Ultrahigh-Resolution Photon-Counting CT in Cadaveric Fracture Models: Spatial Frequency Is Not Everything
Abstract
:1. Introduction
2. Material and Methods
2.1. Cadaveric Fracture Models
2.2. Imaging and Postprocessing
2.3. Objective Image Quality
2.4. Subjective Image Quality
2.5. Statistical Analysis
3. Results
3.1. Objective Image Quality
3.2. Subjective Image Quality
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CTDIvol | volume computed tomography dose index |
EID | energy-integrating detector |
MTF | modulation transfer function |
PCD | photon-counting detector |
ROI | region of interest |
SNR | signal-to-noise ratio |
UHR | ultrahigh-resolution |
References
- Esquivel, A.; Ferrero, A.; Mileto, A.; Baffour, F.; Horst, K.; Rajiah, P.S.; Inoue, A.; Leng, S.; McCollough, C.; Fletcher, J.G. Photon-Counting Detector CT: Key Points Radiologists Should Know. Korean J. Radiol. 2022, 23, 854–865. [Google Scholar] [CrossRef]
- Kawashima, H.; Ichikawa, K.; Takata, T.; Nagata, H.; Hoshika, M.; Akagi, N. Technical Note: Performance comparison of ultra-high-resolution scan modes of two clinical computed tomography systems. Med. Phys. 2020, 47, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Gutjahr, R.; Halaweish, A.F.; Yu, Z.; Leng, S.; Yu, L.; Li, Z.; Jorgensen, S.M.; Ritman, E.L.; Kappler, S.; McCollough, C.H. Human Imaging with Photon Counting-Based Computed Tomography at Clinical Dose Levels: Contrast-to-Noise Ratio and Cadaver Studies. Investig. Radiol. 2016, 51, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Leng, S.; Yu, Z.; Halaweish, A.; Kappler, S.; Hahn, K.; Henning, A.; Li, Z.; Lane, J.; Levin, D.L.; Jorgensen, S.; et al. Dose-efficient ultrahigh-resolution scan mode using a photon counting detector computed tomography system. J. Med. Imaging 2016, 3, 043504. [Google Scholar] [CrossRef]
- Leng, S.; Rajendran, K.; Gong, H.; Zhou, W.; Halaweish, A.F.; Henning, A.; Kappler, S.; Baer, M.; Fletcher, J.G.; McCollough, C.H. 150-μm Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images. Investig. Radiol. 2018, 53, 655–662. [Google Scholar] [CrossRef]
- NAEOTOM Alpha with Quantum Technology Whitepaper: The Technology Behind Photon-Counting CT How Photon-Counting Works and the Benefits it Provides. 2022. Available online: https://marketing.webassets.siemens-healthineers.com/48f92cb059cd61b4/ab24f928f835/CT_NAEOTOM-Alpha-PCCT-Technology_Whitepaper_USA_2022.pdf (accessed on 28 February 2023).
- Tortora, M.; Gemini, L.; D’iglio, I.; Ugga, L.; Spadarella, G.; Cuocolo, R. Spectral Photon-Counting Computed Tomography: A Review on Technical Principles and Clinical Applications. J. Imaging 2022, 8, 112. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C.H.; Boedeker, K.; Cody, D.; Duan, X.; Flohr, T.; Halliburton, S.S.; Hsieh, J.; Layman, R.R.; Pelc, N.J. Principles and applications of multienergy CT: Report of AAPM Task Group 291. Med. Phys. 2020, 47, e881–e912. [Google Scholar] [CrossRef] [PubMed]
- Leng, S.; Bruesewitz, M.; Tao, S.; Rajendran, K.; Halaweish, A.F.; Campeau, N.G.; Fletcher, J.G.; McCollough, C.H. Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology. RadioGraphics 2019, 39, 729–743. [Google Scholar] [CrossRef] [PubMed]
- Si-Mohamed, S.A.; Miailhes, J.; Rodesch, P.-A.; Boccalini, S.; Lacombe, H.; Leitman, V.; Cottin, V.; Boussel, L.; Douek, P. Spectral Photon-Counting CT Technology in Chest Imaging. J. Clin. Med. 2021, 10, 5757. [Google Scholar] [CrossRef]
- Willemink, M.J.; Persson, M.; Pourmorteza, A.; Pelc, N.J.; Fleischmann, D. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 2018, 289, 293–312. [Google Scholar] [CrossRef]
- Flohr, T.; Petersilka, M.; Henning, A.; Ulzheimer, S.; Ferda, J.; Schmidt, B. Photon-counting CT review. Phys. Med. 2020, 79, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, K.; Petersilka, M.; Henning, A.; Shanblatt, E.R.; Schmidt, B.; Flohr, T.G.; Ferrero, A.; Baffour, F.; Diehn, F.E.; Yu, L.; et al. First Clinical Photon-counting Detector CT System: Technical Evaluation. Radiology 2022, 303, 130–138. [Google Scholar] [CrossRef]
- Hata, A.; Yanagawa, M.; Honda, O.; Kikuchi, N.; Miyata, T.; Tsukagoshi, S.; Uranishi, A.; Tomiyama, N. Effect of Matrix Size on the Image Quality of Ultra-high-resolution CT of the Lung: Comparison of 512 × 512, 1024 × 1024, and 2048 × 2048. Acad. Radiol. 2018, 25, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Grunz, J.-P.; Huflage, H.; Heidenreich, J.F.; Ergün, S.; Petersilka, M.; Allmendinger, T.; Bley, T.A.; Petritsch, B. Image Quality Assessment for Clinical Cadmium Telluride-Based Photon-Counting Computed Tomography Detector in Cadaveric Wrist Imaging. Investig. Radiol. 2021, 56, 785–790. [Google Scholar] [CrossRef]
- Rajendran, K.; Francis Baffour, ·.; Powell, G.; Glazebrook, K.; Thorne, J.; Larson, N.; Leng, S.; McCollough, C.; Fletcher, J. Improved visualization of the wrist at lower radiation dose with photon-counting-detector CT. Skeletal Radiol. 2022, 52, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Baffour, F.I.; Rajendran, K.; Glazebrook, K.N.; Thorne, J.E.; Larson, N.B.; Leng, S.; McCollough, C.H.; Fletcher, J.G. Ultra-high-resolution imaging of the shoulder and pelvis using photon-counting-detector CT: A feasibility study in patients. Eur. Radiol. 2022, 32, 7079–7086. [Google Scholar] [CrossRef]
- Grunz, J.P.; Heidenreich, J.F.; Lennartz, S.; Weighardt, J.P.; Bley, T.A.; Ergün, S.; Petritsch, B.; Huflage, H. Spectral Shaping Via Tin Prefiltration in Ultra-High-Resolution Photon-Counting and Energy-Integrating Detector CT of the Temporal Bone. Investig. Radiol. 2022, 57, 819–825. [Google Scholar] [CrossRef]
- Rajendran, K.; Voss, B.A.; Zhou, W.; Tao, S.; Delone, D.R.; Lane, J.I.; Weaver, J.M.; Carlson, M.L.; Fletcher, J.G.; McCollough, C.H.; et al. Dose Reduction for Sinus and Temporal Bone Imaging Using Photon-Counting Detector CT with an Additional Tin Filter. Investig. Radiol. 2020, 55, 91–100. [Google Scholar] [CrossRef]
- Milos, R.I.; Röhrich, S.; Prayer, F.; Strassl, A.; Beer, L.; Heidinger, B.H.; Weber, M.; Watzenboeck, M.L.; Kifjak, D.; Tamandl, D.; et al. Ultra-High-Resolution Photon-Counting Detector CT of the Lungs: Association of Reconstruction Kernel and Slice Thickness with Image Quality. AJR Am. J. Roentgenol. 2022, 220, 672–680. [Google Scholar] [CrossRef]
- Bartlett, D.J.; Koo, C.W.; Bartholmai, B.J.; Rajendran, K.; Weaver, J.M.; Halaweish, A.F.; Leng, S.; McCollough, C.H.; Fletcher, J.G. High-Resolution Chest Computed Tomography Imaging of the Lungs: Impact of 1024 Matrix Reconstruction and Photon-Counting Detector Computed Tomography. Investig. Radiol. 2019, 54, 129–137. [Google Scholar] [CrossRef]
- von Spiczak, J.; Mannil, M.; Peters, B.; Hickethier, T.; Baer, M.; Henning, A.; Schmidt, B.; Flohr, T.; Manka, R.; Maintz, D.; et al. Photon Counting Computed Tomography with Dedicated Sharp Convolution Kernels: Tapping the Potential of a New Technology for Stent Imaging. Investig. Radiol. 2018, 53, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Mergen, V.; Sartoretti, T.; Baer-Beck, M.; Schmidt, B.; Petersilka, M.; Wildberger, J.E.; Euler, A.; Eberhard, M.; Alkadhi, H. Ultra-High-Resolution Coronary CT Angiography with Photon-Counting Detector CT: Feasibility and Image Characterization. Investig. Radiol. 2022, 57, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, K.; Petersilka, M.; Henning, A.; Shanblatt, E.; Marsh, J.; Thorne, J.; Schmidt, B.; Flohr, T.; Fletcher, J.; McCollough, C.; et al. Full field-of-view, high-resolution, photon-counting detector CT: Technical assessment and initial patient experience. Phys. Med. Biol. 2021, 66, 205019. [Google Scholar] [CrossRef] [PubMed]
- Eldevik, K.; Nordhoy, W.; Skretting, A. Relationship between sharpness and noise in CT images reconstructed with different kernels. Radiat. Prot. Dosim. 2010, 139, 430–433. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Leng, S.; Rajendran, K.; Tao, S.; McCollough, C.H. Photon Counting CT: Clinical Applications and Future Developments. IEEE Trans. Radiat. Plasma Med. Sci. 2020, 5, 441–452. [Google Scholar] [CrossRef]
- Klein, L.; Dorn, S.; Amato, C.; Heinze, S.; Uhrig, M.; Schlemmer, H.-P.; Kachelrieß, M.; Sawall, S. Effects of Detector Sampling on Noise Reduction in Clinical Photon-Counting Whole-Body Computed Tomography. Investig. Radiol. 2020, 55, 111–119. [Google Scholar] [CrossRef]
- Booij, R.; Kämmerling, N.F.; Oei, E.H.G.; Persson, A.; Tesselaar, E. Assessment of visibility of bone structures in the wrist using normal and half of the radiation dose with photon-counting detector CT. Eur. J. Radiol. 2023, 159, 110662. [Google Scholar] [CrossRef]
- Kämmerling, N.; Sandstedt, M.; Farnebo, S.; Persson, A.; Tesselaar, E. Assessment of image quality in photon-counting detector computed tomography of the wrist—An ex vivo study. Eur. J. Radiol. 2022, 154, 110442. [Google Scholar] [CrossRef]
- Willaume, T.; Delmas, L.; Tochon, L.; Bierry, G. A comparison of smooth and sharp kernel CT reconstructions in the detection of unilateral sacral fractures. Skelet. Radiol. 2023. [Google Scholar] [CrossRef]
- Fonseca, A.A.; Cherubini, K.; Veeck, E.B.; Ladeira, R.S.; Carapeto, L.P. Effect of 10% formalin on radiographic optical density of bone specimens. Dentomaxillofacial Radiol. 2008, 37, 137–141. [Google Scholar] [CrossRef]
- Burkhart, K.J.; Nowak, T.E.; Blum, J.; Kuhn, S.; Welker, M.; Sternstein, W.; Mueller, L.P.; Rommens, P.M. Influence of formalin fixation on the biomechanical properties of human diaphyseal bone. Biomed. Eng./Biomed. Tech. 2010, 55, 361–365. [Google Scholar] [CrossRef] [PubMed]
Kernel | Frequency at the 50% Value of the MTF (ρ50) [lp/cm] | Frequency at the 10% Value of the MTF (ρ10) [lp/cm] | Frequency of the Maximum of the MTF (ρmax) [lp/cm] |
---|---|---|---|
Br76 | 16.5 | 21.0 | 7.8 |
Br80 | 19.3 | 24.9 | 8.9 |
Br84 | 22.6 | 27.9 | 10.5 |
Br89 | 27.0 | 30.0 | 14.0 |
Br92 | 30.4 | 33.5 | 15.1 |
Br96 | 34.9 | 37.8 | 18.0 |
Br98 | 39.0 | 42.9 | 20.4 |
Br76 | Br80 | Br84 | Br89 | Br92 | Br96 | Br98 | |
---|---|---|---|---|---|---|---|
Image noise [HU] | 30.3 (27.5–35.5) | 30.3 (27.7–39.0) | 32.5 (29.7–41.7) | 36.5 (34.7–49.6) | 39.4 (35.9–51.0) | 41.6 (36.5–55.9) | 42.1 (36.6–48.7) |
Signal-to-noise ratio | 3.4 (3.0–3.9) | 3.4 (2.6–3.7) | 3.1 (2.2–3.4) | 2.6 (2.0–3.1) | 2.4 (2.0–3.1) | 2.3 (1.9–3.0) | 2.3 (1.8–3.0) |
Image Quality | Fracture Assessability | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Br76 | Br80 | Br84 | Br89 | Br92 | Br96 | Br98 | Br76 | Br80 | Br84 | Br89 | Br92 | Br96 | Br98 | |
1 | 23 (20.5) | 5 (4.5) | 66 (58.9) | 2 (1.8) | 0 (0) | 0 (0) | 16 (14.3) | 48 (42.9) | 5 (4.5) | 47 (42.0) | 1 (0.9) | 0 (0) | 2 (1.8) | 9 (8.0) |
2 | 27 (24.1) | 39 (34.8) | 12 (10.7) | 18 (16.1) | 1 (0.9) | 15 (13.4) | 0 (0) | 19 (17.0) | 44 (39.3) | 25 (22.3) | 15 (13.4) | 2 (1.8) | 6 (5.4) | 1 (0.9) |
3 | 25 (22.3) | 36 (32.1) | 17 (15.2) | 16 (14.3) | 17 (15.2) | 1 (0.9) | 0 (0) | 25 (22.3) | 40 (35.7) | 25 (22.3) | 7 (6.3) | 10 (8.9) | 3 (2.7) | 2 (1.8) |
4 | 18 (16.1) | 14 (12.5) | 4 (3.6) | 55 (49.1) | 21 (18.8) | 0 (0) | 0 (0) | 15 (13.4) | 16 (14.3) | 4 (3.6) | 63 (56.3) | 10 (8.9) | 2 (1.8) | 2 (1.8) |
5 | 4 (3.6) | 3 (2.7) | 11 (9.8) | 19 (17.0) | 68 (60.1) | 6 (5.4) | 1 (0.9) | 1 (0.9) | 3 (2.7) | 2 (1.8) | 17 (15.2) | 77 (6.9) | 10 (8.9) | 2 (1.8) |
6 | 2 (1.8) | 12 (10.7) | 2 (1.8) | 2 (1.8) | 4 (3.6) | 76 (6.8) | 26 (23.2) | 1 (0.9) | 3 (2.7) | 3 (2.7) | 6 (5.4) | 9 (8.0) | 76 (67.9) | 14 (12.5) |
7 | 13 (11.6) | 3 (2.7) | 0 (0) | 0 (0) | 1 (0.9) | 14 (12.5) | 69 (61.6) | 3 (2.7) | 1 (0.9) | 6 (5.4) | 3 (2.7) | 4 (3.6) | 13 (11.6) | 82 (73.2) |
Median (IQR) | 3 (2–4) | 3 (2–4) | 1 (1–3) | 4 (3–4) | 5 (4–5) | 6 (6–6) | 7 (6–7) | 2 (1–3) | 3 (2–3) | 2 (1–3) | 4 (4–4) | 5 (5–5) | 6 (6–6) | 7 (6–7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patzer, T.S.; Kunz, A.S.; Huflage, H.; Conrads, N.; Luetkens, K.S.; Pannenbecker, P.; Paul, M.M.; Ergün, S.; Bley, T.A.; Grunz, J.-P. Ultrahigh-Resolution Photon-Counting CT in Cadaveric Fracture Models: Spatial Frequency Is Not Everything. Diagnostics 2023, 13, 1677. https://doi.org/10.3390/diagnostics13101677
Patzer TS, Kunz AS, Huflage H, Conrads N, Luetkens KS, Pannenbecker P, Paul MM, Ergün S, Bley TA, Grunz J-P. Ultrahigh-Resolution Photon-Counting CT in Cadaveric Fracture Models: Spatial Frequency Is Not Everything. Diagnostics. 2023; 13(10):1677. https://doi.org/10.3390/diagnostics13101677
Chicago/Turabian StylePatzer, Theresa Sophie, Andreas Steven Kunz, Henner Huflage, Nora Conrads, Karsten Sebastian Luetkens, Pauline Pannenbecker, Mila Marie Paul, Süleyman Ergün, Thorsten Alexander Bley, and Jan-Peter Grunz. 2023. "Ultrahigh-Resolution Photon-Counting CT in Cadaveric Fracture Models: Spatial Frequency Is Not Everything" Diagnostics 13, no. 10: 1677. https://doi.org/10.3390/diagnostics13101677
APA StylePatzer, T. S., Kunz, A. S., Huflage, H., Conrads, N., Luetkens, K. S., Pannenbecker, P., Paul, M. M., Ergün, S., Bley, T. A., & Grunz, J. -P. (2023). Ultrahigh-Resolution Photon-Counting CT in Cadaveric Fracture Models: Spatial Frequency Is Not Everything. Diagnostics, 13(10), 1677. https://doi.org/10.3390/diagnostics13101677