: n = 16; 47% | Female: n = 9; 31% | |
Age in years | Mean = 62.65 ± 9.26 | Mean = 58.38 ± 10.72 |
Min. = 39 | Min. = 35 | |
Max. = 81 | Max. = 83 | |
Education | No school degree: | No school degree: |
n = 4; 11.77% | n = 0 | |
Sec. school certificate: | Sec. school certificate: | |
n = 9; 26.47% | n = 6; 20.69% | |
Medium maturity: | Medium maturity: | |
n = 12; 35.29% | n = 15; 51.72% | |
High school: | High school: | |
n = 9; 26.47% | n = 8; 27.59% | |
Handedness | Left: n = 0 | Left: n = 1. 3.45% |
Right: n = 33; 97.06% | Right: n = 27; 93.10% | |
Left and right: n = 1; 2.94% | Left and right: n = 1; 3.45% |
Lesion | Study Group Patients with Facial Paresis, n = 34 | Control Group Patients without Facial Paresis, n = 29 |
---|---|---|
Time post-onset | Mean = 1558 (4;3) ± 2112 (5;9) | Mean = 1359 (3;9) ± 2702 (7;5) |
in days (in years;months) | Min. = 5 Max. = 6361 (17;5) | Min. = 13 Max. = 11,398 (31;2) |
Phase post-onset | ||
(Acute: ≤6 weeks | Acute: n = 11; 32.35% | Acute: n = 11; 37.93% |
Post-acute: <1 year | Post-acute: n = 6; 17.65% | Post-acute: n = 3; 10.34% |
Chronic: ≥1 year) | Chronic: n = 17; 50.00% | Chronic: n = 15; 51.72% |
Type | Ischemic: n = 27; 79.41% | Ischemic: n = 21; 72.41% |
Hemorrhagic: n = 5; 14.71% | Hemorrhagic: n = 6; 20.69% | |
Ischemic | Ischemic | |
and hemorrhagic: | and hemorrhagic: | |
n = 1; 2.94% | n = 1; 3.45% | |
n.a.: n = 1; 2.94% | n.a.: n = 1; 3.45% | |
Hemisphere | Left: n = 12; 35.29% | Left: n = 15; 51.72% |
Right: n = 13; 38.24% | Right: n = 6; 20.69% | |
Left and right: | Left and right: | |
n = 0 | n = 2; 6.90% | |
n.a.: n = 9; 26.47% | n.a.: n = 6; 20.69% | |
Quantity | 1x: n = 22; 64.71% | 1x: n = 25; 86.21% |
2x: n = 8; 23.53% | 2x: n = 2; 6.90% | |
3x: n = 1; 2.94% | 3x: n = 1; 3.45% | |
4x: n = 1; 2.94% | 4x: n = 0 | |
n.a.: n = 2; 5.88% | n.a.: n = 1; 3.45% | |
Limitations in general mental capacity after stroke | n = 16; 47.06% | n = 12; 41.38% |
Aphasia | n = 6; 17.65% | n = 9; 31.03% |
Facial Paresis | Study Group Patients with Facial Paresis, n = 34 | Control Group Patients without Facial Paresis, n = 29 |
---|---|---|
Diagnosis facial paresis from the patient’s perspective | Facial paresis: n = 21; 61.76%
Non-facial paresis: n = 13; 38.24% | Facial paresis: n = 10; 34.48%
|
Diagnosis of facial paresis from the therapist’s perspective (physiotherapy or speech and language therapy) | Facial paresis: n = 11; 32.35%
n.a.: n = 21; 61.77% | Facial paresis: n = 0 Non-facial paresis: n = 6; 20.69% n.a.: n = 23; 79.31% |
Diagnosis of facial paresis Sunnybrook Facial Grading System (total score 0–100) | Mean = 73.12 ± 8.34 Min. = 54 Max. = 83 Grade II: n = 24; 70.59% Grade III: n = 10; 29.41% Left:
| Mean = 91.21 ± 3.46 Min. = 87 Max. = 100 Grade I: n = 29; 100% |
Time post-onset in days (in years;months) | Mean = 827 (2;3) ± 1606 (4;5) Min. = 5 Max. = 5852 (16;0) | Mean = 2207 (6;1) ±3709 (10;2) Min. = 35 Max. = 11,398 (31;2) |
Phase post-onset (Acute: ≤6 weeks Post-acute: <1 year Chronic: ≥1 year) | Acute: n = 14; 41.18% Post-acute: n = 5; 14.71% Chronic: n = 7; 20.59% n.a.: n = 8; 23.53% | Acute: n = 3; 10.35% Post-acute: n = 1; 3.45% Chronic: n = 9; 31.03% n.a.: n = 16; 55.17% |
Non-pharmaceutical therapy at the time of the examination (current) | Yes: n = 9; 26.47% No: n = 25; 73.53% | Yes: n = 0No: n = 29 |
Start | From the stroke to latest post-acute phase | From the stroke to latest post-acute phase |
Frequency | Isolated therapy units up to 1–3x/week | Individual therapy units up to 2x/week |
Duration | Max.: 3.5 months | Max.: 6 months |
Therapist | 12x speech and language therapy, 2x physiotherapy, 1x physical therapy | 5x speech and language therapy, 1x physiotherapy, 1x n.a. |
Content | Exercises for facial expression, oral motor skills, articulation, proprioceptive neuromuscular facilitation, massage | Exercises for facial expression, oral motor skills, articulation, stretching M. buccinator |
Self-exercises | Exercises for facial expression, oral motor skills, articulation, massage, sensitivity training | Exercises for facial expressions, oral motor skills |
Emotion Recognition | Study Group Patients with Facial Paresis, n = 34 | Control Group Patients without Facial Paresis, n = 29 | Healthy Controls |
---|---|---|---|
Objective facial emotion recognition via Myfacetraining Programm, Accuracy in % | Mean = 27.77 SD = 11.04 Min. = 10.00 Max. = 48.00 | Mean = 40.79 SD = 15.59 Min. = 12.00 Max. = 64.00 | Mean = 71.11 SD = 7.53 Min. = 45.00 Max. = 88.00 n = 147 [46,47] |
Objective facial emotion recognition via Myfacetraining Program, Time in sec. | Mean = 3.14 SD = 0.47 Min. = 2.04 Max. = 3.86 | Mean = 3.19 SD = 0.34 Min. = 1.91 Max. = 3.86 | Mean = 3.34 SD = 0.66 Min. = 1.94 Max. = 5.58 n = 147 [46,47] |
Objective auditory emotion recognition via MAVs, Accuracy in % | Mean = 46.23 SD = 11.63 Min. = 21.67 Max. = 70.00 | Mean = 48.05 SD = 11.78 Min. = 23.34 Max. = 61.67 | Mean = 72.67 SD = 11.99 Min. = 56.00 Max. = 86.00 n = 29 [45] |
Objective auditory emotion recognition via MAVs, Time in sec. | Mean = 3.69 SD = 1.20 Min. = 2.25 Max. = 8.75 | Mean = 3.20 SD = 0.88 Min. = 1.80 Max. = 4.90 | n.a. [45] |
Subjective facial emotion recognition via Self-Assessment Questionnaires Emotion Recognition Accuracy | Mean = −0.71 SD = 1.90 Min. = −6.00 Max. = 6.00 | Mean = −0.03 SD = 1.32 Min. = −2.00 Max. = 6.00 | n.a. |
Subjective facial emotion recognition via Self-Assessment Questionnaires Emotion Recognition Time | Mean = −1.91 SD = 2.90 Min. = −6.00 Max. = 6.00 | Mean = −1.00 SD = 2.52 Min. = −6.00 Max. = 6.00 | n.a. |
Study Group Patients with Facial Paresis, n = 34 | Control Group Patients without Facial Paresis, n = 29 | |
---|---|---|
With limitations in general mental capacity | n = 16 | n = 12 |
Without limitations in general mental capacity | n = 18 | n = 17 |
Types of limitation in general mental capacity | Memory: n = 10 | Memory: n = 8 |
Concentration: n = 9 | Concentration: n = 5 | |
Slowdown: n = 3 | Slowdown: n = 1 | |
Fatigue: n = 2 | Fatigue: n = 2 | |
Complex thinking: n = 1 | Complex thinking: n = 0 | |
Neglect on spec: n = 1 | Neglect on spec: n = 0 | |
Orientation in time: n = 1 | Orientation in time: n = 0 | |
Orientation in place: n = 1 | Orientation in place: n = 0 | |
Overall deterioration: n = 1 | Overall deterioration: n = 0 | |
Acalculia: n = 0 | Acalculia: n = 1 | |
Arousal: n = 0 | Arousal: n = 1 | |
Inner unrest: n = 0 | Inner unrest: n = 1 |
Study Group Patients with Facial Paresis, n = 34 | Control Group Patients without Facial Paresis, n = 29 | |
---|---|---|
With aphasia | n = 6 | n = 9 |
Without aphasia | n = 28 | n = 20 |
Accuracy of Facial Emotion Recognition | ||||
---|---|---|---|---|
Standardised Beta | 95.0% Confidence Interval | p-Value | ||
Lower bound | Higher bound | |||
Diagnosis of facial paresis | −0.444 | −19.762 | −6.295 | <0.001 |
Time taken for facial emotion recognition | ||||
Diagnosis of facial paresis | −0.053 | −0.253 | 0.166 | 0.680 |
Accuracy of auditory emotion recognition | ||||
Diagnosis of facial paresis | −0.079 | −7.733 | 4.091 | 0.540 |
Time taken for auditory emotion recognition | ||||
Diagnosis of facial paresis | 0.231 | −0.040 | 1.033 | 0.069 |
Accuracy of Facial Emotion Recognition | ||||
---|---|---|---|---|
Standardised Beta | 95.0% Confidence Interval | p-Value | ||
Lower bound | Higher bound | |||
Diagnosis of facial paresis | −0.353 | −16.920 | −3.787 | 0.003 |
Sex | 0.022 | −6.306 | 7.615 | 0.851 |
Age | −0.393 | −0.891 | −0.256 | <0.001 |
Subjective judgement of accuracy | −0.014 | −2.359 | 2.110 | 0.911 |
Subjective judgement of time taken | 0.032 | −1.197 | 1.542 | 0.802 |
Limitations in general mental capacity | 0.054 | −5.213 | 8.392 | 0.641 |
Time post-onset, acute, post-acute, chronic | −0.227 | −7.417 | 0.128 | 0.058 |
Time of facial emotion recognition | ||||
Diagnosis of facial paresis | −0.029 | −0.248 | 0.201 | 0.834 |
Sex | −0.173 | −0.383 | 0.093 | 0.228 |
Age | −0.186 | −0.018 | 0.003 | 0.167 |
Subjective judgement of accuracy | 0.013 | −0.073 | 0.080 | 0.935 |
Subjective judgement of time taken | 0.057 | −0.038 | 0.055 | 0.715 |
Limitations in general mental capacity | 0.076 | −0.170 | 0.295 | 0.593 |
Time post-onset, acute, post-acute, chronic | −0.252 | −0.242 | 0.016 | 0.085 |
Accuracy of auditory emotion recognition | ||||
Diagnosis of facial paresis | 0.015 | −4.900 | 5.596 | 0.895 |
Sex | 0.082 | −3.638 | 7.488 | 0.491 |
Age | −0.428 | −0.747 | −0.239 | <0.001 |
Subjective judgement of accuracy | −0.160 | −2.894 | 0.678 | 0.219 |
Subjective judgement of time taken | 0.106 | −0.646 | 1.542 | 0.416 |
Limitations in general mental capacity | 0.068 | −3.859 | 7.015 | 0.563 |
Time post-onset, acute, post-acute, chronic | −0.374 | −7.750 | −1.720 | 0.003 |
Time of auditory emotion recognition | ||||
Diagnosis of facial paresis | 0.227 | −0.074 | 1.052 | 0.088 |
Sex | −0.050 | −0.706 | 0.489 | 0.717 |
Age | 0.153 | −0.011 | 0.044 | 0.232 |
Subjective judgement of accuracy | 0.184 | −0.073 | 0.310 | 0.220 |
Subjective judgement of time taken | −0.033 | −0.131 | 0.104 | 0.825 |
Limitations in general mental capacity | −0.173 | −0.959 | 0.209 | 0.203 |
Time post-onset, acute, post-acute, chronic | 0.205 | −0.083 | 0.565 | 0.141 |
Appendix B
Appendix B.1. Additional Information on Data Collection
Appendix B.2. Facial Emotion Recognition: Myfacetraining (MFT) Program
Appendix B.3. Auditory Emotion Recognition: Montreal Affective Voices
Appendix B.4. Sunnybrook Facial Grading System for Diagnosing Facial Palsy
References
- Schirmer, A.; Adolphs, R. Emotion Perception from Face, Voice, and Touch: Comparisons and Convergence. Trends Cogn. Sci. 2017, 21, 216–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, A.; Perrett, D.; Calder, A.; Sprengelmeyer, R.; Ekman, P. Facial Expressions of Emotion—Stimuli and Tests (FEEST); Thames Valley Test Company: Suffolk, UK, 2002. [Google Scholar]
- Knapp, M.L.; Hall, J.A.; Horgan, T.G. Nonverbal Communication in Human Interaction; Cengage Learning: Boston, MA, USA, 2013. [Google Scholar]
- Ekman, P.; Oster, H. Facial Expression of Emotion. Annu. Rev. Psychol. 1979, 30, 527–554. [Google Scholar] [CrossRef]
- Diener, H.C. 2016. Available online: https://www.pschyrembel.de/Parese/K0GCP/doc/ (accessed on 25 June 2020).
- Radice-Neumann, D.; Zupan, B.; Tomita, M.; Willer, B. Training Emotional Processing in Persons With Brain Injury. J. Head Trauma Rehabil. 2009, 5, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, L.; Pavesi, G. The facial motor system. Neurosci. Biobehav. Rev. 2014, 38, 135–159. [Google Scholar] [CrossRef]
- Levenson, R.W. Basic Emotion Questions. Emot. Rev. 2011, 3, 379–386. [Google Scholar] [CrossRef]
- Ekman, P. Universal Facial Expressions of Emotion. Calif. Ment. Health Res. Dig. 1970, 8, 151–158. [Google Scholar]
- Ekman, P. An argument for basic emotions. Cogn. Emot. 1992, 6, 169–200. [Google Scholar] [CrossRef]
- Dimberg, U.; Thunberg, M.; Elmehed, K. Unconscious Facial Reactions to Emotional Facial Expressions. Psychol. Sci. 2000, 11, 86–89. [Google Scholar] [CrossRef]
- Boloorizadeh, P.; Tojari, F. Facial expression recognition: Age, gender and exposure duration impact. Pro-Cedia Soc. Behav. Sci. 2013, 84, 1369–1375. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.M.; Mathersul, D.; Palmer, D.M.; Gur, R.C.; Gur, R.E.; Gordon, E. Explicit identification and implicit recognition of facial emotions: I. Age effects in males and femals across 10 decades. J. Clin. Exp. Neuropsychol. 2009, 31, 257–277. [Google Scholar] [CrossRef]
- Palermo, R.; Coltheart, M. Photographs of facial expression: Accuracy, response times, and ratings of in-tensity. Behav. Res. Methods Instrum. Comput. 2004, 36, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Hampson, E.; von Anders, S.M.; Mullin, L.I. A female advantage in the recognition of emotional facial ex-pressions: Test of an evolutionary hypothesis. Evol. Hum. Behav. 2006, 27, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Ruffman, T.; Henry, J.D.; Livingstone, V.; Phillips, L.H. A meta-analytic review of emotion recognition and aging: Implications for neuropsychological models of aging. Neurosci. Behav. Rev. 2008, 4, 863–881. [Google Scholar] [CrossRef] [PubMed]
- Von Piekartz, H.; Mohr, G. Reduction of head and face pain by challenging lateralization and basic emotions: A proposal for future assessment and rehabilitation strategies. J. Man. Manip. Ther. 2014, 22, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Lindquist, K.A. Emotions emerge from more basic psychological ingredients: A modern psychological constructionist model. Emot. Rev. 2013, 5, 356–368. [Google Scholar] [CrossRef]
- Palermo-Gallagher, N.; Amunts, K. A short review on emotion processing: A lateralized network o neuronal networks. Brain Struct. Funct. 2022, 227, 673–684. [Google Scholar] [CrossRef]
- Gianotti, G. A historical review of investigations on laterality of emotions in the human brain. J. Hist. Neurosci. 2019, 28, 23–41. [Google Scholar] [CrossRef]
- Mohr, G.; Konnerth, V.; von Piekartz, H.J.M. Lateralitätserkennung und (emotionale) Expressionen des Gesichts—Beurteilung und Behandlung. In Kiefer, Gesichts-und Zervikalregion; Thieme: Stuttgart, Germany, 2015; pp. 494–512. [Google Scholar]
- Neal, D.T.; Chartrand, T.L. Embodied Emotion Perception: Amplifying and Dampening Facial Feedback modulates Emotion Perception Accuracy. Soc. Psychol. Personal. Sci. 2011, 2, 673–678. [Google Scholar] [CrossRef]
- Goldman, A.I.; Sripada, C.S. Simulationist models of face-based emotion recognition. Cognition 2005, 94, 193–213. [Google Scholar] [CrossRef]
- Bartolome, G. Grundlagen der Funktionellen Dysphagietherapie (FDT): Restituierende Therapieverfahren. In Schluckstörungen: Diagnostik und Rehabilitation; Urban & Fischer: München, Germany, 2010; pp. 245–370. [Google Scholar]
- Neely, J.G. Central Causes of Facial Paralysis. In The Facial Nerve; Thieme: New York, NY, USA, 2014; pp. 129–136. [Google Scholar]
- Klingner, C.M.; Witte, O.W. Central Facial Palsy. In Facial Nerve Disorders and Diseases: Diagnosis and Management; Thieme: Stuttgart, Germany, 2016; pp. 358–369. [Google Scholar]
- Konnerth, V.; Mohr, G.; von Piekartz, H. Fähigkeit von Patienten mit einer peripheren Fazialisparese zur Erkennung von Emotionen—Eine Pilotstudie. Rehabilitation 2016, 55, 19–25. [Google Scholar] [CrossRef]
- Storbeck, F.; Schlegelmilch, K.; Streitberger, K.-J.; Sommer, W.; Ploner, C.J. Delayed recognition of emotional facial expressions in Bell’s palsy. Cortex 2019, 120, 524–531. [Google Scholar] [CrossRef]
- Korb, S.; Wood, A.; Banks, C.A.; Agoulnik, D.; Hadlock, T.A.; Niedenthal, P.M. Asymmetry of Facial Mimicry and Emotion Perception in Patients With Unilateral Facial Paralysis. JAMA Facial Plast. Surg. 2016, 18, 222–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.J.; Neta, M.; Davis, F.C.; Ruberry, E.J.; Dinescu, D.; Heatherton, T.F.; Stotland, M.A.; Whalen, P.J. Botulinum toxin-induced facial muscle paralysis affects amygdala responses to the perception of emotional expressions: Preliminary findings from an A-B-A design. Biol. Mood Anxiety Disord. 2014, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strack, F.; Martin, L.L.; Stepper, S. Inhibiting and facilitating conditions of the human smile: A nonobtrusive test of the facial feedback hypothesis. J. Personal. Soc. Psychol. 1988, 54, 768–777. [Google Scholar] [CrossRef]
- Havas, D.A.; Glenberg, A.M.; Gutwoski, K.A.; Lucarelli, M.J.; Davidson, R.J. Cosmetic Use of Botulinum Toxin-A Affects. Psychol. Sci. 2010, 21, 895–900. [Google Scholar] [CrossRef]
- Niedenthal, P.M.; Brauer, M.; Halberstadt, J.B.; Innes-Ker, A.H. When did her smile drop? Facial mimicry and the influences of emotional state on the detection of change in emotional expression. Cogn. Emot. 2001, 15, 853–864. [Google Scholar] [CrossRef]
- Keillor, J.M.; Barrett, A.M.; Crucian, G.P.; Kortenkamp, S.; Heilman, K.M. Emotional experience and perception in the absence of facial feedback. J. Int. Neuropsychol. Soc. 2002, 8, 130–135. [Google Scholar] [CrossRef]
- Bogart, K.R.; Matsumoto, D. Facial mimicry is not necessary to recognize emotion: Facial expression recognition by people with Moebius syndrome. Soc. Neurosci. 2010, 5, 241–251. [Google Scholar] [CrossRef]
- Calder, A.J.; Keane, J.; Cole, J.; Campbell, R.; Young, A.W. Facial Expression Recognition by People with Möbius Syndrome. Cogn. Neuropsychol. 2000, 17, 73–87. [Google Scholar] [CrossRef]
- Kuriakose, D.; Xiao, Z. Pathophysiology and Treatment of Stroke: Present Status und Future Perspectives. Int. J. Mol. Sci. 2020, 21, 7609. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Okun, M.S. Diagnosis and Treatment of Parkinson Disease: A Review. Jama 2020, 323, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Finkensieper, M.; Volk, G.F.; Guntinas-Lichius, O. Erkrankungen des Nervus facialis. Laryngo-Rhino-Otologie 2012, 91, 121–142. [Google Scholar] [CrossRef] [PubMed]
- Bologna, M.; Fabbrini, G.; Marsili, L.; Defazio, G.; Thompson, P.D.; Berardelli, A. Facial bradynkinesia. J. Neurol. Neurosurg. Psychiatry 2013, 84, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Bologna, M.; Berardelli, I.; Paprella, G.; Marsili, L.; Ricciardi, L.; Fabbrini, G.; Berardelli, A. Altered Kinematics of Facial Emotion Expression and Emotion Recognition Deficits Are Unrelated in Parkinson’s Disease. Front. Neurol. 2016, 7, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsili, L.; Agostino, R.; Bologna, M.; Belvisi, D.; Palma, A.; Fabbrini, G.; Berardelli, A. Bradykinesia of psed smiling and voluntary movement of the lower face in Parkinson’s disease. Parkinsonism Relat. Disord. 2014, 20, 370–375. [Google Scholar] [CrossRef]
- Yuvaraj, R.; Murugappan, M.; Norlinah, M.I.; Sundaraj, K.; Khairiyah, M. Review of Emotion Recognition in Stroke Patients. Dement. Cogn. Disord. 2013, 36, 179–196. [Google Scholar] [CrossRef]
- Vaughan, A.; Copley, A.; Miles, A. Physical rehabilitation of central facial palsy: A survey of current multi-disciplinary practice. Int. J. Speech-Lang. Pathol. 2021, 1–10. [Google Scholar] [CrossRef]
- Belin, P.; Fillion-Bilodeau, S.; Gosselin, F. The Montreal Affective Voices: A validated set of nonverbal affect bursts for research on auditory affective processing. Behav. Res. Methods 2008, 40, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Herzer, S.; Maigler, A. Eine Revision der Referenzwerte der sechs Basisemotionen des CRAFTA Face-Mirroring Programms. In Eine Querschnittstudie; Hochschule Osnabrück: Osnabrück, Germany, 2016. [Google Scholar]
- CRAFTA Cranio Facial Therapy Academy. Operating Guidelines CRAFTA Facemirroring Assessment and Treatment. Available online: https://www.myfacetraining.com/downloads/CRAFTA%20Operating%20Guidelines.pdf (accessed on 28 January 2019).
- Von Piekartz, H.; Wallwork, S.B.; Mohr, G.; Butler, D.S.; Moseley, G.L. People with chronic facial pain per-form worse than controls at a facial emotion recognition task, but it is not all about the emotion. J. Oral Rehabil. 2015, 42, 243–250. [Google Scholar] [CrossRef]
- Myfacetraining. Available online: https://www.myfacetraining.com/ (accessed on 27 August 2019).
- Peirce, J.W.; MacAskill, M.R. Building Experiments in PsychoPy; Sage: London, UK, 2018. [Google Scholar]
- Coulson, S.E.; O’Dwyer, N.J.; Adams, R.D.; Croxson, G.R. Expression of Emotion and Quality of Life After Facial Nerve Paralysis. Otol. Neurol. 2004, 25, 1014–1019. [Google Scholar] [CrossRef]
- Ross, B.G.; Fradet, G.; Nedzelski, J.M. Development of a sensitive clinical facial grading system. Otolaryngol. Head Neck Surg. 1996, 114, 380–386. [Google Scholar] [CrossRef]
- Neumann, T.; Lorenz, A.; Volk, G.F.; Hamzei, F.; Schulz, S.; Guntinas-Lichius, O. Validierung einer Deutschen Version des Sunnybrook Facial Grading Systems. Laryngo-Rhino-Otologie 2017, 96, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Guntinas-Lichius, O.; Finkensieper, M. Grading. In Facial Nerve Disorders and Diseases: Diagnosis and Management; Thieme: Stuttgart, Germany, 2016; pp. 94–111. [Google Scholar]
- Fattah, A.; Gurusinghe, A.; Gavilan, J.; Hadlock, T.; Markus, J.; Marres, H.; Nduka, C.; Slattery, W.; Snyder-Warwick, A. Facial Nerve Grading Instruments: Systematic Review of the Literature and Suggestion for Uniformity. Plast. Reconstr. Surg. 2015, 135, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Akulov, M.A.; Orlova, A.S.; Usachev, D.J.; Shimansky, V.N.; Tanjashin, S.V.; Khatkova, S.E.; Yunosha-Shanyavskaya, A.V. IncobotulinumtoxinA treatment of facial nerve palsy after neurosurgery. J. Neurol. Sci. 2017, 381, 130–134. [Google Scholar] [CrossRef]
- Beurskens, C.H.; Heymans, P.G. Mime therapy improves facial symmetry in people with long-term facial nerve paresis: A randomised controlled trail. Aust. J. Physiother. 2006, 52, 177–183. [Google Scholar] [CrossRef]
- Goo, B.; Jeong, S.M.; Kim, J.U.; Park, Y.C.; Seo, B.K.; Baek, Y.H.; Yook, T.H.; Nam, S.S. Clinical efficacy and safety of thread-embedding acupuncture for treatment of the sequelae of Bell’s palsy: A protocol for a patient-assessor blinded, randomized, controlled, parallel clinical trial. Medicine 2019, 98, e14508. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.Y. The effect of subthreshold continuous electrical stimulation on the facial function of patients with Bell’s palsy. Acta Oto-Laryngol. 2016, 136, 100–105. [Google Scholar] [CrossRef]
- Kuttenreich, A.-M.; Rethfeldt, W.S.; von Piekartz, H. Autobiografische Erinnerungen bei Behandlung zentraler Fazialisparesen. Forum Logopädie 2018, 32, 6–13. [Google Scholar]
- Kwon, H.-J.; Choi, J.-Y.; Lee, M.S.; Kim, Y.-S.; Shin, B.-C.; Kim, J.-I. Acupuncture for the sequelae of Bell’s palsy: A randomized controlled trial. Trails 2015, 16, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Ton, G.; Lee, L.W.; Ng, H.P.; Liao, H.Y.; Chen, Y.H.; Tu, C.H.; Tseng, C.H.; Ho, W.C.; Lee, Y.C. Efficacy of laser acupuncture for patients with chronic Bell’s palsy: A study protocol for a randomized, double-blind, sham-controlled pilot trial. Medicine 2019, 98, e15120. [Google Scholar] [CrossRef]
- Cambridge Dictionary. Quick and Dirty. 2020. Available online: https://dictionary.cambridge.org/de/worterbuch/englisch/quick-and-dirty (accessed on 9 September 2020).
- Deutsche Gesellschaft für Allgemeinmedizin und Familienmedizin (DEGAM). DEGAM-Leitlinie Nr. 8 Schlaganfall. 2012. Available online: https://www.awmf.org/uploads/tx_szleitlinien/053-011l_S3_Schlaganfall_2012-abgelaufen.pdf (accessed on 23 June 2018).
- Sánchez-Lozano, E.; Lopez-Otero, P.; Docio-Fernandez, L.; Argones-Rúa, E.; Alba-Castro, J.L. Audiovisual Three-Level Fusion for Continuous Estimation of Russell’s emotion Circumplex. In Proceedings of the 3rd ACM International Workshop on Audio/Visual Emotion Challenge, Barcelona, Spain, 21 October 2013; pp. 31–40. [Google Scholar]
- Bundesarbeitsgemeinschaft für Rehabilitation. Arbeitshilfe für die Rehabilitation von Schlaganfallpatienten. 1998. Available online: https://www.bar-frankfurt.de/service/publikationen/produktdetails/produkt/65.html (accessed on 23 September 2019).
- World Health Organization (WHO). Internationale Klassifikation der Funktionsfähigkeit, Behinderung und Gesundheit (ICF). 2005. Available online: https://www.dimdi.de/dynamic/de/klassifikationen/downloads/?dir=icf (accessed on 18 September 2019).
- Coles, N.A.; Larsen, J.T.; Lench, H.C. A Meta-Analysis of the Facial Feedback Literature: Effects of Facial Feedback on Emotion Experience Are Small and Variable. Psychol. Bull. 2019, 145, 610–651. [Google Scholar] [CrossRef] [PubMed]
- Dobel, C.; Miltner, W.H.R.; Witte, O.W.; Volk, G.F.; Guntinas-Lichius, O. Emotionale Auswirkung einer Fazialisparese. Laryngo-Rhino-Otologie 2013, 92, 9–23. [Google Scholar] [PubMed]
- Taylor, G.J.; Bagby, R.M. An overview of the alexithymia construct. In The Handbook of Emotional Intelligence: Theory, Development, Assessment, and Application at Home, School, and in the Workplace; Jossey-Bass: San Francisco, CA, USA, 2000; pp. 40–67. [Google Scholar]
- Beushausen, U.; Grötzbach, H. Evidenzbasierte Sprachtherapie: Grundlagen und Praxis; Elsevier: München, Germany, 2011. [Google Scholar]
- Dollaghan, C. The Handbook for Evidence-Based Practice in Communication Disorders; Paul H. Books: Baltimore, MD, USA, 2007. [Google Scholar]
- Gilden, D.H. Clinical Practice: Bell’s Palsy. N. Engl. J. Med. 2004, 351, 1323–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrandt, A.; Sommer, W.; Schacht, A.; Wilhelm, O. Perceiving and remembering emotional facial ex-pressions—A basis facet of emotional intelligence. Intelligence 2015, 50, 52–67. [Google Scholar] [CrossRef]
- Olderbak, S.; Semmler, M.; Doebler, P. Four-branch model of ability emotion intelligence with fluid and crystallized intelligence: A meta-analysis of relations. Emot. Rev. 2019, 11, 166–183. [Google Scholar] [CrossRef]
- Schlegel, K.; Palese, T.; Mast, M.S.; Rammsayer, T.H.; Hall, J.A.; Murphy, N.A. A meta-analysis of the relationship between emotion recognition ability and intelligence. Cogn. Emot. 2020, 2, 329–351. [Google Scholar] [CrossRef]
- Ricciardi, L.; Visco-Comandini, F.; Erro, R.; Morgante, F.; Volpe, D.; Kilner, J.; Edwards, M.J.; Bologna, M. Emotional facedness in Parkinson’s disease. J. Neural Transm. 2018, 125, 1819–1827. [Google Scholar] [CrossRef]
- Rosenberg, H.; McDonald, S.; Rosenberg, J.; Westbrook, R.F. Measuring emotion perception following traumatic brain injury: The Complex Audio Visual Emotion Assessment Task (CAVEAT). Neuropsychol. Rehabil. 2019, 29, 232–250. [Google Scholar] [CrossRef]
- House, J.W.; Brackmann, D.E. Facial nerve grading system. Otolaryngol.-Head Neck Surg. 1985, 93, 146–147. [Google Scholar] [CrossRef]
- Online Psychology Research. Montreal Affective Voices. Available online: https://experiments.psy.gla.ac.uk//index.php (accessed on 11 June 2018).
- Paquette, S.; Peretz, I.; Belin, P. The “Musical Emotional Bursts”: A validated set of musical affect bursts to investigate auditory affective processing. Front. Psychol. 2013, 4, 509. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.Q.; Hadlock, T.A.; Fortier, E.; Guarin, D.L. The Auto-eFACE: Machine Learning-Enhanced Program Yields Automated Facial Palsy Assessment Tool. Plast. Reconstr. Surg. 2021, 147, 467–474. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Adult persons (≥18 years) with or without unilateral central facial paresis after stroke (ischemic or hemorrhagic) | Children and adults with peripheral facial paresis |
Acute, post-acute or chronic phase of stroke | Other neurological or psychological diseases |
For the investigation:
| For the investigation:
|
Normal or corrected visual and hearing ability | |
Ability to consent | No ability to consent |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuttenreich, A.-M.; von Piekartz, H.; Heim, S. Is There a Difference in Facial Emotion Recognition after Stroke with vs. without Central Facial Paresis? Diagnostics 2022, 12, 1721. https://doi.org/10.3390/diagnostics12071721
Kuttenreich A-M, von Piekartz H, Heim S. Is There a Difference in Facial Emotion Recognition after Stroke with vs. without Central Facial Paresis? Diagnostics. 2022; 12(7):1721. https://doi.org/10.3390/diagnostics12071721
Chicago/Turabian StyleKuttenreich, Anna-Maria, Harry von Piekartz, and Stefan Heim. 2022. "Is There a Difference in Facial Emotion Recognition after Stroke with vs. without Central Facial Paresis?" Diagnostics 12, no. 7: 1721. https://doi.org/10.3390/diagnostics12071721
APA StyleKuttenreich, A. -M., von Piekartz, H., & Heim, S. (2022). Is There a Difference in Facial Emotion Recognition after Stroke with vs. without Central Facial Paresis? Diagnostics, 12(7), 1721. https://doi.org/10.3390/diagnostics12071721