Artificial Intelligence in Eye Disease: Recent Developments, Applications, and Surveys
1. Introduction
Funding
Conflicts of Interest
References
- Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.A.; Shambour, M.K.Y.; Alsalibi, A.I.; Gandomi, A.H. Machine learning in medical applications: A review of state-of-the-art methods. Comput. Biol. Med. 2022, 145, 105458. [Google Scholar] [CrossRef] [PubMed]
- Du, X.-L.; Li, W.-B.; Hu, B.-J. Application of artificial intelligence in ophthalmology. Int. J. Ophthalmol. 2018, 11, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Ngo, L.; Han, J.-H. Multi-level deep neural network for efficient segmentation of blood vessels in fundus images. Electron. Lett. 2017, 53, 1096–1098. [Google Scholar] [CrossRef]
- Jeong, Y.; Lee, B.; Han, J.-H.; Oh, J. Ocular Axial Length Prediction Based on Visual Interpretation of Retinal Fundus Images via Deep Neural Network. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 7200407. [Google Scholar] [CrossRef]
- Ngo, L.; Cha, J.; Han, J.-H. Deep Neural Network Regression for Automated Retinal Layer Segmentation in Optical Coherence Tomography Images. IEEE Trans. Image Process. 2020, 29, 303–312. [Google Scholar] [CrossRef]
- Panda, S.K.; Cheong, H.; Tun, T.A.; Devella, S.K.; Senthil, V.; Krishnadas, R.; Buist, M.L.; Perera, S.; Cheng, C.-Y.; Aung, T.; et al. Describing the Structural Phenotype of the Glaucomatous Optic Nerve Head Using Artificial Intelligence. Am. J. Ophthalmol. 2022, 236, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Yap, A.; Wilkinson, B.; Chen, E.; Han, L.; Vaghefi, E.; Galloway, C.; Squirrell, D. Patients Perceptions of Artificial Intelligence in Diabetic Eye Screening. Asia-Pac. J. Ophthalmol. 2022, 11, 287–293. [Google Scholar] [CrossRef]
- Garry, G.A.; Donahue, S.P. Validation of Spot screening device for amblyopia risk factors. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus. 2014, 18, 476–480. [Google Scholar] [CrossRef] [PubMed]
- Kanclerz, P.; Khoramnia, R.; Wang, X. Current Developments in Corneal Topography and Tomography. Diagnostics 2021, 11, 1466. [Google Scholar] [CrossRef]
- Arnold, S.L.; Arnold, A.W.; Sprano, J.H.; Arnold, R.W. Performance of the 2WIN Photoscreener With “CR” Strabismus Estimation in High-Risk Patients. Am. J. Ophthalmol. 2019, 207, 195–203. [Google Scholar] [CrossRef]
- Sánchez-Morales, A.; Morales-Sánchez, J.; Kovalyk, O.; Verdú-Monedero, R.; Sancho-Gómez, J.-L. Improving Glaucoma Diagnosis Assembling Deep Networks and Voting Schemes. Diagnostics 2022, 12, 1382. [Google Scholar] [CrossRef] [PubMed]
- Alquran, H.; Al-Issa, Y.; Alsalatie, M.; Mustafa, W.A.; Qasmieh, I.A.; Zyout, A. Intelligent Diagnosis and Classification of Keratitis. Diagnostics 2022, 12, 1344. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Tran, L.; Peto, T.; Chew, E.Y. Identifying Those at Risk of Glaucoma: A Deep Learning Approach for Optic Disc and Cup Segmentation and Their Boundary Analysis. Diagnostics 2022, 12, 1063. [Google Scholar] [CrossRef]
- He, T.; Zhou, Q.; Zou, Y. Automatic Detection of Age-Related Macular Degeneration Based on Deep Learning and Local Outlier Factor Algorithm. Diagnostics 2022, 12, 532. [Google Scholar] [CrossRef] [PubMed]
- Alryalat, S.A.; Al-Antary, M.; Arafa, Y.; Azad, B.; Boldyreff, C.; Ghnaimat, T.; Al-Antary, N.; Alfegi, S.; Elfalah, M.; Abu-Ameerh, M. Deep Learning Prediction of Response to Anti-VEGF among Diabetic Macular Edema Patients: Treatment Response Analyzer System (TRAS). Diagnostics 2022, 12, 312. [Google Scholar] [CrossRef] [PubMed]
- Bilc, S.; Groza, A.; Muntean, G.; Nicoara, S.D. Interleaving Automatic Segmentation and Expert Opinion for Retinal Conditions. Diagnostics 2022, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Baget-Bernaldiz, M.; Pedro, R.-A.; Santos-Blanco, E.; Navarro-Gil, R.; Valls, A.; Moreno, A.; Rashwan, H.A.; Puig, D. Testing a Deep Learning Algorithm for Detection of Diabetic Retinopathy in a Spanish Diabetic Population and with MESSIDOR Database. Diagnostics 2021, 11, 1385. [Google Scholar] [CrossRef]
- Hung, N.; Shih, A.; Lin, C.; Kuo, M.-T.; Hwang, Y.-S.; Wu, W.-C.; Kuo, C.-F.; Kang, E.; Hsiao, C.-H. Using Slit-Lamp Images for Deep Learning-Based Identification of Bacterial and Fungal Keratitis: Model Development and Validation with Different Convolutional Neural Networks. Diagnostics 2022, 11, 1246. [Google Scholar] [CrossRef]
- Abdani, S.R.; Zulkifley, M.A.; Zulkifley, N.H. Group and Shuffle Convolutional Neural Networks with Pyramid Pooling Module for Automated Pterygium Segmentation. Diagnostics 2021, 11, 1104. [Google Scholar] [CrossRef]
- Abdani, S.-R.; Zulkifley, M.A.; Shahrimin, M.I.; Zulkifley, N.H. Computer-Assisted Pterygium Screening System: A Review. Diagnostics 2022, 12, 639. [Google Scholar] [CrossRef]
- Jeong, Y.; Hong, Y.-J.; Han, J.-H. Review of Machine Learning Applications Using Retinal Fundus Images. Diagnostics 2022, 12, 134. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.-H. Artificial Intelligence in Eye Disease: Recent Developments, Applications, and Surveys. Diagnostics 2022, 12, 1927. https://doi.org/10.3390/diagnostics12081927
Han J-H. Artificial Intelligence in Eye Disease: Recent Developments, Applications, and Surveys. Diagnostics. 2022; 12(8):1927. https://doi.org/10.3390/diagnostics12081927
Chicago/Turabian StyleHan, Jae-Ho. 2022. "Artificial Intelligence in Eye Disease: Recent Developments, Applications, and Surveys" Diagnostics 12, no. 8: 1927. https://doi.org/10.3390/diagnostics12081927