Exploiting Machine Learning Technologies to Study the Compound Effects of Serum Creatinine and Electrolytes on the Risk of Acute Kidney Injury in Intensive Care Units
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
Feature | 550 Cases with AKI (Mean ± SD) | 12,152 Cases without AKI (Mean ± SD) | p-Value |
---|---|---|---|
Age (years) | 65.68 ± 14.69 | 60.34 ± 17.67 | p < 0.001 * |
Gender | p < 0.001 * | ||
Male (%) | 349 (63.45%) | 6757 (55.60%) | |
Female (%) | 201 (36.55%) | 5395 (44.40%) | |
Serum | |||
BUN (mg/dL) | 26.74 ± 15.39 | 18.06 ± 8.90 | p < 0.001 * |
Creatinine (mg/dL) | 1.36 ± 0.64 | 0.86 ± 0.26 | p < 0.001 * |
Chloride (mEq/L) | 110.37 ± 6.60 | 107.39 ± 5.28 | p < 0.001 * |
Potassium (mEq/L) | 4.79 ± 0.75 | 4.47 ± 0.63 | p < 0.001 * |
Sodium (mEq/L) | 142.81 ± 5.77 | 141.23 ± 4.59 | p < 0.001 * |
Magnesium (mg/dL) | 2.53 ± 0.52 | 2.28 ± 0.44 | p < 0.001 * |
Phosphorus (mg/dL) | 4.40 ± 1.34 | 3.80 ± 0.93 | p < 0.001 * |
Non-ionized calcium (mg/dL) | 8.76 ± 0.73 | 8.73 ± 0.71 | 0.346 |
2.2. Machine Learning Models
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loscalzo, J.; Fauci, A.S.; Kasper, D.L.; Hauser, S.L.; Longo, D.L.; Jameson, J.L.; Harrison, T.R. Harrison’s Principles of Internal Medicine, 21st ed.; International edition; Loscalzo, J., Fauci, A.S., Kasper, D.L., Hauser, S.L., Longo, D.L., Jameson, J.L., Eds.; McGraw-Hill: New York, NY, USA, 2022. [Google Scholar]
- Hoste, E.A.J.; Kellum, J.A.; Selby, N.M.; Zarbock, A.; Palevsky, P.M.; Bagshaw, S.M.; Goldstein, S.L.; Cerda, J.; Chawla, L.S. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 2018, 14, 607–625. [Google Scholar] [CrossRef]
- Case, J.; Khan, S.; Khalid, R.; Khan, A. Epidemiology of acute kidney injury in the intensive care unit. Crit. Care Res. Pract. 2013, 2013, 479730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.T.; Liu, K.D. Exciting developments in the field of acute kidney injury. Nat. Rev. Nephrol. 2020, 16, 69–70. [Google Scholar] [CrossRef]
- Mercado, M.G.; Smith, D.K.; Guard, E.L. Acute Kidney Injury: Diagnosis and Management. Am. Fam. Physician 2019, 100, 687–694. [Google Scholar] [PubMed]
- Koyner, J.L. Subclinical Acute Kidney Injury Is Acute Kidney Injury and Should Not Be Ignored. Am. J. Respir. Crit. Care Med. 2020, 202, 786–787. [Google Scholar] [CrossRef]
- Leaf, D.E.; Christov, M. Dysregulated Mineral Metabolism in AKI. Semin. Nephrol. 2019, 39, 41–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, L.G.; Sampaio, B.M.; Rocha, E.P.; Balbi, A.L.; Sousa Prado, I.R.; Ponce, D. Acute kidney injury in elderly patients: Narrative review on incidence, risk factors, and mortality. Int. J. Nephrol. Renovasc Dis. 2018, 11, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Blaine, J.; Chonchol, M.; Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1257–1272. [Google Scholar] [CrossRef] [Green Version]
- Bellomo, R.; Kellum, J.A.; Ronco, C. Acute kidney injury. Lancet 2012, 380, 756–766. [Google Scholar] [CrossRef]
- Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.J. Acute kidney injury. Nat. Rev. Dis. Primers 2021, 7, 52. [Google Scholar] [CrossRef]
- Lv, Q.; Li, D.; Wang, Y.; Yu, P.; Zhao, L.; Chen, S.; Wang, M.; Fu, G.; Zhang, W. Admission electrolyte and osmotic pressure levels are associated with the incidence of contrast-associated acute kidney injury. Sci. Rep. 2022, 12, 4714. [Google Scholar] [CrossRef]
- Suetrong, B.; Pisitsak, C.; Boyd, J.H.; Russell, J.A.; Walley, K.R. Hyperchloremia and moderate increase in serum chloride are associated with acute kidney injury in severe sepsis and septic shock patients. Crit. Care 2016, 20, 315. [Google Scholar] [CrossRef] [Green Version]
- Marttinen, M.; Wilkman, E.; Petaja, L.; Suojaranta-Ylinen, R.; Pettila, V.; Vaara, S.T. Association of plasma chloride values with acute kidney injury in the critically ill—A prospective observational study. Acta Anaesthesiol. Scand. 2016, 60, 790–799. [Google Scholar] [CrossRef]
- Moon, H.; Chin, H.J.; Na, K.Y.; Joo, K.W.; Kim, Y.S.; Kim, S.; Han, S.S. Hyperphosphatemia and risks of acute kidney injury, end-stage renal disease, and mortality in hospitalized patients. BMC Nephrol. 2019, 20, 362. [Google Scholar] [CrossRef] [Green Version]
- Cheungpasitporn, W.; Thongprayoon, C.; Erickson, S.B. Admission hypomagnesemia and hypermagnesemia increase the risk of acute kidney injury. Ren. Fail. 2015, 37, 1175–1179. [Google Scholar] [CrossRef] [Green Version]
- Thongprayoon, C.; Cheungpasitporn, W.; Mao, M.A.; Sakhuja, A.; Erickson, S.B. Admission calcium levels and risk of acute kidney injury in hospitalised patients. Int. J. Clin. Pract. 2018, 72, e13057. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Chewcharat, A.; Mao, M.A.; Bathini, T.; Vallabhajosyula, S.; Thirunavukkarasu, S.; Kashani, K.B. Impact of admission serum ionized calcium levels on risk of acute kidney injury in hospitalized patients. Sci. Rep. 2020, 10, 12316. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.N.; Du, J.; Xie, Y.; Li, M.; Wang, R.L.; Tian, R. Relationship between early serum sodium and potassium levels and AKI severity and prognosis in oliguric AKI patients. Int. Urol. Nephrol. 2021, 53, 1171–1187. [Google Scholar] [CrossRef] [PubMed]
- Yessayan, L.; Neyra, J.A.; Canepa-Escaro, F.; Vasquez-Rios, G.; Heung, M.; Yee, J.; Acute Kidney Injury in Critical Illness Study, G. Effect of hyperchloremia on acute kidney injury in critically ill septic patients: A retrospective cohort study. BMC Nephrol. 2017, 18, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morooka, H.; Tanaka, A.; Kasugai, D.; Ozaki, M.; Numaguchi, A.; Maruyama, S. Abnormal magnesium levels and their impact on death and acute kidney injury in critically ill children. Pediatr. Nephrol. 2022, 37, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques/Daphne Koller, Nir Friedman; MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Liu, X.; Liu, F.; Wang, C. Comparison of machine learning and logistic regression models in predicting acute kidney injury: A systematic review and meta-analysis. Int. J. Med. Inform. 2021, 151, 104484. [Google Scholar] [CrossRef]
- Tomasev, N.; Glorot, X.; Rae, J.W.; Zielinski, M.; Askham, H.; Saraiva, A.; Mottram, A.; Meyer, C.; Ravuri, S.; Protsyuk, I.; et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 2019, 572, 116–119. [Google Scholar] [CrossRef]
- Therneau, T.; Atkinson, B. Rpart: Recursive Partitioning and Regression Trees. Available online: https://CRAN.R-project.org/package=rpart (accessed on 21 March 2022).
- Rokach, L.; Maimon, O. Data Mining with Decision Trees Theory and Applications/Lior Rokach, Oded Maimon, 2nd ed.; World Scientific: Hackensack, NJ, USA, 2015. [Google Scholar]
- Cho, S.; Hong, H.; Ha, B.C. A hybrid approach based on the combination of variable selection using decision trees and case-based reasoning using the Mahalanobis distance: For bankruptcy prediction. Expert. Syst. Appl. 2010, 37, 3482–3488. [Google Scholar] [CrossRef]
- Gao, W.; Wang, J.; Zhou, L.; Luo, Q.; Lao, Y.; Lyu, H.; Guo, S. Prediction of acute kidney injury in ICU with gradient boosting decision tree algorithms. Comput. Biol. Med. 2021, 140, 105097. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 785–794. [Google Scholar]
- Johnson, A.; Bulgarelli, L.; Pollard, T.; Horng, S.; Celi, L.A.; Mark, R. MIMIC-IV, Version 1.0; PhysioNet: Cambridge, MA, USA, 2021. [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Acute Kidney Injury Work Group. Section 2: AKI Definition. Kidney Int. Suppl. 2012, 2, 19–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidney International Work Group. Summary of Recommendation Statements. Kidney Int. Suppl. 2012, 2, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Palevsky, P.M.; Liu, K.D.; Brophy, P.D.; Chawla, L.S.; Parikh, C.R.; Thakar, C.V.; Tolwani, A.J.; Waikar, S.S.; Weisbord, S.D. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am. J. Kidney Dis. 2013, 61, 649–672. [Google Scholar] [CrossRef]
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Liano, F.; Pascual, J. Epidemiology of acute renal failure: A prospective, multicenter, community-based study. Madrid Acute Renal Failure Study Group. Kidney Int. 1996, 50, 811–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basile, D.P.; Anderson, M.D.; Sutton, T.A. Pathophysiology of acute kidney injury. Compr. Physiol. 2012, 2, 1303–1353. [Google Scholar] [CrossRef] [Green Version]
- Dowdy, S.; Wearden, S.; Chilko, D. Statistics for Research; John Wiley & Sons, Incorporated: Hoboken, NJ, USA, 2004. [Google Scholar]
- MacFarland, T.W.; Yates, J.M. Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer International Publishing AG: Cham, Switzerland, 2016. [Google Scholar]
Comorbidities/Diseases | ICD-9 | ICD-10 |
---|---|---|
Renal failure 1 | 403.11, 403.91, 404.12, 404.92, 584.5–584.9, 585.1–585.9, 586, V42.0, V45.1, V56.0, V56.8 | I12.0, I13.1, N17.0–N17.2, N17.8, N17.9, N18.1–N18.9, N19, N25.0, Z49.0–Z49.2, Z94.0, Z99.2 |
Congestive heart failure | 398.91, 402.11, 402.91, 404.11, 404.13, 404.91, 404.93, 428.0–428.9 | I09.9, I11.0, I13.0, I13.2, I25.5, I42.0, I42.5–I42.9, I50.0–I50.9, P29.0 |
Diabetes | 250.0–250.7, 250.9 | E10.0–E10.9, E11.0–E11.9, E12.0–E12.9, E13.0–E13.9, E14.0–E14.9 |
Fluid and electrolyte disorders | 276.0–276.9 | E22.2, E86.0, E86.1, E86.9, E87.0–E87.8 |
Feature | 24 Cases with Post-Renal AKI (Mean ± SD) | 526 Cases with Non-Post-Renal AKI (Mean ± SD) | p-Value |
---|---|---|---|
Age (years) | 74.16 ± 12.54 | 65.30 ± 14.66 | 0.0037 * |
Gender | 0.0007 * | ||
Male (%) | 23 (95.66%) | 326 (61.98%) | |
Female (%) | 1 (4.34%) | 200 (38.02%) | |
Serum | |||
BUN (mg/dL) | 27.54 ± 10.72 | 26.70 ± 15.55 | 0.7944 |
Creatinine (mg/dL) | 1.40 ± 0.57 | 1.36 ± 0.64 | 0.7459 |
Chloride (mEq/L) | 110.08 ± 7.30 | 110.38 ± 6.57 | 0.5228 |
Potassium (mEq/L) | 4.58 ± 0.56 | 4.80 ± 0.76 | 0.2258 |
Sodium (mEq/L) | 142.81 ± 5.28 | 142.84 ± 5.79 | 0.9599 |
Magnesium (mg/dL) | 2.54 ± 0.38 | 2.53 ± 0.53 | 0.1666 |
Phosphorus (mg/dL) | 4.07 ± 0.93 | 4.41 ± 1.36 | 0.5254 |
Non-ionized calcium (mg/dL) | 8.66 ± 0.54 | 8.76 ± 0.74 | 0.8278 |
Level of Sensitivity | Model | Sensitivity | Specificity | PPV | AUC | Relative Risk |
---|---|---|---|---|---|---|
0.95 | DT | 0.949 | 0.479 | 0.076 | 0.767 | 16.893 |
LR | 0.949 | 0.414 | 0.068 | 0.855 | 13.872 | |
RF | 0.949 | 0.382 | 0.065 | 0.666 | 13.012 | |
0.80 | DT | 0.798 | 0.721 | 0.116 | 0.823 | 9.84 |
LR | 0.799 | 0.773 | 0.137 | 0.857 | 11.982 | |
RF | 0.799 | 0.732 | 0.119 | 0.766 | 10.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.-H.; Wang, Y.-T.; Yang, M.-H.; Lin, W.-S.K.; Oyang, Y.-J. Exploiting Machine Learning Technologies to Study the Compound Effects of Serum Creatinine and Electrolytes on the Risk of Acute Kidney Injury in Intensive Care Units. Diagnostics 2023, 13, 2551. https://doi.org/10.3390/diagnostics13152551
Liu H-H, Wang Y-T, Yang M-H, Lin W-SK, Oyang Y-J. Exploiting Machine Learning Technologies to Study the Compound Effects of Serum Creatinine and Electrolytes on the Risk of Acute Kidney Injury in Intensive Care Units. Diagnostics. 2023; 13(15):2551. https://doi.org/10.3390/diagnostics13152551
Chicago/Turabian StyleLiu, Hsin-Hung, Yu-Tseng Wang, Meng-Han Yang, Wei-Shu Kevin Lin, and Yen-Jen Oyang. 2023. "Exploiting Machine Learning Technologies to Study the Compound Effects of Serum Creatinine and Electrolytes on the Risk of Acute Kidney Injury in Intensive Care Units" Diagnostics 13, no. 15: 2551. https://doi.org/10.3390/diagnostics13152551
APA StyleLiu, H.-H., Wang, Y.-T., Yang, M.-H., Lin, W.-S. K., & Oyang, Y.-J. (2023). Exploiting Machine Learning Technologies to Study the Compound Effects of Serum Creatinine and Electrolytes on the Risk of Acute Kidney Injury in Intensive Care Units. Diagnostics, 13(15), 2551. https://doi.org/10.3390/diagnostics13152551