Can the Abdominal Aortic Atherosclerotic Plaque Index Predict Functional Outcomes after Robot-Assisted Partial Nephrectomy?
Abstract
:1. Introduction
2. Material and Methods
2.1. API Evaluation
2.2. Variable Definition
2.3. Endpoint
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EAU Guidelines. Edn. Presented at the EAU Annual Congress Milan 2023; EAU Guidelines Office: Arnhem, The Netherlands, 2023.
- Kowalewski, K.-F.; Neuberger, M.; Abate, M.A.S.; Kirchner, M.; Haney, C.M.; Siegel, F.; Westhoff, N.; Michel, M.-S.; Honeck, P.; Nuhn, P.; et al. Randomized Controlled Feasibility Trial of Robot-assisted Versus Conventional Open Partial Nephrectomy: The ROBOCOP II Study. Eur. Urol. Oncol. 2023. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Bravi, C.A.; Rosiello, G.; Mazzone, E.; Minervini, A.; Mari, A.; Di Maida, F.; Bensalah, K.; Peyronnet, B.; Khene, Z.-E.; Schiavina, R.; et al. The IRON Study: Investigation of Robot-assisted Versus Open Nephron-sparing Surgery. Eur. Urol. Open Sci. 2023, 49, 71–77. [Google Scholar] [CrossRef]
- Cerrato, C.; Patel, D.; Autorino, R.; Simone, G.; Yang, B.; Uzzo, R.; Porpiglia, F.; Capitanio, U.; Porter, J.; Beksac, A.T.; et al. Partial or radical nephrectomy for complex renal mass: A comparative analysis of oncological outcomes and complications from the ROSULA (Robotic Surgery for Large Renal Mass) Collaborative Group. World J. Urol. 2023, 41, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, U.; Larcher, A.; Cianflone, F.; Trevisani, F.; Nini, A.; Mottrie, A.; Mari, A.; Campi, R.; Tellini, R.; Briganti, A.; et al. Hypertension and Cardiovascular Morbidity Following Surgery for Kidney Cancer. Eur. Urol. Oncol. 2020, 3, 209–215. [Google Scholar] [CrossRef]
- Mir, M.C.; Autorino, R.; Porpiglia, F. Ischemia time and beyond: The concept of global renal damage. Minerva Urol. Nefrol. 2018, 70, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Veccia, A.; Antonelli, A.; Hampton, L.J.; Greco, F.; Perdonà, S.; Lima, E.; Hemal, A.K.; Derweesh, I.; Porpiglia, F.; Autorino, R. Near-infrared Fluorescence Imaging with Indocyanine Green in Robot-assisted Partial Nephrectomy: Pooled Analysis of Comparative Studies. Eur. Urol. Focus 2020, 6, 505–512. [Google Scholar] [CrossRef]
- Cacciamani, G.E.; Medina, L.G.; Gill, T.S.; Mendelsohn, A.; Husain, F.; Bhardwaj, L.; Artibani, W.; Sotelo, R.; Gill, I.S. Impact of Renal Hilar Control on Outcomes of Robotic Partial Nephrectomy: Systematic Review and Cumulative Meta-analysis. Eur. Urol. Focus 2019, 5, 619–635. [Google Scholar] [CrossRef]
- Cindolo, L.; Antonelli, A.; Sandri, M.; Annino, F.; Celia, A.; De Concilio, B.; Giommoni, V.; Nucciotti, R.; Sessa, F.; Porreca, A.; et al. The role of vascular clamping during robot-assisted partial nephrectomy for localized renal cancer: Rationale and design of the CLOCK randomized phase III study. Minerva Urol. Nefrol. 2019, 71, 96–100. [Google Scholar] [CrossRef]
- Antonelli, A.; Cindolo, L.; Sandri, M.; Veccia, A.; Annino, F.; Bertagna, F.; Carini, M.; Celia, A.; D’Orta, C.; De Concilio, B.; et al. Is off-clamp robot-assisted partial nephrectomy beneficial for renal function? Data from the CLOCK trial. BJU Int. 2022, 129, 217–224. [Google Scholar] [CrossRef]
- Ginsburg, K.B.; Schober, J.P.; Kutikov, A. Ischemia Time Has Little Influence on Renal Function Following Partial Nephrectomy: Is It Time for Urology to Stop the Tick-Tock Dance? Eur. Urol. 2022, 81, 501–502. [Google Scholar] [CrossRef]
- Xiong, L.; Nguyen, J.K.; Peng, Y.; Zhou, Z.; Ning, K.; Jia, N.; Nie, J.; Wen, D.; Wu, Z.; Roversi, G.; et al. What Happens to the Preserved Renal Parenchyma After Clamped Partial Nephrectomy? Eur. Urol. 2022, 81, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Briet, M.; Boutouyrie, P.; Laurent, S.; London, G.M. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 2012, 82, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.I.; Hsu, F.-C.; Langefeld, C.D.; Bowden, D.W.; Moossavi, S.; Dryman, B.N.; Carr, J.J. Renal artery calcified plaque associations with subclinical renal and cardiovascular disease. Kidney Int. 2004, 65, 2262–2267. [Google Scholar] [CrossRef] [PubMed]
- Akarken, I.; Bilen, C.Y.; Özden, E.; Gülşen, M.; Üçer, O.; Şahin, H. Can Aortic and Renal Arteries Calcium Scores Be New Factors to Predict Post-Operative Renal Function After Nephron Sparing Surgery? Clin. Genitourin. Cancer 2022, 20, e45–e52. [Google Scholar] [CrossRef] [PubMed]
- Tafuri, A.; Maris, B.; Odorizzi, K.; Serafin, E.; Gozzo, A.; DI Filippo, G.; Bianchi, A.; Panunzio, A.; Borzi, M.; Zamboni, G.; et al. Abdominal-aortic atherosclerotic plaque index and perioperative outcomes in partial nephrectomy. Minerva Urol. Nephrol. 2023, 75, 265–268. [Google Scholar] [CrossRef]
- Heckel, F.; Schwier, M.; Peitgen, H.-O. Object-Oriented Application Development with MeVisLab and Python. Informatik 2009–Im Focus das Leben. 2009. Available online: https://subs.emis.de/LNI/Proceedings/Proceedings154/gi-proc-154-92.pdf (accessed on 1 June 2020).
- Assel, M.; Sjoberg, D.; Elders, A.; Wang, X.; Huo, D.; Botchway, A.; Delfino, K.; Fan, Y.; Zhao, Z.; Koyama, T.; et al. Guidelines for Reporting of Statistics for Clinical Research in Urology. J. Urol. 2019, 201, 595–604. [Google Scholar] [CrossRef]
- Souilhol, C.; Serbanovic-Canic, J.; Fragiadaki, M.; Chico, T.J.; Ridger, V.; Roddie, H.; Evans, P.C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020, 17, 52–63. [Google Scholar] [CrossRef]
- Malek, A.M.; Alper, S.L.; Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999, 282, 2035–2042. [Google Scholar] [CrossRef]
- Tesauro, M.; Mauriello, A.; Rovella, V.; Annicchiarico-Petruzzelli, M.; Cardillo, C.; Melino, G.; Di Daniele, N. Arterial ageing: From endothelial dysfunction to vascular calcification. J. Intern. Med. 2017, 281, 471–482. [Google Scholar] [CrossRef]
- Patel, J.; Pallazola, V.A.; Dudum, R.; Greenland, P.; McEvoy, J.W.; Blumenthal, R.S.; Virani, S.S.; Miedema, M.D.; Shea, S.; Yeboah, J.; et al. Assessment of Coronary Artery Calcium Scoring to Guide Statin Therapy Allocation According to Risk-Enhancing Factors: The Multi-Ethnic Study of Atherosclerosis. JAMA Cardiol. 2021, 6, 1161–1170. [Google Scholar] [CrossRef]
- Antonelli, A.D.; Cindolo, L.; Sandri, M.; Veccia, A.; Annino, F.; Bertagna, F.; Di Maida, F.; Celia, A.; D’orta, C.; De Concilio, B.; et al. The role of warm ischemia time on functional outcomes after robotic partial nephrectomy: A radionuclide renal scan study from the clock randomized trial. World J. Urol. 2023, 41, 1337–1344. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, A.; Veccia, A.; Francavilla, S.; Bertolo, R.; Bove, P.; Hampton, L.J.; Mari, A.; Palumbo, C.; Simeone, C.; Minervini, A.; et al. On-clamp versus off-clamp robotic partial nephrectomy: A systematic review and meta-analysis. Urologia 2019, 86, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Lopez, C.; Lewis, K.; Attawettayanon, W.; Yasuda, Y.; Accioly, J.P.E.; Rathi, N.; Lone, Z.; Boumitri, M.; Campbell, R.A.; Wood, A.; et al. Functional recovery after partial nephrectomy: Next generation analysis. BJU Int. 2023, 132, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Larcher, A.; Muttin, F.; Peyronnet, B.; De Naeyer, G.; Khene, Z.-E.; Dell’oglio, P.; Ferreiro, C.; Schatteman, P.; Capitanio, U.; D’hondt, F.; et al. The Learning Curve for Robot-assisted Partial Nephrectomy: Impact of Surgical Experience on Perioperative Outcomes. Eur. Urol. 2019, 75, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Carbonara, U.; Simone, G.; Capitanio, U.; Minervini, A.; Fiori, C.; Larcher, A.; Checcucci, E.; Amparore, D.; Crocerossa, F.; Veccia, A.; et al. Robot-assisted partial nephrectomy: 7-year outcomes. Minerva Urol. Nephrol. 2021, 73, 540–543. [Google Scholar] [CrossRef]
- De Backer, P.; Vermijs, S.; Van Praet, C.; De Visschere, P.; Vandenbulcke, S.; Mottaran, A.; Bravi, C.A.; Berquin, C.; Lambert, E.; Dautricourt, S.; et al. A Novel Three-dimensional Planning Tool for Selective Clamping During Partial Nephrectomy: Validation of a Perfusion Zone Algorithm. Eur. Urol. 2023, 83, 413–421. [Google Scholar] [CrossRef]
- Checcucci, E.; Autorino, R.; Cacciamani, G.E.; Amparore, D.; De Cillis, S.; Piana, A.; Piazzolla, P.; Vezzetti, E.; Fiori, C.; Veneziano, D.; et al. Artificial intelligence and neural networks in urology: Current clinical applications. Minerva Urol. Nefrol. 2020, 72, 49–57. [Google Scholar] [CrossRef]
- Piana, A.; Gallioli, A.; Amparore, D.; Diana, P.; Territo, A.; Campi, R.; Gaya, J.M.; Guirado, L.; Checcucci, E.; Bellin, A.; et al. Three-dimensional Augmented Reality-guided Robotic-assisted Kidney Transplantation: Breaking the Limit of Atheromatic Plaques. Eur. Urol. 2022, 82, 419–426. [Google Scholar] [CrossRef]
Variable | No CKD (134) | Post-op CKD (49) | p-Value |
---|---|---|---|
Baseline characteristics | |||
Age | 63 (54-71) | 72 (67-77) | <0.001 |
Gender (male) | 86 (64.2) | 30 (61.2) | 0.73 |
BMI | 25.6 (23.4-28.8) | 26.7 (24.2-29) | 0.27 |
CCI | 4 (2-5) | 5 (4-7) | <0.001 |
ASA Score | 2 (2-2) | 2 (2-3) | 0.0002 |
Hypertension | 65 (48.5) | 37 (75.5) | 0.001 |
Pulmonary disease | 17 (12.7) | 8 (16.3) | 0.63 |
Coronary artery disease | 13 (9.7) | 10 (20.4) | 0.08 |
Diabetes | 15 (11.2) | 18 (36.7) | <0.001 |
Pre-operative Hb | 14.4 (13.4-5.3) | 13.4 (12.4-4.9) | 0.003 |
Pre-operative eGFR | 88.5 (78.9-97.8) | 56 (45.7-70.6) | <0.001 |
Pre-operative albumin | 42.4 (39.3-45) | 41.9 (38.2-45) | 0.40 |
API | 0.25 (0-2.3) | 2.1 (0.6-5.6) | 0.0001 |
Tumor characteristics | |||
Tumor side left | 70 (52.2) | 22 (44.9) | 0.40 |
Tumor dimension | 3 (2.3-4) | 3 (2.2-4) | 0.81 |
RENAL Score | 7 (5-8) | 7 (5-8) | 0.71 |
cT | 0.92 | ||
1a | 103 (76.9) | 39 (79.6) | |
1b | 23 (17.6) | 9 (18.4) | |
2a | 4 (3) | - | |
2b | 1 (0.7) | - | |
3a | 3 (2.1) | 1 (2) |
Variable | No CKD (134) | Post-op CKD (49) | p-Value |
---|---|---|---|
Operative data | |||
On-clamp | 53 (39.8) | 15 (30.6) | 0.30 |
Ischemia time | 14 (11-19) | 19 (10-24.5) | 0.14 |
EBL | 100 (10-250) | 200 (150-350) | 0.004 |
LOS | 4 (3-5) | 4 (3-5) | 0.07 |
Clavien–Dindo ≥ 3 | 0.36 | ||
3a | 4/130 (3.1) | 2/48 (4.2) | |
3b | 1/130 (0.8) | 2/48 (4.2) | |
4a | - | 1/48 (2.1) | |
Pathological outcomes | |||
Tumor dimension | 3 (2.3-4) | 3.5 (2.7-4.8) | 0.13 |
Histology | 0.15 | ||
cRCC | 65/133 (48.9) | 27 (55.1) | |
pRCC | 19/133 (14.3) | 11 (22.5) | |
chRCC | 9/133 (6.8) | 1 (4.1) | |
oRCC | 11/133 (8.2) | - | |
Oncocytoma | 17/133 (12.8) | 5 (10.2) | |
Angiomyolipoma | 7/133 (5.3) | 1 (2) | |
Other | 5/133 (3.7) | 3 (6.1) | |
pT | 0.63 | ||
1a | 100/128 (78.1) | 35/47 (74.5) | |
1b | 20/128 (15.6) | 10/47 (21.3) | |
2a | 1/128 (0.8) | 1/47 (2.1) | |
2b | 2/128 (1.6) | 1/47 (2.1) | |
3a | 5/128 (3.9) | - | |
PSM | 10/125 (8) | 4/44 (9.1) | 0.76 |
Variable | No CKD (134) | Post-op CKD (49) | p-Value |
---|---|---|---|
eGFR at discharge | 88.5 (77.8-98.7) | 54.5 (44.5-59.7) | <0.001 |
Δ%eGFR at discharge | -0.5 (-6.7; 5.7) | -3.7 (-17.6; 11.9) | 0.44 |
6-month eGFR | 84.7 (73.4-89.7) | 45.4 (34.7-59.9) | <0.001 |
6-month Δ%eGFR | -4.9 (-10.5; 0.5) | -5.9 (-20.4; 8.7) | 0.64 |
12-month eGFR | 84.5 (75.7-94.4) | 52.2 (36.8; 61) | <0.001 |
12-month Δ%eGFR | -4.2 (-11.1; 2.4) | -9.2 (-22.2; 0.41) | 0.10 |
24-month eGFR | 81.4 (74.5-92.2) | 52.3 (39-58.4) | <0.001 |
24-month Δ%eGFR | -1.48 (-13.4; 2.0) | -5.51 (-19.4; 12.2) | 0.77 |
Last FU eGFR | 85.7 (76.5-94.2) | 47.9 (39.2-54.9) | <0.001 |
Last FU Δ%eGFR | -2.6 (-10.2; 4.5) | -12 (-32; -2.4) | 0.0001 |
Univariable Analysis | Multivariable Analysis | |||||
---|---|---|---|---|---|---|
Variable | OR | 95%CI | p-Value | OR | 95%CI | p-Value |
MODEL 1 † | ||||||
ASA Score | 3.50 | 1.72–6.70 | <0.01 | 1.74 | 0.77–3.89 | 0.20 |
CCI | 1.42 | 1.19–1.69 | <0.01 | 1.27 | 1.04–1.56 | 0.02 |
Pre–operative eGFR | 0.98 | 0.96–0.01 | 0.28 | 0.98 | 0.96–1.01 | 0.38 |
API | ||||||
0 | Ref | Ref | ||||
<10 | 2.96 | 1.06–8.22 | 0.04 | 2.22 | 0.68–7.25 | 0.18 |
≥10 | 28 | 4.6–171.22 | <0.01 | 15.8 | 2.20–113.4 | 0.01 |
MODEL 2 ‡ | ||||||
RENAL Score | 0.97 | 0.82–1.15 | 0.76 | 0.85 | 0.58–1.24 | 0.39 |
Ischemia time | 1.06 | 0.99–1.14 | 0.09 | 0.76 | 0.32–1.80 | 0.53 |
Post–operative complications | 1.24 | 0.91–1.71 | 0.17 | 1.07 | 0.99–1.17 | 0.08 |
API | ||||||
0 | Ref | Ref | ||||
<10 | 2.96 | 1.06–8.22 | 0.04 | 2.54 | 0.46–13.86 | 0.28 |
≥10 | 28 | 4.6–171.22 | <0.01 | 25.20 | 1.15–549.06 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veccia, A.; Serafin, E.; Tafuri, A.; Malandra, S.; Maris, B.; Tomelleri, G.; Spezia, A.; Checcucci, E.; Piazza, P.; Rodler, S.; et al. Can the Abdominal Aortic Atherosclerotic Plaque Index Predict Functional Outcomes after Robot-Assisted Partial Nephrectomy? Diagnostics 2023, 13, 3327. https://doi.org/10.3390/diagnostics13213327
Veccia A, Serafin E, Tafuri A, Malandra S, Maris B, Tomelleri G, Spezia A, Checcucci E, Piazza P, Rodler S, et al. Can the Abdominal Aortic Atherosclerotic Plaque Index Predict Functional Outcomes after Robot-Assisted Partial Nephrectomy? Diagnostics. 2023; 13(21):3327. https://doi.org/10.3390/diagnostics13213327
Chicago/Turabian StyleVeccia, Alessandro, Emanuele Serafin, Alessandro Tafuri, Sarah Malandra, Bogdan Maris, Giulia Tomelleri, Alessandro Spezia, Enrico Checcucci, Pietro Piazza, Severin Rodler, and et al. 2023. "Can the Abdominal Aortic Atherosclerotic Plaque Index Predict Functional Outcomes after Robot-Assisted Partial Nephrectomy?" Diagnostics 13, no. 21: 3327. https://doi.org/10.3390/diagnostics13213327
APA StyleVeccia, A., Serafin, E., Tafuri, A., Malandra, S., Maris, B., Tomelleri, G., Spezia, A., Checcucci, E., Piazza, P., Rodler, S., Baekelandt, L., Kowalewski, K. -F., Rivero Belenchon, I., Taratkin, M., Puliatti, S., De Backer, P., Gomez Rivas, J., Cacciamani, G. E., Zamboni, G., ... Antonelli, A., on behalf of the YAU Uro-Technology Working Group. (2023). Can the Abdominal Aortic Atherosclerotic Plaque Index Predict Functional Outcomes after Robot-Assisted Partial Nephrectomy? Diagnostics, 13(21), 3327. https://doi.org/10.3390/diagnostics13213327