A Systematic Review of the Effect of Cystic Fibrosis Treatments on the Nasal Potential Difference Test in Animals and Humans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Extraction
2.2. Risk of Bias Assessments
2.3. Analysis
3. Results
3.1. Study Flow and Sample
3.2. Included Treatments
3.3. Risk of Bias
3.4. Studies on Non-Viral Gene Therapy
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scotet, V.; Gutierrez, H.; Farrell, P.M. Newborn Screening for CF across the Globe-Where Is It Worthwhile? Int. J. Neonatal Screen. 2020, 6, 18. [Google Scholar] [CrossRef]
- Kerem, B.; Rommens, J.M.; Buchanan, J.A.; Markiewicz, D.; Cox, T.K.; Chakravarti, A.; Buchwald, M.; Tsui, L.C. Identification of the cystic fibrosis gene: Genetic analysis. Science 1989, 245, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Dubin, E.; Lowers, J.; Dellon, E.P.; Hempstead, S.; Faro, A.; Tallarico, E.; Fitzpatrick, A.; Hunt, W.R.; Kavalieratos, D. Prevalence of unmet pain and symptom management needs in adults with cystic fibrosis. J. Cyst. Fibros. 2022. [Google Scholar] [CrossRef]
- Kramer-Golinkoff, E.; Camacho, A.; Kramer, L.; Taylor-Cousar, J.L. A survey: Understanding the health and perspectives of people with CF not benefiting from CFTR modulators. Pediatr. Pulmonol. 2022, 57, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Stanford, G.E.; Dave, K.; Simmonds, N.J. Pulmonary Exacerbations in Adults With Cystic Fibrosis: A Grown-up Issue in a Changing Cystic Fibrosis Landscape. Chest 2021, 159, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Dreano, E.; Bacchetta, M.; Simonin, J.; Galmiche, L.; Usal, C.; Slimani, L.; Sadoine, J.; Tesson, L.; Anegon, I.; Concordet, J.; et al. Characterization of two rat models of cystic fibrosis: F508del and KO CFTR generated by CRISPR-Cas9. Pediatr. Pulmonol. 2019, 54, 318–319. [Google Scholar] [CrossRef]
- Knowles, M.R.; Gatzy, J.T.; Boucher, R.C. Increased bioelectric potential differences across respiratory epithelia in cystic fibrosis. N. Engl. Med. 1981, 305, 1489–1495. [Google Scholar] [CrossRef] [PubMed]
- Saussereau, E.L.; Roussel, D.; Diallo, S.; Debarbieux, L.; Edelman, A.; Sermet-Gaudelus, I. Characterization of nasal potential difference in CFTR knockout and F508del-CFTR mice. PLoS ONE 2013, 8, e57317. [Google Scholar] [CrossRef]
- Standaert, T.A.; Boitano, L.; Emerson, J.; Milgram, L.J.; Konstan, M.W.; Hunter, J.; Berclaz, P.Y.; Brass, L.; Zeitlin, P.L.; Hammond, K.; et al. Standardized procedure for measurement of nasal potential difference: An outcome measure in multicenter cystic fibrosis clinical trials. Pediatr. Pulmonol. 2004, 37, 385–392. [Google Scholar] [CrossRef]
- Middleton, P.G.; Geddes, D.M.; Alton, E.W. Protocols for in vivo measurement of the ion transport defects in cystic fibrosis nasal epithelium. Eur. Respir. J. 1994, 7, 2050–2056. [Google Scholar] [CrossRef]
- Naehrlich, L.; Ballmann, M.; Davies, J.; Derichs, N.; Gonska, T.; Hjelte, L.; van Konigsbruggen-Rietschel, S.; Leal, T.; Melotti, P.; Middleton, P.; et al. Nasal potential difference measurements in diagnosis of cystic fibrosis: An international survey. J. Cyst. Fibros. 2014, 13, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.S.; Stoltz, D.A.; Meyerholz, D.K.; Ostedgaard, L.S.; Rokhlina, T.; Taft, P.J.; Rogan, M.P.; Pezzulo, A.A.; Karp, P.H.; Itani, O.A.; et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 2008, 321, 1837–1841. [Google Scholar] [CrossRef] [PubMed]
- Leenaars, C.H.C.; Kouwenaar, C.; Stafleu, F.R.; Bleich, A.; Ritskes-Hoitinga, M.; De Vries, R.B.M.; Meijboom, F.L.B. Animal to human translation: A systematic scoping review of reported concordance rates. J. Transl. Med. 2019, 17, 223. [Google Scholar] [CrossRef] [PubMed]
- Van de Wall, G.; Van Hattem, A.; Timmermans, J.; Ritskes-Hoitinga, M.; Bleich, A.; Leenaars, C. Comparing Translational Success Rates across Medical Research Fields: A combined analysis of literature and clinical trial data. ALTEX 2023. [Google Scholar] [CrossRef]
- Leenaars, C.; Tsaioun, K.; Stafleu, F.; Rooney, K.; Meijboom, F.; Ritskes-Hoitinga, M.; Bleich, A. Reviewing the animal literature: How to describe and choose between different types of literature reviews. Lab. Anim. 2021, 55, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Leenaars, C.; Stafleu, F.; Häger, C.; Nieraad, H.; Bleich, A. The nasal potential difference test: A systematic review of animal and human data comparing cystic fibrosis to control. 2023; Submitted manuscript. [Google Scholar]
- Su, Z.; Zhu, L.; Wu, J.; Zhao, R.; Ji, H.L. Systematic review and meta-analysis of nasal potential difference in hypoxia-induced lung injury. Sci. Rep. 2016, 6, 30780. [Google Scholar] [CrossRef]
- de Vries, R.B.; Wever, K.E.; Avey, M.T.; Stephens, M.L.; Sena, E.S.; Leenaars, M. The usefulness of systematic reviews of animal experiments for the design of preclinical and clinical studies. ILAR J. 2014, 55, 427–437. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; IntHout, J.; Ritskes-Hoitinga, M.; Rovers, M.M. Meta-analyses of animal studies: An introduction of a valuable instrument to further improve healthcare. ILAR J. 2014, 55, 418–426. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Ritskes-Hoitinga, M. Progress in using systematic reviews of animal studies to improve translational research. PLoS Med. 2013, 10, e1001482. [Google Scholar] [CrossRef]
- Howells, D.W.; Sena, E.S.; O’Collins, V.; Macleod, M.R. Improving the efficiency of the development of drugs for stroke. Int. J. Stroke 2012, 7, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Sena, E.S.; Currie, G.L.; McCann, S.K.; Macleod, M.R.; Howells, D.W. Systematic reviews and meta-analysis of preclinical studies: Why perform them and how to appraise them critically. J. Cereb. Blood Flow. Metab. 2014, 34, 737–742. [Google Scholar] [CrossRef] [PubMed]
- van der Worp, H.B.; Howells, D.W.; Sena, E.S.; Porritt, M.J.; Rewell, S.; O’Collins, V.; Macleod, M.R. Can animal models of disease reliably inform human studies? PLoS Med. 2010, 7, e1000245. [Google Scholar] [CrossRef] [PubMed]
- Leenaars, C.; Stafleu, F.; Bleich, A. The Nasal Potential Difference Test for Diagnosing Cystic Fibrosis and Assessing Disease Severity: A Systematic Review. Preregisterred Protocol on PROSPERO (York, UK), Registration Number CRD42021236047. 2021. Available online: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021236047 (accessed on 26 August 2023).
- van der Mierden, S.; Hooijmans, C.R.; Tillema, A.H.; Rehn, S.; Bleich, A.; Leenaars, C.H. Laboratory animals search filter for different literature databases: PubMed, Embase, Web of Science and PsycINFO. Lab. Anim. 2022, 56, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Van Luijk, J.A.K.R. The Next Steps Towards Responsible Animal-Based Research; RadboudUMC: Nijmegen, The Netherlands, 2017. [Google Scholar]
- Langendam, M.W.; Magnuson, K.; Williams, A.R.; Walker, V.R.; Howdeshell, K.L.; Rooney, A.A.; Hooijmans, C.R. Developing a database of systematic reviews of animal studies. Regul. Toxicol. Pharmacol. 2021, 123, 104940. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Collins, A.M.; Coughlin, D.; Kirk, S. The Role of Google Scholar in Evidence Reviews and Its Applicability to Grey Literature Searching. PLoS ONE 2015, 10, e0138237. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Covidence Systematic Review Software. Available online: www.covidence.org (accessed on 18 April 2023).
- Van der Mierden, S.; Spineli, L.M.; Talbot, S.R.; Yiannakou, C.; Zentrich, E.; Weegh, N.; Struve, B.; Zur Brugge, T.F.; Bleich, A.; Leenaars, C.H.C. Extracting data from graphs: A case-study on animal research with implications for meta-analyses. Res. Synth. Methods 2021, 12, 701–710. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A.C. Chapter 8: Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions; Cochrane: London, UK, 2022. [Google Scholar]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- R_Core_Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R, PBC, Boston, MA. Available online: http://www.rstudio.com/ (accessed on 24 September 2023).
- Wickham, H.; Bryan, J. readxl: Read Excel Files, R Package Version 1.4.2; TX & CA, USA. 2019. Available online: https://CRAN.R-project.org/package=readxl (accessed on 24 September 2023).
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation, R Package Version 1.1.2. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 24 September 2023).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Chaltiel, D. crosstable: Crosstables for Descriptive Analyses, R Package Version 0.6.2; Villejuif, FR. 2023. Available online: https://CRAN.R-project.org/package=crosstable (accessed on 24 September 2023).
- Jiang, C.; O’Connor, S.P.; Fang, S.L.; Wang, K.X.; Marshall, J.; Williams, J.L.; Wilburn, B.; Echelard, Y.; Cheng, S.H. Efficiency of cationic lipid-mediated transfection of polarized and differentiated airway epithelial cells in vitro and in vivo. Hum. Gene Ther. 1998, 9, 1531–1542. [Google Scholar] [CrossRef]
- Gill, D.R.; Southern, K.W.; Mofford, K.A.; Seddon, T.; Huang, L.; Sorgi, F.; Thomson, A.; MacVinish, L.J.; Ratcliff, R.; Bilton, D.; et al. A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 1997, 4, 199–209. [Google Scholar] [CrossRef]
- Ziady, A.G.; Kelley, T.J.; Milliken, E.; Ferkol, T.; Davis, P.B. Functional evidence of CFTR gene transfer in nasal epithelium of cystic fibrosis mice in vivo following luminal application of DNA complexes targeted to the serpin-enzyme complex receptor. Mol. Ther. 2002, 5, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Barker, P.M.; Gillie, D.J.; Schechter, M.S.; Rubin, B.K. Effect of macrolides on in vivo ion transport across cystic fibrosis nasal epithelium. Am. J. Respir. Crit. Care Med. 2005, 171, 868–871. [Google Scholar] [CrossRef] [PubMed]
- Bruscia, E.M.; Price, J.E.; Cheng, E.C.; Weiner, S.; Caputo, C.; Ferreira, E.C.; Egan, M.E.; Krause, D.S. Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation. Proc. Natl. Acad. Sci. USA 2006, 103, 2965–2970. [Google Scholar] [CrossRef]
- Ramjeesingh, M.; Huan, L.J.; Wilschanski, M.; Durie, P.; Li, C.; Gyomorey, K.; Wang, Y.; Kent, G.; Tanswell, K.A.; Cutz, E.; et al. Assessment of the efficacy of in vivo CFTR protein replacement therapy in CF mice. Hum. Gene Ther. 1998, 9, 521–528. [Google Scholar] [CrossRef]
- Beumer, W.; Swildens, J.; Leal, T.; Noel, S.; Anthonijsz, H.; van der Horst, G.; Kuiperij-Boersma, H.; Potman, M.; van Putten, C.; Biasutto, P.; et al. Evaluation of eluforsen, a novel RNA oligonucleotide for restoration of CFTR function in in vitro and murine models of p.Phe508del cystic fibrosis. PLoS ONE 2019, 14, e0219182. [Google Scholar] [CrossRef] [PubMed]
- Robinson, E.; MacDonald, K.D.; Slaughter, K.; McKinney, M.; Patel, S.; Sun, C.; Sahay, G. Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis. Mol. Ther. 2018, 26, 2034–2046. [Google Scholar] [CrossRef] [PubMed]
- Accurso, F.J.; Van Goor, F.; Zha, J.; Stone, A.J.; Dong, Q.; Ordonez, C.L.; Rowe, S.M.; Clancy, J.P.; Konstan, M.W.; Hoch, H.E.; et al. Sweat chloride as a biomarker of CFTR activity: Proof of concept and ivacaftor clinical trial data. J. Cyst. Fibros. 2014, 13, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Rowe, S.M.; Liu, B.; Hill, A.; Hathorne, H.; Cohen, M.; Beamer, J.R.; Accurso, F.J.; Dong, Q.; Ordoñez, C.L.; Stone, A.J.; et al. Optimizing nasal potential difference analysis for CFTR modulator development: Assessment of ivacaftor in CF subjects with the G551D-CFTR mutation. PLoS ONE 2013, 8, e66955. [Google Scholar] [CrossRef]
- Lazrak, A.; Jurkuvenaite, A.; Ness, E.C.; Zhang, S.; Woodworth, B.A.; Muhlebach, M.S.; Stober, V.P.; Lim, Y.P.; Garantziotis, S.; Matalon, S. Inter-α-inhibitor blocks epithelial sodium channel activation and decreases nasal potential differences in ΔF508 mice. Am. J. Respir. Cell Mol. Biol. 2014, 50, 953–962. [Google Scholar] [CrossRef]
- Borah, R.; Brown, A.W.; Capers, P.L.; Kaiser, K.A. Analysis of the time and workers needed to conduct systematic reviews of medical interventions using data from the PROSPERO registry. BMJ Open 2017, 7, e012545. [Google Scholar] [CrossRef] [PubMed]
- Drummond, D.; Dana, J.; Berteloot, L.; Schneider-Futschik, E.K.; Chedevergne, F.; Bailly-Botuha, C.; Nguyen-Khoa, T.; Cornet, M.; Le Bourgeois, M.; Debray, D.; et al. Lumacaftor-ivacaftor effects on cystic fibrosis-related liver involvement in adolescents with homozygous F508 del-CFTR. J. Cyst. Fibros. 2022, 21, 212–219. [Google Scholar] [CrossRef]
- Piotrowski-Daspit, A.S.; Barone, C.; Lin, C.Y.; Deng, Y.; Wu, D.; Binns, T.C.; Xu, E.; Ricciardi, A.S.; Putman, R.; Garrison, A.; et al. In vivo correction of cystic fibrosis mediated by PNA nanoparticles. Sci. Adv. 2022, 8, eabo0522. [Google Scholar] [CrossRef]
- Noel, S.; Servel, N.; Hatton, A.; Golec, A.; Rodrat, M.; Ng, D.R.S.; Li, H.; Pranke, I.; Hinzpeter, A.; Edelman, A.; et al. Correlating genotype with phenotype using CFTR-mediated whole-cell Cl(-) currents in human nasal epithelial cells. J. Physiol. 2022, 600, 1515–1531. [Google Scholar] [CrossRef]
- Reyne, N.; Cmielewski, P.; McCarron, A.; Delhove, J.; Parsons, D.; Donnelley, M. Single-Dose Lentiviral Mediated Gene Therapy Recovers CFTR Function in Cystic Fibrosis Knockout Rats. Front. Pharmacol. 2021, 12, 682299. [Google Scholar] [CrossRef] [PubMed]
- Sermet-Gaudelus, I.; Nguyen-Khoa, T.; Hatton, A.; Hayes, K.; Pranke, I. Sweat Chloride Testing and Nasal Potential Difference (NPD) Are Primary Outcome Parameters in Treatment with Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulators. J. Pers. Med. 2021, 11, 729. [Google Scholar] [CrossRef] [PubMed]
- Cmielewski, P.; Delhove, J.; Donnelley, M.; Parsons, D. Assessment of Lentiviral Vector Mediated CFTR Correction in Mice Using an Improved Rapid in vivo Nasal Potential Difference Measurement Protocol. Front. Pharmacol. 2021, 12, 714452. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, M.F.; Pranke, I.; Sassi, A.; Schreiweis, C.; Moriceau, S.; Vidovic, D.; Hatton, A.; Carlon, M.S.; Creste, G.; Berhal, F.; et al. Systemic bis-phosphinic acid derivative restores chloride transport in Cystic Fibrosis mice. Sci. Rep. 2022, 12, 6132. [Google Scholar] [CrossRef] [PubMed]
- Calella, P.; Valerio, G.; Brodlie, M.; Donini, L.M.; Siervo, M. Cystic fibrosis, body composition, and health outcomes: A systematic review. Nutrition 2018, 55–56, 131–139. [Google Scholar] [CrossRef]
- Mielus, M.; Sands, D.; Woynarowski, M. Improving nutrition in cystic fibrosis: A systematic literature review. Nutrition 2022, 102, 111725. [Google Scholar] [CrossRef]
- Aquarius, R.; Elbertsen, D.; de Vries, J.; Boogaarts, H.D.; Wever, K.E. A systematic review of the Woven EndoBridge device-do findings in pre-clinical animal models compare to clinical results? Acta Neurochir. 2023, 165, 1869–1879. [Google Scholar] [CrossRef] [PubMed]
PubMed | |
---|---|
nPD | Membrane potentials [MeSH:NoExp] OR ((Nasa*[tiab] OR naso*[tiab] OR membran*[tiab] OR transmembran*[tiab]) AND (Potential[tiab] OR potentials[tiab] OR voltage[tiab] OR voltages[tiab] OR current[tiab] OR currents[tiab]) AND (Difference[tiab] OR differences[tiab] or change[tiab] OR changes[tiab] OR alteration[tiab] OR alterations[tiab] OR variance[tiab])) |
CF | Cystic fibrosis [MeSH] OR Mice, Inbred CFTR [MeSH] OR Cystic Fibrosis Transmembrane Conductance Regulator [MeSH] OR (cystic[tiab] AND (fibrosis[tiab] OR fibroses[tiab] OR fibrotic[tiab])) OR Mucoviscidos* [tiab] OR Mucoviscoid* [tiab] OR Mukoviszid* [tiab] OR CFTR [tiab] OR Fibrocystic Dis-ease [tiab] OR Fibrocystic Diseases [tiab] OR Mckusick [tiab] OR CFRD [tiab] OR “pancreas cystic disease” [tiab] OR muco-patient* [tiab] OR muko-patient* [tiab] OR (CF [tiab] AND (lung [tiab] OR lungs [tiab] OR pulmonary [tiab] OR ABPA [tiab] OR mucus [tiab] OR liver [tiab] OR livers [tiab] OR steatosis [tiab] OR cirrhosis [tiab] OR cirrhotic [tiab] OR meconium ileus[tiab] OR gastrointestinal [tiab] OR intestine [tiab] OR intestines [tiab] OR intestinal [tiab] OR duodenum [tiab] OR jejunum [tiab] OR colon [tiab] OR caecum [tiab] OR DIOS [tiab] OR ((sweat [tiab] OR eccrine [tiab] OR apocrine [tiab] OR salivary [tiab] OR parotid [tiab] OR sublingual [tiab] OR submandibular [tiab] OR sub-lingual [tiab] OR sub-mandibular [tiab] OR von Ebner [tiab]) AND (gland [tiab] OR glands [tiab])) OR ((Pa-ranasal [tiab] OR Para-nasal [tiab] OR frontal [tiab] OR ethmoidal [tiab] OR maxillary [tiab] OR sphenoidal [tiab]) AND (sinus [tiab] OR sinuses [tiab])) OR pancreas [tiab] OR pancreatic [tiab])) |
Human | clinical study [pt] OR clinical trial [tiab] OR intervention study [tiab] OR “clinical studies as topic”[MeSH] OR first in man [tiab] OR proof of concept [tiab] OR randomized [tiab] OR placebo [tiab] OR drug therapy [sh] OR randomly [tiab] OR trial [tiab] OR groups [tiab] OR multicenter study[pt] OR “Multicenter Studies as Topic” [Mesh] |
Animal | PubMed animal filter [25] |
Embase | |
nPD | exp potential difference/OR (exp nose/AND exp electrical parameters/) OR ((Nasa* OR naso* OR membran* or transmembran*) AND (Potential OR potentials OR voltage OR voltages OR current OR currents) AND (Difference OR differences or change OR changes OR alteration OR alterations OR variance)).ti,ab,kw. |
CF | Cystic fibrosis/OR cystic fibrosis transmembrane conductance regulator/OR (cystic adj2 fibros*).ti,ab,kw. OR fibrocystic diseas*.ti,ab,kw. OR (mucovisc* or Mukoviszidose).ti,ab,kw. OR CFRD.ti,ab,kw. OR muco-patient*.ti,ab,kw. OR muko-patient*.ti,ab,kw. OR pancreas cystic disease.ti,ab,kw. OR pancreas fibrocystic disease.ti,ab,kw. OR pancreas fibrosis.ti,ab,kw. OR pancreatic cystic disease.ti,ab,kw. OR pancreatic fibrosis.ti,ab,kw. OR (CF adj30 (lung OR liver OR stomach OR intestines OR pulmonary OR meconeum ileus OR gastrointestinal OR intestine OR intestines OR intestinal OR pancreas OR pancreatic OR ((sweat OR eccrine OR apocrine OR salivary OR parotid OR sublingual OR submandibular OR von Ebner) adj2 (gland OR glands)) OR ((Paranasal OR frontal OR ethmoidal OR maxillary OR sphenoidal) adj2 (sinus OR sinusses)))).ti,ab,kw. |
Human | exp clinical trial/OR clinical study/OR human subject.ti,ab,kw. OR clinical drug trial.ti,ab,kw. OR major clinical trial.ti,ab,kw. OR trial, clinical.ti,ab,kw. OR clinical study.ti,ab,kw. OR phase 1 clinical trial.ti,ab,kw. OR phase 2 clinical trial.ti,ab,kw. OR phase 3 clinical trial.ti,ab,kw. OR clinical trial, controlled.ti,ab,kw. OR clinical trial, phase 1.ti,ab,kw. OR clinical trial, phase 2.ti,ab,kw. OR clinical trial, phase 3.ti,ab,kw. OR clinical trials.ti,ab,kw. OR clinical trial, phase I.ti,ab,kw. OR clinical trial, phase II.ti,ab,kw. OR clinical trial, phase III.ti,ab,kw. OR intervention study.ti,ab,kw. |
Animal | Embase animal filter [25] |
Screening Phase | ||
---|---|---|
Exclusion Criterium 1 | Title-Abstract | Full Text |
Study not about CF | X | X |
Study not in vivo 2 | X | X |
No nPD measured | X | X |
No untreated control group (either with or without CF) 3 present | X | |
No full peer-reviewed publication 4 | X |
Study ID 1 | Title | Population | Treatment |
---|---|---|---|
Antibiotics | |||
Barker_2005 | Effect of macrolides on in vivo ion transport across cystic fibrosis nasal epithelium | Humans | Clarithromycin; Azithromycin |
Bone Marrow Transplant | |||
Bruscia_2006 | Assessment of cystic fibrosis transmembrane conductance regulator (CFTR) activity in CFTR-null mice after bone marrow transplantation | Animals | |
Direct CFTR targeting drugs | |||
Accurso_2014 | Sweat chloride as a biomarker of CFTR activity: proof of concept and ivacaftor clinical trial data | Humans | Ivacaftor |
Rowe_2013 | Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation | Humans | Ivacaftor |
Indirect CFTR-affecting drugs | |||
Cartiera_2010 | Partial correction of cystic fibrosis defects with PLGA nanoparticles encapsulating curcumin | Animals | Curcumin |
Clancy_2012 | Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation | Humans | VX-809 |
Egan_2002 | Calcium-pump inhibitors induce functional surface expression of DELTAF508-CFTR protein in cystic fibrosis epithelial cells | Animals | Thapsigargin |
Egan_2004 | Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects | Animals | Curcumin |
Kerem_2014 | Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial | Humans | Ataluren |
Lubamba_2008 | Preclinical evidence that sildenafil and vardenafil activate chloride transport in cystic fibrosis | Animals | Sildenafil and Vardenafil |
Lubamba_2009 | Airway delivery of low-dose miglustat normalizes nasal potential difference in F508del cystic fibrosis mice | Animals | Miglustat |
Lubamba_2011 | Inhaled phosphodiesterase type 5 inhibitors restore chloride transport in cystic fibrosis mice | Animals | Type-5 phosphodiesterase inhibitors |
McCarty_2002 | A phase I randomized, multicenter trial of CPX in adult subjects with mild cystic fibrosis | Humans | CPX |
Rubenstein_1998 | A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function | Humans | Buphenyl (sodium-4-phenylbutyrate) |
Zeitlin_2002 | Evidence of CFTR function in cystic fibrosis after systemic administration of 4-phenylbutyrate | Humans | Buphenyl (sodium-4-phenylbutyrate) |
Non-Viral Gene Transfer (NVGT) | |||
Alton_1993 | Non-invasive liposome-mediated gene delivery can correct the ion transport defect in cystic fibrosis mutant mice | Animals | CFTR cDNA-liposome complexes (DC-Chol/DOPE) |
Alton_1999 | Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial | Humans | Cationic lipid-mediated gene transfer (GL-67/DOPE/DMPE-PEG500) |
Caplen_1995 | Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis | Humans | Complementary DNA in liposomes |
Gill_1997 | A placebo-controlled study of liposome-mediated gene transfer to the nasal epithelium of patients with cystic fibrosis | Humans | Liposome-mediated gene transfer |
Hyde_2000 | Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis | Humans | DNA/liposomes |
Jiang_1998 | Efficiency of cationic lipid-mediated transfection of polarized and differentiated airway epithelial cells in vitro and in vivo | Animals | CL-67 mediated gene transduction (cationic lipid) |
McLachlan_1996 | Laboratory and clinical studies in support of cystic fibrosis gene therapy using pCMV-CFTR-DOTAP | Both | Gene therapy using pCMV-CFTR-DOTAP |
Ziady_2002 | Functional evidence of CFTR gene transfer in nasal epithelium of cystic fibrosis mice in vivo following luminal application of DNA complexes targeted to the serpin-enzyme complex receptor | Animals | CFTR gene transfer with serpin-targeted molecular conjugates |
Other | |||
Lazrak_2014 | Inter-α-inhibitor blocks epithelial sodium channel activation and decreases nasal potential differences in ΔF508 mice | Animals | Inter-alpha inhibitor |
Protein | |||
Ramjeesingh_1998 | Assessment of the efficacy of in vivo CFTR protein replacement therapy in CF mice | Animals | Purified CFTR protein via phospholipid liposomes |
RNA | |||
Beumer_2019 | Evaluation of eluforsen, a novel RNA oligonucleotide for restoration of CFTR function in in vitro and murine models of p.Phe508del cystic fibrosis | Animals | Eluforsen |
Robinson_2018 | Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis | Animals | lipid nanoparticle-delivered chemically modified mRNA |
Viral Gene Transfer (VGT) | |||
Cmielewski_2014 | Long-term therapeutic and reporter gene expression in lentiviral vector treated cystic fibrosis mice | Animals | CFTR gene in lentiviral vector |
Grubb_1994 | Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans | Both | Gene transfer by adenovirus |
Jiang_1997 | Increased contact time improves adenovirus-mediated CFTR gene transfer to nasal epithelium of CF mice | Animals | Adenovirus-mediated gene transfer |
Limberis_2002 | Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single-dose lentivirus-mediated gene transfer | Animals | Lentivirus-Mediated Gene Transfer |
Ostedgaard_2002 | CFTR with a partially deleted R domain corrects the cystic fibrosis chloride transport defect in human airway epithelia in vitro and in mouse nasal mucosa in vivo | Animals | Adenoviral vectors |
Parsons_1998 | Enhanced in vivo airway gene transfer via transient modification of host barrier properties with a surface-active agent | Animals | Adenoviral gene transfer |
Vidovic_2016 | rAAV-CFTRΔR Rescues the Cystic Fibrosis Phenotype in Human Intestinal Organoids and Cystic Fibrosis Mice | Animals | rAAV vector containing truncated CFTR |
Study_ID 1 | Ethics Review | Species | Sex/Gender | N Studied | Number of Repetitions | Time after Treatment |
---|---|---|---|---|---|---|
Alton_1993 | Mice | nr | 16 | 1 | 16–68 h | |
Alton_1999 | UK | Humans | Males | 16 | 8 | 1 day |
Caplen_1995 | Humans | Males | 15 | 6 | 1 day | |
Gill_1997A | Humans | Both | 12 | 11 | mean value of day 10, 12 and 14 | |
Gill_1997B | Humans | Both | 12 | 11 | mean value of day 10, 12 and 14 | |
Hyde_2000 | UK | Humans | Both | 12 | 18 | Days 2–7 |
Jiang_1998 | Mice | nr | 15 | 1 | nr |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leenaars, C.; Häger, C.; Stafleu, F.; Nieraad, H.; Bleich, A. A Systematic Review of the Effect of Cystic Fibrosis Treatments on the Nasal Potential Difference Test in Animals and Humans. Diagnostics 2023, 13, 3098. https://doi.org/10.3390/diagnostics13193098
Leenaars C, Häger C, Stafleu F, Nieraad H, Bleich A. A Systematic Review of the Effect of Cystic Fibrosis Treatments on the Nasal Potential Difference Test in Animals and Humans. Diagnostics. 2023; 13(19):3098. https://doi.org/10.3390/diagnostics13193098
Chicago/Turabian StyleLeenaars, Cathalijn, Christine Häger, Frans Stafleu, Hendrik Nieraad, and André Bleich. 2023. "A Systematic Review of the Effect of Cystic Fibrosis Treatments on the Nasal Potential Difference Test in Animals and Humans" Diagnostics 13, no. 19: 3098. https://doi.org/10.3390/diagnostics13193098
APA StyleLeenaars, C., Häger, C., Stafleu, F., Nieraad, H., & Bleich, A. (2023). A Systematic Review of the Effect of Cystic Fibrosis Treatments on the Nasal Potential Difference Test in Animals and Humans. Diagnostics, 13(19), 3098. https://doi.org/10.3390/diagnostics13193098