High-Frequency Ultrasound Imaging to Distinguish High-Risk and Low-Risk Dermatofibromas
Abstract
:1. Introduction
2. Materials and Method
2.1. Patients
2.2. HFUS Scanning
2.3. HFUS Features Analysis
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. HFUS Characteristics
3.3. Multivariate Logistic Regression Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DF | dermatofibroma |
OCT | optical coherence tomography |
RCM | reflectance confocal microscopy |
HFUS | high-frequency ultrasound |
ROC | receiver operating characteristic |
References
- Zaballos, P.; Álvarez-Salafranca, M.; Llambrich, À.; Malvehy, J.; Taberner, R.; Medina, C.; Argenziano, G.; Thomas, L.; Pizarro, Á.; Del Pozo, L.J.; et al. Dermoscopy of haemosiderotic/aneurysmal dermatofibroma: A morphological study of 110 cases. J. Eur. Acad. Dermatol. Venereol. 2022, 37, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelska-Antkowiak, A.; Wcisło-Dziadecka, D.; Brzezińska-Wcisło, L.; Pawlicki, K.; Antkowiak, R.; Corneli, P. Features of dermatofibroma in reflectance confocal microscopy. Int. J. Dermatol. 2020, 59, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Won, K.Y.; Park, S.Y.; Jin, W.; Lew, B.L. Dermatofibroma: Sonographic findings and pathologic correlation. Acta Radiol. 2018, 59, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Luzar, B.; Calonje, E. Cutaneous fibrohistiocytic tumours—An update. Histopathology 2010, 56, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Han, T.Y.; Chang, H.S.; Lee, J.H.K.; Lee, W.M.; Son, S.J. A clinical and histopathological study of 122 cases of dermatofibroma (benign fibrous histiocytoma). Ann. Dermatol. 2011, 23, 185–192. [Google Scholar] [CrossRef]
- Gleason, B.C.; Fletcher, C.D. Deep “benign” fibrous histiocytoma: Clinicopathologic analysis of 69 cases of a rare tumor indicating occasional metastatic potential. Am. J. Surg. Pathol. 2008, 32, 354–362. [Google Scholar] [CrossRef]
- Doyle, L.A.; Fletcher, C.D. Metastasizing “benign” cutaneous fibrous histiocytoma: A clinicopathologic analysis of 16 cases. Am. J. Surg. Pathol. 2013, 37, 484–495. [Google Scholar] [CrossRef]
- Wolberink, E.A.W.; Pasch, M.C.; Zeiler, M.; van Erp, P.E.J.; Gerritsen, M.J.P. High discordance between punch biopsy and excision in establishing basal cell carcinoma subtype: Analysis of 500 cases. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 985–989. [Google Scholar] [CrossRef]
- Chen, Z.T.; Yan, J.N.; Zhu, A.Q.; Wang, L.F.; Wang, Q.; Li, L.; Guo, L.H.; Li, X.L.; Xu, H.X. High-frequency ultrasound for differentiation between high-risk basal cell carcinoma and cutaneous squamous cell carcinoma. Skin Res. Technol. 2022, 28, 410–418. [Google Scholar] [CrossRef]
- Wortsman, X. Common applications of dermatologic sonography. J. Ultrasound Med. 2012, 31, 97–111. [Google Scholar] [CrossRef]
- Venturi, F.; Pellacani, G.; Farnetani, F.; Maibach, H.; Tassone, D.; Dika, E. Non-invasive diagnostic techniques in the preoperative setting of Mohs micrographic surgery: A review of the literature. Dermatol. Ther. 2022, 35, e15832. [Google Scholar] [CrossRef] [PubMed]
- Ricci, V.; Güvener, O.; Özçakar, L. Sono-histological protocols of superficial tissues: A ‘statuesque’ approach for plastic surgeons. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 3877–3903. [Google Scholar] [CrossRef] [PubMed]
- Catalano, O.; Wortsman, X. Dermatology Ultrasound. Imaging Technique, Tips and Tricks, High-Resolution Anatomy. Ultrasound Q. 2020, 36, 321–327. [Google Scholar] [CrossRef]
- Nakato, R.; Manabe, N.; Hanayama, K.; Kusunoki, H.; Hata, J.; Haruma, K. Diagnosis and treatments for oropharyngeal dysphagia: Effects of capsaicin evaluated by newly developed ultrasonographic method. J. Smooth Muscle Res. 2020, 56, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Alfageme, F.; Wortsman, X.; Catalano, O.; Roustan, G.; Crisan, M.; Crisan, D.; Gaitini, D.E.; Cerezo, E.; Badea, R. European Federation of Societies for Ultrasound in Medicine and Biolog (EFSUMB) Position Statement on Dermatologic Ultrasound. Ultraschall Med. 2021, 42, 39–47. [Google Scholar] [PubMed]
- Ricci, V.; Ricci, C.; Cocco, G.; Donati, D.; Farì, G.; Mezian, K.; Naňka, O.; Özçakar, L. From histology to sonography in skin and superficial tissue disorders: EURO-MUSCULUS/USPRM * approach. Pathol. Res. Pract. 2022, 237, 154003. [Google Scholar] [CrossRef]
- Wang, S.Q.; Lee, P.K. Treatment of dermatofibroma with a 600 nm pulsed dye laser. Dermatol. Surg. 2006, 32, 532–535. [Google Scholar]
- Wang, A.S.; Larsen, L.; Chang, S.; Phan, T.; Jagdeo, J. Treatment of a symptomatic dermatofibroma with fractionated carbon dioxide laser and topical corticosteroids. J. Drugs Dermatol. 2013, 12, 1483–1484. [Google Scholar]
- Spiller, W.F.; Spiller, R.F. Cryosurgery in dermatologic office practice: Special reference to dermatofibroma and mucous cyst of the lip. South. Med. J. 1975, 68, 157–160. [Google Scholar] [CrossRef]
- Milliken, M.; Smart, D.; Stolman, K. Efficacy of a Fractionated 1540-nm Erbium Glass Laser in the Treatment of Dermatofibromas. J. Drugs Dermatol. 2022, 21, 1201–1205. [Google Scholar] [CrossRef]
- Alves, J.V.P.; Matos, D.M.; Barreiros, H.F.; Bártolo, E.A.F.L.F. Variants of dermatofibroma—A histopathological study. An. Bras. Dermatol. 2014, 89, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Kamino, H.; Jacobson, M. Dermatofibroma extending into the subcutaneous tissue. Differential diagnosis from dermatofibrosarcoma protuberans. Am. J. Surg. Pathol. 1990, 14, 1156–1164. [Google Scholar] [CrossRef]
- Cazzato, G.; Colagrande, A.; Cimmino, A.; Marrone, M.; Stellacci, A.; Arezzo, F.; Lettini, T.; Resta, L.; Ingravallo, G. Granular Cell Dermatofibroma: When Morphology Still Matters. Dermatopathology 2021, 8, 371–375. [Google Scholar] [CrossRef]
- Siegel, D.R.; Schneider, S.L.; Chaffins, M.; Rambhatla, P.V. A retrospective review of 93 cases of cellular dermatofibromas. Int. J. Dermatol. 2020, 59, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Gaufin, M.; Michaelis, T.; Duffy, K. Cellular Dermatofibroma: Clinicopathologic Review of 218 Cases of Cellular Dermatofibroma to Determine the Clinical Recurrence Rate. Dermatol. Surg. 2019, 45, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Almuhanna, N.; Wortsman, X.; Wohlmuth-Wieser, I.; Kinoshita-Ise, M.; Alhusayen, R. Overview of Ultrasound Imaging Applications in Dermatology [Formula: See text]. J. Cutan. Med. Surg. 2021, 25, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Dobre, E.G.; Surcel, M.; Constantin, C.; Ilie, M.A.; Caruntu, A.; Caruntu, C.; Neagu, M. Skin Cancer Pathobiology at a Glance: A Focus on Imaging Techniques and Their Potential for Improved Diagnosis and Surveillance in Clinical Cohorts. Int. J. Mol. Sci. 2023, 24, 1079. [Google Scholar] [CrossRef]
- Serin, M.; Leblebici, C.; Aksu, E.K.; Yazar, S.K. Aneurysmal fibrous histiocytoma. BMJ Case Rep. 2018, 2018, bcr-2018. [Google Scholar] [CrossRef]
- Nabatanzi, A.; Male, M.; Qu, X.Y.; Li, Y.Q.; Meng, X.; Di, W.S.; Huang, C.Z. Aneurysmal Fibrous Histiocytoma: Clinicopathology Analysis of 30 Cases of a Rare Variant of Cutaneous Fibrohistiocytoma. Curr. Med. Sci. 2019, 39, 134–137. [Google Scholar] [CrossRef]
- Soyer, H.P.; Metze, D.; Kerl, H. Granular cell dermatofibroma. Am. J. Dermatopathol. 1997, 19, 168–173. [Google Scholar] [CrossRef]
- Oranges, T.; Janowska, A.; Vitali, S.; Loggini, B.; Izzetti, R.; Romanelli, M.; Dini, V. Dermatoscopic and ultra-high frequency ultrasound evaluation in cutaneous postradiation angiosarcoma. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e741. [Google Scholar] [CrossRef] [PubMed]
High-Risk DF | Low-Risk DF | p-Value | |
---|---|---|---|
(n = 17) | (n = 33) | ||
Age a (years) | 38 (25–53) | 34 (31–45) | 0.782 |
Sex, n (%) | 0.941 | ||
Male | 6 (35.3%) | 12 (36.4%) | |
Female | 11 (64.7%) | 21 (63.6%) | |
Location, n (%) | 0.725 | ||
Head and neck | 2 (11.8%) | 2 (6.1%) | |
Trunk | 6 (35.3%) | 10 (30.3%) | |
Limbs | 9 (52.9%) | 21 (63.6%) |
High-Risk DF | Low-Risk DF | p-Value | |
---|---|---|---|
(n = 17) | (n = 33) | ||
Lesion size(mm) | |||
Length a | 8.8 (5.4–12.6) | 6.5 (4.7–7.7) | 0.061 |
Width a | 7.0 (4.6–10.9) | 5.8 (4.2–7.5) | 0.122 |
Thickness a (mm) | 4.1 (3.2–6.1) | 3.1 (1.3–4.2) | 0.018 * |
shape, n (%) | 0.001 * | ||
Regular (incl. creeping) | 5 (29.4%) | 26 (78.8%) | |
Irregularity | 12 (70.6%) | 7 (21.2%) | |
Morphology of surface, n (%) | 0.335 | ||
Concave | 0 (0.00%) | 2 (6.1%) | |
Flat | 7 (41.2%) | 16 (48.5%) | |
Protuberance | 10 (58.8%) | 15 (45.4%) | |
Boundary of the base, n (%) | 0.773 | ||
Well-defined | 7 (41.2%) | 15 (45.5%) | |
Ill-defined | 10 (58.8%) | 18 (54.6%) | |
Boundary on both sides, n (%) | 0.191 | ||
Well-defined | 2 (11.8%) | 11 (33.3%) | |
Ill-defined | 15 (88.2%) | 22 (66.7%) | |
Internal echogenicity, n (%) | 0.004 * | ||
Homogenous | 4 (23.5%) | 27 (81.8%) | |
Heterogenous | 13 (76.5%) | 6 (21.2%) | |
Echogenicity, n (%) | 0.195 | ||
Isoechogenicity | 1 (5.9%) | 2 (6.1%) | |
Hypoechogenicity | 13 (76.5%) | 30 (90.9%) | |
Mixed echogenicity | 3 (17.6%) | 1 (3.0%) | |
Stratum basal, n (%) | 0.002 * | ||
Dermis | 6 (35.3%) | 26 (78.8%) | |
Subcutaneous | 11 (64.7%) | 7 (21.2%) | |
Doppler vascularity pattern, n (%) | 0.038 * | ||
Absent | 6 (35.3%) | 23 (69.7%) | |
Sparsity | 8 (47.1%) | 9 (27.3%) | |
Profusion | 3 (17.6%) | 1 (3.0%) |
Parameters | B | SE | OR Value | 95% CI | p-Value |
---|---|---|---|---|---|
Shape | 2.200 | 0.902 | 9.023 | 1.540–52.861 | 0.015 * |
Stratum basal | 2.405 | 0.913 | 11.077 | 1.849–66.349 | 0.008 * |
Internal echogenicity | 1.701 | 0.843 | 5.479 | 1.051–28.570 | 0.044 * |
Constant | −2.925 | 1.019 | 0.054 | 0.004 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Yang, F.; Zhao, Y.; Wang, Q.; Ren, W.; Sun, L.; Shan, D.; Qin, C. High-Frequency Ultrasound Imaging to Distinguish High-Risk and Low-Risk Dermatofibromas. Diagnostics 2023, 13, 3305. https://doi.org/10.3390/diagnostics13213305
Li D, Yang F, Zhao Y, Wang Q, Ren W, Sun L, Shan D, Qin C. High-Frequency Ultrasound Imaging to Distinguish High-Risk and Low-Risk Dermatofibromas. Diagnostics. 2023; 13(21):3305. https://doi.org/10.3390/diagnostics13213305
Chicago/Turabian StyleLi, Danhua, Feiyue Yang, Yang Zhao, Qiao Wang, Weiwei Ren, Liping Sun, Dandan Shan, and Chuan Qin. 2023. "High-Frequency Ultrasound Imaging to Distinguish High-Risk and Low-Risk Dermatofibromas" Diagnostics 13, no. 21: 3305. https://doi.org/10.3390/diagnostics13213305
APA StyleLi, D., Yang, F., Zhao, Y., Wang, Q., Ren, W., Sun, L., Shan, D., & Qin, C. (2023). High-Frequency Ultrasound Imaging to Distinguish High-Risk and Low-Risk Dermatofibromas. Diagnostics, 13(21), 3305. https://doi.org/10.3390/diagnostics13213305