Expression of CD44 in Leukocyte Subpopulations in Patients with Inflammatory Bowel Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Clinical Assessment and Anthropometric Measurements
2.4. Assessment of Disease Severity
2.5. Flow Cytometry
2.6. Biochemical Analysis
2.7. Data Analysis
2.8. Statistical Analysis
3. Results
3.1. Basic Characteristics of the IBD and Control Group
3.2. Comparison of Basic Anthropometric, Disease, and Laboratory Characteristics between Ulcerative Colitis and Crohn’s Disease
3.3. Basic Anthropometric and Selected Disease Characteristics between Crohn’s Disease Subgroups Regarding to Biologic Therapy
3.4. Basic Anthropometric and Selected Disease Characteristics between Ulcerative Colitis Subgroups Regarding to Biologic Therapy
3.5. Monocyte Subsets (CD14++CD16−, CD14+CD16++, and CD14++CD16+) Display Distinct Percentages in Differently Treated Crohn’s Disease Patients
3.6. Expression of CD44 on CD14+CD16++ Monocytes in IBD
3.7. Expression of CD44 on CD44+CD14+ Lymphocytes in Differently Treated Ulcerative Colitis Patients
3.8. Percentage of CD44+ Granulocytes in Crohn’s Disease Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sairenji, T.; Collins, K.L.; Evans, D.V. An Update on Inflammatory Bowel Disease. Prim. Care 2017, 44, 673–692. [Google Scholar] [CrossRef] [PubMed]
- Seyedian, S.S.; Nokhostin, F.; Malamir, M.D. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J. Med. Life 2019, 12, 113–122. [Google Scholar] [PubMed]
- Zivkovic, P.M.; Matetic, A.; Hadjina, I.T.; Rusic, D.; Vilovic, M.; Supe-Domic, D.; Borovac, J.A.; Mudnic, I.; Tonkic, A.; Bozic, J. Serum Catestatin Levels and Arterial Stiffness Parameters Are Increased in Patients with Inflammatory Bowel Disease. J. Clin. Med. 2020, 9, 628. [Google Scholar] [CrossRef] [Green Version]
- Rubin, D.C.; Shaker, A.; Levin, M.S. Chronic intestinal inflammation: Inflammatory bowel disease and colitis-associated colon cancer. Front. Immunol. 2012, 3, 107. [Google Scholar] [CrossRef] [Green Version]
- Na, Y.R.; Stakenborg, M.; Seok, S.H.; Matteoli, G. Macrophages in intestinal inflammation and resolution: A potential therapeutic target in IBD. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 531–543. [Google Scholar] [CrossRef]
- Palamides, P.; Jodeleit, H.; Fohlinger, M.; Beigel, F.; Herbach, N.; Mueller, T.; Wolf, E.; Siebeck, M.; Gropp, R. A mouse model for ulcerative colitis based on NOD-scid IL2R gammanull mice reconstituted with peripheral blood mononuclear cells from affected individuals. Dis. Model Mech. 2016, 9, 985–997. [Google Scholar] [PubMed] [Green Version]
- Marimuthu, R.; Francis, H.; Dervish, S.; Li, S.C.H.; Medbury, H.; Williams, H. Characterization of Human Monocyte Subsets by Whole Blood Flow Cytometry Analysis. J. Vis. Exp. 2018, 57941. [Google Scholar] [CrossRef] [Green Version]
- Ozanska, A.; Szymczak, D.; Rybka, J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol. 2020, 92, e12883. [Google Scholar] [CrossRef]
- Kapellos, T.S.; Bonaguro, L.; Gemund, I.; Reusch, N.; Saglam, A.; Hinkley, E.R.; Schultze, J.L. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front. Immunol. 2019, 10, 2035. [Google Scholar] [CrossRef] [Green Version]
- Petrey, A.C.; de la Motte, C.A. Hyaluronan, a crucial regulator of inflammation. Front. Immunol. 2014, 5, 101. [Google Scholar] [CrossRef] [Green Version]
- Aruffo, A.; Stamenkovic, I.; Melnick, M.; Underhill, C.B.; Seed, B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990, 61, 1303–1313. [Google Scholar] [CrossRef]
- McDonald, B.; Kubes, P. Interactions between CD44 and Hyaluronan in Leukocyte Trafficking. Front. Immunol. 2015, 6, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahluwalia, B.; Moraes, L.; Magnusson, M.K.; Ohman, L. Immunopathogenesis of inflammatory bowel disease and mechanisms of biological therapies. Scand. J. Gastroenterol. 2018, 53, 379–389. [Google Scholar] [CrossRef]
- Mezzina, N.; Campbell Davies, S.E.; Ardizzone, S. Nonbiological therapeutic management of ulcerative colitis. Expert Opin. Pharmacother. 2018, 19, 1747–1757. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Chan, F.K.; Sung, J.J. Review article: The role of non-biological drugs in refractory inflammatory bowel disease. Aliment. Pharmacol. Ther. 2011, 33, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Fredericks, E.; Watermeyer, G. De-escalation of biological therapy in inflammatory bowel disease: Benefits and risks. S. Afr. Med. J. 2019, 109, 745–749. [Google Scholar] [CrossRef]
- Li Yim, A.Y.F.; Duijvis, N.W.; Ghiboub, M.; Sharp, C.; Ferrero, E.; Mannens, M.M.A.M.; D’Haens, G.R.; de Jonge, W.J.; te Velde, A.A.; Henneman, P. Whole-Genome DNA Methylation Profiling of CD14+ Monocytes Reveals Disease Status and Activity Differences in Crohn’s Disease Patients. J. Clin. Med. 2020, 9, 1055. [Google Scholar] [CrossRef] [Green Version]
- Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Nunes, P.B.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohns Colitis 2019, 13, 144–164. [Google Scholar] [CrossRef] [Green Version]
- Travis, S.P.; Schnell, D.; Krzeski, P.; Abreu, M.T.; Altman, D.G.; Colombel, J.F.; Feagan, B.G.; Hanauer, S.B.; Lichtenstein, G.R.; Marteau, P.R.; et al. Reliability and initial validation of the ulcerative colitis endoscopic index of severity. Gastroenterology 2013, 145, 987–995. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Zhang, T.; Ding, C.; Dai, X.; Li, Y.; Guo, Z.; Wei, Y.; Gong, J.; Zhu, W.; Li, J. Ulcerative Colitis Endoscopic Index of Severity (UCEIS) versus Mayo Endoscopic Score (MES) in guiding the need for colectomy in patients with acute severe colitis. Gastroenterol. Rep. 2018, 6, 38–44. [Google Scholar] [CrossRef]
- Lewis, J.D.; Chuai, S.; Nessel, L.; Lichtenstein, G.R.; Aberra, F.N.; Ellenberg, J.H. Use of the noninvasive components of the Mayo score to assess clinical response in ulcerative colitis. Inflamm. Bowel Dis. 2008, 14, 1660–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daperno, M.; D’Haens, G.; Van Assche, G.; Baert, F.; Bulois, P.; Maunoury, V.; Sostegni, R.; Rocca, R.; Pera, A.; Gevers, A.; et al. Development and validation of a new, simplified endoscopic activity score for Crohn’s disease: The SES-CD. Gastrointest. Endosc. 2004, 60, 505–512. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Nazareth, N.; Magro, F.; Silva, J.; Duro, M.; Gracio, D.; Coelho, R.; Appelberg, R.; Macedo, G.; Sarmento, A. Infliximab therapy increases the frequency of circulating CD16 (+) monocytes and modifies macrophage cytokine response to bacterial infection. Clin. Exp. Immunol. 2014, 177, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Ziegler-Heitbrock, L.; Hofer, T.P. Toward a refined definition of monocyte subsets. Front. Immunol. 2013, 4, 23. [Google Scholar]
- Galon, J.; Gauchat, J.F.; Mazieres, N.; Spagnoli, R.; Storkus, W.; Lotze, M.; Bonnefoy, J.Y.; Fridman, W.H. Soluble Fcgamma receptor type III (FcgammaRIII, CD16) triggers cell activation through interaction with complement receptors. J. Immunol. 1996, 157, 1184–1192. [Google Scholar]
- Gren, S.T.; Rasmussen, T.B.; Janciauskiene, S.; Hakansson, K.; Gerwien, J.G.; Grip, O. A Single-Cell Gene-Expression Profile Reveals Inter-Cellular Heterogeneity within Human Monocyte Subsets. PLoS ONE 2015, 10, e0144351. [Google Scholar]
- Wong, K.L.; Tai, J.J.; Wong, W.C.; Han, H.; Sem, X.; Yeap, W.H.; Kourilsky, P.; Wong, S.-C. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 2011, 118, e16–e31. [Google Scholar]
- Prame Kumar, K.; Nicholls, A.J.; Wong, C.H.Y. Partners in crime: Neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res. 2018, 371, 551–565. [Google Scholar]
- Schleier, L.; Wiendl, M.; Heidbreder, K.; Binder, M.T.; Atreya, R.; Rath, T.; Becker, E.; Schulz-Kuhnt, A.; Stahl, A.; Schulze, L.L.; et al. Non-classical monocyte homing to the gut via alpha4beta7 integrin mediates macrophage-dependent intestinal wound healing. Gut 2020, 69, 252–263. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Rutgeerts, P.; Hanauer, S.; Colombel, J.F.; Sands, B.E.; Lukas, M.; Fedorak, R.N.; Lee, S.; Bressler, B.; et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 2013, 369, 711–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geissmann, F.; Jung, S.; Littman, D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003, 19, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Kuhl, A.A.; Erben, U.; Kredel, L.I.; Siegmund, B. Diversity of Intestinal Macrophages in Inflammatory Bowel Diseases. Front. Immunol. 2015, 6, 613. [Google Scholar] [CrossRef] [Green Version]
- Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Munoz, F.; Dominguez-Lopez, A.; Yamamoto-Furusho, J.K. Role of cytokines in inflammatory bowel disease. World J. Gastroenterol. 2008, 14, 4280–4288. [Google Scholar] [CrossRef] [PubMed]
- Corbaz, A.; ten Hove, T.; Herren, S.; Graber, P.; Schwartsburd, B.; Belzer, I.; Harrison, J.; Plitz, T.; Kosco-Vilbois, M.H.; Kim, S.-H.; et al. IL-18-binding protein expression by endothelial cells and macrophages is up-regulated during active Crohn’s disease. J. Immunol. 2002, 168, 3608–3616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puren, A.J.; Fantuzzi, G.; Gu, Y.; Su, M.S.; Dinarello, C.A. Interleukin-18 (IFNgamma-inducing factor) induces IL-8 and IL–1beta via TNFalpha production from non-CD14+ human blood mononuclear cells. J. Clin. Investig. 1998, 101, 711–721. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.; Ruffell, B. CD44 and its role in inflammation and inflammatory diseases. Inflamm. Allergy Drug Targets 2009, 8, 208–220. [Google Scholar] [CrossRef]
- Jordan, A.R.; Racine, R.R.; Hennig, M.J.; Lokeshwar, V.B. The Role of CD44 in Disease Pathophysiology and Targeted Treatment. Front. Immunol. 2015, 6, 182. [Google Scholar] [CrossRef]
- Allocca, M.; Gilardi, D.; Fiorino, G.; Furfaro, F.; Argollo, M.; Peyrin-Biroulet, L.; Danese, S. PF-00547659 for the treatment of Crohn’s disease and ulcerative colitis. Expert Opin. Investig. Drugs 2018, 27, 623–629. [Google Scholar] [CrossRef]
- Belge, K.U.; Dayyani, F.; Horelt, A.; Siedlar, M.; Frankenberger, M.; Frankenberger, B.; Espevik, T.; Ziegler-Heitbrock, L. The proinflammatory CD14+ CD16+ DR++ monocytes are a major source of TNF. J. Immunol. 2002, 168, 3536–3542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusugami, K.; Youngman, K.R.; West, G.A.; Fiocchi, C. Intestinal immune reactivity to interleukin 2 differs among Crohn’s disease, ulcerative colitis, and controls. Gastroenterology 1989, 97, 1–9. [Google Scholar] [CrossRef]
- Reinisch, W.; Gasche, C.; Tillinger, W.; Wyatt, J.; Lichtenberger, C.; Willheim, M.; Dejaco, C.; Waldhör, T.; Bakos, S.; Vogelsang, H.; et al. Clinical relevance of serum interleukin-6 in Crohn’s disease: Single point measurements, therapy monitoring, and prediction of clinical relapse. Am. J. Gastroenterol. 1999, 94, 2156–2164. [Google Scholar] [CrossRef] [PubMed]
- Labbe, C.; Boucher, G.; Foisy, S.; Alikashani, A.; Nkwimi, H.; David, G.; Beaudoin, M.; Goyette, P.; Charron, G.; Xavier, R.J.; et al. Genome-wide expression profiling implicates a MAST3-regulated gene set in colonic mucosal inflammation of ulcerative colitis patients. Inflamm. Bowel Dis. 2012, 18, 1072–1080. [Google Scholar] [CrossRef] [PubMed]
- Clarke, W.T.; Feuerstein, J.D. Colorectal cancer surveillance in inflammatory bowel disease: Practice guidelines and recent developments. World J. Gastroenterol. 2019, 25, 4148–4157. [Google Scholar] [CrossRef]
- Loken, M.R.; Brosnan, J.M.; Bach, B.A.; Ault, K.A. Establishing optimal lymphocyte gates for immunophenotyping by flow cytometry. Cytometry 1990, 11, 453–459. [Google Scholar] [CrossRef]
- Kalina, T.; Fiser, K.; Perez–Andres, M.; Kuzilkova, D.; Cuenca, M.; Bartol, S.J.W.; Blanco, E.; Engel, P.; Van Zelm, M.C. CD Maps-Dynamic Profiling of CD1-CD100 Surface Expression on Human Leukocyte and Lymphocyte Subsets. Front. Immunol. 2019, 10, 2434. [Google Scholar] [CrossRef] [Green Version]
- Thorley-Lawson, D.A. EBV Persistence––Introducing the Virus. Curr. Top. Microbiol. Immunol. 2015, 390, 151–209. [Google Scholar]
- Rabe, H.; Malmquist, M.; Barkman, C.; Ostman, S.; Gjertsson, I.; Saalman, R.; Wold, A.E. Distinct patterns of naive, activated and memory T and B cells in blood of patients with ulcerative colitis or Crohn’s disease. Clin. Exp. Immunol. 2019, 197, 111–129. [Google Scholar] [CrossRef] [Green Version]
- Klein, U.; Rajewsky, K.; Kuppers, R. Human immunoglobulin (Ig)M+ IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory). B cells. J. Exp. Med. 1998, 188, 1679–1689. [Google Scholar] [CrossRef] [Green Version]
- Karin, M.; Clevers, H. Reparative inflammation takes charge of tissue regeneration. Nature 2016, 529, 307–315. [Google Scholar] [CrossRef]
- Lampinen, M.; Ronnblom, A.; Amin, K.; Kristjansson, G.; Rorsman, F.; Sangfelt, P.; Säfsten, B.; Wagner, M.; Wanders, A.; Winqvist, O.; et al. Eosinophil granulocytes are activated during the remission phase of ulcerative colitis. Gut 2005, 54, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Lampinen, M.; Sangfelt, P.; Agnarsdottir, M.; Carlson, M. Budesonide treatment of patients with collagenous colitis restores normal eosinophil and T-cell activity in the colon. Inflamm. Bowel Dis. 2010, 16, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Harbord, M.W.; Marks, D.J.; Forbes, A.; Bloom, S.L.; Day, R.M.; Segal, A.W. Impaired neutrophil chemotaxis in Crohn’s disease relates to reduced production of chemokines and can be augmented by granulocyte-colony stimulating factor. Aliment Pharmacol. Ther. 2006, 24, 651–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, D.J.; Harbord, M.W.; MacAllister, R.; Rahman, F.Z.; Young, J.; Al-Lazikani, B.; Lees, W.; Novelli, M.; Bloom, S.; Segal, A.W. Defective acute inflammation in Crohn’s disease: A clinical investigation. Lancet 2006, 367, 668–678. [Google Scholar] [CrossRef]
- Wera, O.; Lancellotti, P.; Oury, C. The Dual Role of Neutrophils in Inflammatory Bowel Diseases. J. Clin. Med. 2016, 5, 118. [Google Scholar] [CrossRef]
- Soleymani, S.; Moradkhani, A.; Eftekhari, M.; Rahmanian, F.; Moosavy, S.H. Correlation between Clinical Symptoms and Lab Tests with Endoscopic Severity Indexes in Patients with Inflammatory Bowel Diseases. Middle East J. Dig. Dis. 2020, 12, 162–170. [Google Scholar] [CrossRef]
- Klingberg, E.; Strid, H.; Stahl, A.; Deminger, A.; Carlsten, H.; Ohman, L.; Forsblad-D’Elia, H. A longitudinal study of fecal calprotectin and the development of inflammatory bowel disease in ankylosing spondylitis. Arthritis Res. Ther. 2017, 19, 21. [Google Scholar] [CrossRef] [Green Version]
- Krzesiek, E. Fecal Calprotectin as an Activity Marker of Inflammatory Bowel Disease in Children. Adv. Clin. Exp. Med. 2015, 24, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Ferreiro Iglesias, R.; Barreiro-de Acosta, M.; Lopez, J.; Baston Rey, I.; Dominguez-Munoz, J.E. Usefulness of Peripheral Blood Monocyte Count to Predict Relapse in Patients with Inflammatory Bowel Disease: A Prospective Longitudinal Cohort Study. Rev. Esp. Enferm. Dig. 2021, 114, 10–15. [Google Scholar] [CrossRef]
Parameters | p * | |||||
---|---|---|---|---|---|---|
Disease Duration | ||||||
<9 Years (n = 25) | >9 Years (n = 20) | |||||
Lymphocytes MFI of CD44 at CD44+CD14+ | 51,894 (44,287–67,815) | 58,532 (35,226–71,311) | 0.578 | |||
Lymphocytes MFI of CD44 at CD44+CD16+ | 21,891 (15,000–34,714) | 26,822 (12,568–39,607) | 0.195 | |||
Monocytes % of CD14+CD16++ | 7.64 (4.28–9.93) | 7.45 (5.81–10.33) | 0.911 | |||
Monocytes % of CD14++CD16+ | 6.9 (5.85–13.28) | 10.52 (7.56–16.27) | 0.149 | |||
Monocytes % of CD14++CD16− | 26.82 (20.49–33.39) | 37.09 (25.56–45.84) | 0.025 | |||
MFI of CD44 at CD14+CD16++ | 71,165 (64,885–84,584) | 73,558 (61,522–89,867) | 0.679 | |||
MFI of CD44 at CD14++CD16+ | 117,277 (85,335–128,315) | 128,843 (96,248–140,698) | 0.122 |
Endoscopic Disease Activity (SES-CD) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Mild | Moderate | Severe | ANOVA | |||||||
(n = 9) | (n = 9) | (n = 9) | F | p * | |||||||
Lymphocytes | |||||||||||
MFI of CD44 at CD44+CD14+ | 89,316 (76,000–104,839) | 81,400 (58,117–95,505) | 70,499 (51,503–114,550) | 0.55 | 0.55 | ||||||
Monocytes | |||||||||||
CD14+CD16++ % | 5.99 (1.9–7.25) | 7.98 (6.48–11.63) | 5.95 (2.76–11.3) | 1.56 | 0.23 | ||||||
CD14++CD16+ % | 7.69 (6.45–9.28) | 16.04 (9.65–19.7) | 6.43 (4.67–9.7) | 8.03 | 0.002 | ||||||
CD14++CD16− % | 33.8 (23.95–46.93) | 27.92 (25.7–36.9) | 35.4 (24.75–39.36) | 0.36 | 0.7 | ||||||
MFI of CD44+ at CD14++CD16− | 90,675 (71,777–92,797) | 84,560 (69,068–94,359) | 85,768 (73,743–97,878) | 0.44 | 0.644 | ||||||
MFI of CD44+ at CD14+CD16++ | 81,708 (74,904–92,364) | 69,864 (56,979–71,249) | 90,720 (71,249–103,679) | 0.77 | 0.471 |
Endoscopic Disease Activity (UCEIS; MES) | |||||||
---|---|---|---|---|---|---|---|
Parameters | Mild | Moderate | p * | ||||
(n = 5) | (n = 11) | ||||||
Lymphocytes | |||||||
MFI of CD44 at CD44+CD14+ | 25,028 (13,845–104,526) | 69,528 (66,467–94,765) | 0.364 | ||||
Monocytes | |||||||
CD14+CD16++ % | 8.9 (6.82–10.14) | 8.77 (6.37–14.24) | 0.82 | ||||
CD14++CD16+ % | 7.71 (4.53–16.34) | 7.66 (5.38–12.9) | 0.89 | ||||
CD14++CD16− % | 25.53 (22.52–43.44) | 25.26 (15.26–32.93) | 0.42 | ||||
MFI of CD44+ at CD14++CD16− | 97,363 (75,098–98,412) | 76,118 (62,665–86,808) | 0.058 | ||||
MFI of CD44+ at CD14+CD16++ | 91,715 (72,015–113,863) | 68,445 (26,607–86,346) | 0.302 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franić, I.; Režić-Mužinić, N.; Markotić, A.; Živković, P.M.; Vilović, M.; Rušić, D.; Božić, J. Expression of CD44 in Leukocyte Subpopulations in Patients with Inflammatory Bowel Diseases. Diagnostics 2022, 12, 2014. https://doi.org/10.3390/diagnostics12082014
Franić I, Režić-Mužinić N, Markotić A, Živković PM, Vilović M, Rušić D, Božić J. Expression of CD44 in Leukocyte Subpopulations in Patients with Inflammatory Bowel Diseases. Diagnostics. 2022; 12(8):2014. https://doi.org/10.3390/diagnostics12082014
Chicago/Turabian StyleFranić, Ivana, Nikolina Režić-Mužinić, Anita Markotić, Piero Marin Živković, Marino Vilović, Doris Rušić, and Joško Božić. 2022. "Expression of CD44 in Leukocyte Subpopulations in Patients with Inflammatory Bowel Diseases" Diagnostics 12, no. 8: 2014. https://doi.org/10.3390/diagnostics12082014
APA StyleFranić, I., Režić-Mužinić, N., Markotić, A., Živković, P. M., Vilović, M., Rušić, D., & Božić, J. (2022). Expression of CD44 in Leukocyte Subpopulations in Patients with Inflammatory Bowel Diseases. Diagnostics, 12(8), 2014. https://doi.org/10.3390/diagnostics12082014