Quantitative Study on the Breast Density and the Volume of the Mammary Gland According to the Patient’s Age and Breast Quadrant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Image Data
2.3. Image Segmentation and Component Localization
2.4. Breast Composition Feature Acquisition
2.5. Breast Composition Feature Analysis
2.6. Statistical Analysis
3. Results
3.1. Segmentation and Localization Results
3.2. Study Participants and Average Composition Feature
3.3. Composition Feature Analysis across the Age Groups
3.4. Feature Analysis in Each Quadrant
3.5. Feature Analysis in Each Quadrant across the Age Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Parameters | Value |
---|---|
Focus-Isocenter distance | 500 mm |
Detector-Isocenter distance | 150 mm |
Detector pixel size | (100 μm)2 |
Number of projections per 360° | 2000 |
Rotation time | 2 s |
Focal spot size | 0.3 (according to IEC 60336) |
X-ray energy | 60 kVp |
Filtration | 3 mm Al |
Tube current | 32 mA |
Total collimation | 31.53 mm |
Pitch | 1.05 |
Trajectory | Spiral, but circular for the first rotation |
Total acquisition time | 7 to 12 s |
Quadrant | Value | Age Range | ||||||
---|---|---|---|---|---|---|---|---|
40–44 | 45–49 | 50–54 | 55–59 | 60–64 | 65–69 | 70–74 | ||
UOQ/cm3 | Mean | 188 | 174 | 193 | 226 | 214 | 236 | 230 |
SD | 120 | 107 | 119 | 146 | 142 | 159 | 134 | |
UOQ share/% | Mean | 35 | 33 | 34 | 35 | 34 | 36 | 34 |
SD | 9 | 9 | 9 | 9 | 9 | 9 | 7 | |
UIQ/cm3 | Mean | 146 | 147 | 154 | 181 | 167 | 171 | 178 |
SD | 101 | 91 | 97 | 123 | 106 | 108 | 122 | |
UIQ share/% | Mean | 28 | 28 | 27 | 28 | 28 | 27 | 27 |
SD | 8 | 8 | 8 | 7 | 8 | 7 | 8 | |
LOQ/cm3 | Mean | 114 | 109 | 125 | 129 | 128 | 136 | 137 |
SD | 106 | 88 | 111 | 107 | 121 | 120 | 103 | |
LOQ share/% | Mean | 19 | 19 | 19 | 18 | 18 | 18 | 19 |
SD | 9 | 7 | 8 | 6 | 7 | 7 | 7 | |
LIQ/cm3 | Mean | 96 | 109 | 118 | 120 | 118 | 119 | 131 |
SD | 77 | 76 | 92 | 87 | 90 | 86 | 96 | |
LIQ share/% | Mean | 18 | 20 | 20 | 19 | 19 | 19 | 19 |
SD | 7 | 7 | 7 | 7 | 7 | 7 | 5 |
Quadrant | Value | Age Range | ||||||
---|---|---|---|---|---|---|---|---|
40–44 | 45–49 | 50–54 | 55–59 | 60–64 | 65–69 | 70–74 | ||
UOQ/cm3 | Mean | 39 | 23 | 20 | 19 | 17 | 18 | 19 |
SD | 53 | 23 | 19 | 17 | 15 | 23 | 16 | |
UOQ share/% | Mean | 36 | 33 | 33 | 35 | 34 | 37 | 34 |
SD | 15 | 14 | 14 | 14 | 14 | 15 | 12 | |
UIQ/cm3 | Mean | 24 | 18 | 13 | 12 | 10 | 10 | 11 |
SD | 32 | 18 | 11 | 13 | 10 | 12 | 10 | |
UIQ share/% | Mean | 22 | 23 | 21 | 21 | 21 | 21 | 20 |
SD | 9 | 11 | 11 | 11 | 10 | 11 | 10 | |
LOQ/cm3 | Mean | 27 | 21 | 19 | 15 | 14 | 13 | 17 |
SD | 42 | 21 | 28 | 19 | 15 | 20 | 17 | |
LOQ share/% | Mean | 26 | 26 | 27 | 26 | 27 | 25 | 28 |
SD | 16 | 11 | 14 | 12 | 13 | 11 | 15 | |
LIQ/cm3 | Mean | 20 | 15 | 12 | 10 | 10 | 8 | 9 |
SD | 44 | 15 | 15 | 14 | 11 | 9 | 7 | |
LIQ share/% | Mean | 16 | 18 | 19 | 18 | 18 | 17 | 17 |
SD | 9 | 10 | 11 | 10 | 10 | 10 | 8 |
Quadrant | Value | Age Range | ||||||
---|---|---|---|---|---|---|---|---|
40–44 | 45–49 | 50–54 | 55–59 | 60–64 | 65–69 | 70–74 | ||
UOQ/% | Mean | 25 | 16 | 13 | 12 | 12 | 10 | 11 |
SD | 22 | 14 | 11 | 14 | 13 | 9 | 10 | |
UOQ ratio/% | Mean | 100 | 99 | 96 | 99 | 97 | 104 | 100 |
SD | 23 | 38 | 27 | 27 | 30 | 42 | 33 | |
UIQ/% | Mean | 21 | 15 | 11 | 10 | 10 | 8 | 8 |
SD | 22 | 14 | 11 | 13 | 11 | 8 | 8 | |
UIQ ratio/% | Mean | 78 | 80 | 75 | 74 | 72 | 72 | 74 |
SD | 25 | 32 | 28 | 27 | 24 | 28 | 25 | |
LOQ/% | Mean | 31 | 24 | 20 | 17 | 18 | 14 | 17 |
SD | 24 | 20 | 16 | 17 | 17 | 12 | 15 | |
LOQ ratio/% | Mean | 136 | 140 | 143 | 140 | 148 | 138 | 147 |
SD | 51 | 42 | 44 | 46 | 51 | 49 | 41 | |
LIQ/% | Mean | 21 | 17 | 13 | 12 | 12 | 9 | 9 |
SD | 21 | 15 | 13 | 14 | 14 | 9 | 9 | |
LIQ ratio/% | Mean | 86 | 90 | 91 | 92 | 95 | 91 | 90 |
SD | 32 | 31 | 36 | 40 | 39 | 38 | 35 |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [PubMed]
- Brentnall, A.R.; Harkness, E.F.; Astley, S.M.; Donnelly, L.S.; Stavrinos, P.; Sampson, S.; Fox, L.; Sergeant, J.C.; Harvie, M.N.; Wilson, M.; et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015, 17, 147. [Google Scholar] [CrossRef] [PubMed]
- Harvey, J.A.; Bovbjerg, V.E. Quantitative Assessment of Mammographic Breast Density: Relationship with Breast Cancer Risk. Radiology 2004, 230, 29–41. [Google Scholar] [CrossRef]
- D’Orsi, C.J.; Sickles, E.A.; Mendelson, E.B.; Morris, E.A. (Eds.) Breast Imaging Reporting and Data System; American College of Radiology: Reston, VA, USA, 2013. [Google Scholar]
- Boyd, N.F.; Rommens, J.M.; Vogt, K.; Lee, V.; Hopper, J.L.; Yaffe, M.J.; Paterson, A.D. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005, 6, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Vachon, C.M.; Pankratz, V.S.; Scott, C.G.; Haeberle, L.; Ziv, E.; Jensen, M.R.; Brandt, K.R.; Whaley, D.H.; Olson, J.E.; Heusinger, K.; et al. The contributions of breast density and common genetic variation to breast cancer risk. J. Natl. Cancer Inst. 2015, 107, dju397. [Google Scholar]
- Checka, C.M.; Chun, J.E.; Schnabel, F.R.; Lee, J.; Toth, H. The Relationship of Mammographic Density and Age: Implications for Breast Cancer Screening. Am. J. Roentgenol. 2012, 198, W292–W295. [Google Scholar] [CrossRef]
- Rummel, S.; Hueman, M.T.; Costantino, N.; Shriver, C.D.; Ellsworth, R.E. Tumour location within the breast: Does tumour site have prognostic ability? Ecancermedicalscience 2015, 9, 552. [Google Scholar] [CrossRef]
- Bao, J.; Yu, K.-D.; Jiang, Y.-Z.; Shao, Z.-M.; Di, G.-H. The effect of laterality and primary tumor site on cancer-specific mortality in breast cancer: A SEER population-based study. PLoS ONE 2014, 9, e94815. [Google Scholar] [CrossRef]
- Titus-Ernstoff, L.; Tosteson, A.N.A.; Kasales, C.; Weiss, J.; Goodrich, M.; Hatch, E.E.; Carney, P.A. Breast cancer risk factors in relation to breast density (United States). Cancer Causes Control 2006, 17, 1281–1290. [Google Scholar] [CrossRef]
- Heller, S.L.; Hudson, S.; Wilkinson, L.S. Breast density across a regional screening population: Effects of age, ethnicity and deprivation. Br. J. Radiol. 2015, 88, 20150242. [Google Scholar] [CrossRef]
- Kalender, W.A.; Kolditz, D.; Steiding, C.; Ruth, V.; Lück, F.; Rößler, A.-C.; Wenkel, E. Technical feasibility proof for high-resolution low-dose photon-counting CT of the breast. Eur. Radiol. 2017, 27, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.; Cester, D.; Ruby, L.; Bluethgen, C.; Marcon, M.; Berger, N.; Unkelbach, J.; Boss, A. Fully Automated Breast Segmentation on Spiral Breast Computed Tomography Images. J. Appl. Clin. Med. Phys. 2022, 23, e13726. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.; Kolditz, D.; Steiding, C.; Ruth, V.; Hoetker, A.M.; Unkelbach, J.; Boss, A. Radiation dose estimates based on Monte Carlo simulation for spiral breast CT imaging in a large cohort of patients. Med. Phys. 2022, 50, 2417–2428. [Google Scholar] [CrossRef]
- Shim, S.; Saltybaeva, N.; Berger, N.; Marcon, M.; Alkadhi, H.; Boss, A. Lesion Detectability and Radiation Dose in Spiral Breast CT With Photon-Counting Detector Technology: A Phantom Study. Investig. Radiol. 2020, 55, 515–523. [Google Scholar]
- Germann, M.; Shim, S.; Angst, F.; Saltybaeva, N.; Boss, A. Spiral breast computed tomography (CT): Signal-to-noise and dose optimization using 3D-printed phantoms. Eur. Radiol. 2020, 31, 3693–3702. [Google Scholar] [CrossRef] [PubMed]
- Ruby, L.; Shim, S.; Berger, N.; Marcon, M.; Frauenfelder, T.; Boss, A. Diagnostic value of a spiral breast computed tomography system equipped with photon counting detector technology in patients with implants: An observational study of our initial experiences. Medicine 2020, 99, e20797. [Google Scholar] [CrossRef] [PubMed]
- Tavakol, M.; Dennick, R. Making sense of Cronbach’s alpha. Int. J. Med. Educ. 2011, 2, 53–55. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Dance, D.R.; Skinner, C.L.; Young, K.C.; Beckett, J.R.; Kotre, C.J. Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys. Med. Biol. 2000, 45, 3225–3240. [Google Scholar] [CrossRef]
- American College of Radiology. Acr Practice Parameter for the Performance of Screening and Diagnostic Mammography; American College of Radiology: Reston, VA, USA, 2018. [Google Scholar]
- European Commission; Directorate-General for Health and Consumers; Karsa, L.; Holland, R.; Broeders, M. European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis, 4th ed.; Supplements; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Paulis, L.E.; Lobbes, M.B.M.; Lalji, U.C.; Gelissen, N.; Bouwman, R.W.B.; Wildberger, J.E.; Jeukens, C.R. Radiation Exposure of Digital Breast Tomosynthesis Using an Antiscatter Grid Compared With Full-Field Digital Mammography. Investig. Radiol. 2015, 50, 679–685. [Google Scholar] [CrossRef]
- Fusco, R.; Raiano, N.; Raiano, C.; Maio, F.; Vallone, P.; Raso, M.M.; Setola, S.V.; Granata, V.; Rubulotta, M.R.; Barretta, M.L.; et al. Evaluation of average glandular dose and investigation of the relationship with compressed breast thickness in dual energy contrast enhanced digital mammography and digital breast tomosynthesis. Eur. J. Radiol. 2020, 126, 108912. [Google Scholar] [CrossRef] [PubMed]
- Sarno, A.; Tucciariello, R.M.; Mettivier, G.; di Franco, F.; Russo, P. Monte Carlo calculation of monoenergetic and polyenergetic DgN coefficients for mean glandular dose estimates in mammography using a homogeneous breast model. Phys. Med. Biol. 2019, 64, 125012. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.; Chen, J.-H.; Li, S.; Chang, R.; Yeh, D.-C.; Chang, R.-F.; Yeh, L.-R.; Kwong, J.; Su, M.-Y. Evaluation of the association between quantitative mammographic density and breast cancer occurred in different quadrants. BMC Cancer 2017, 17, 274. [Google Scholar] [CrossRef] [PubMed]
- Fwu, P.T.; Chen, J.-H.; Li, Y.; Chan, S.; Su, M.-Y. Quantification of Regional Breast Density in Four Quadrants Using 3D MRI—A Pilot Study. Transl. Oncol. 2015, 8, 250–257. [Google Scholar] [CrossRef]
- Lin, M.; Chan, S.; Chen, J.-H.; Chang, D.; Nie, K.; Chen, S.-T.; Lin, C.-J.; Shih, T.-C.; Nalcioglu, O.; Su, M.-Y. A new bias field correction method combining N3 and FCM for improved segmentation of breast density on MRI. Med. Phys. 2011, 38, 5–14. [Google Scholar] [CrossRef]
- Dalmış, M.U.; Litjens, G.; Holland, K.; Setio, A.; Mann, R.; Karssemeijer, N.; Gubern-Mérida, A. Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med. Phys. 2017, 44, 533–546. [Google Scholar] [CrossRef]
Age Range | ||||||||
---|---|---|---|---|---|---|---|---|
40–44 | 45–49 | 50–54 | 55–59 | 60–64 | 65–69 | 70–74 | ||
Counts | 62 | 120 | 292 | 190 | 176 | 123 | 70 | |
Age/1 | Mean | 42 | 47 | 52 | 57 | 62 | 67 | 72 |
SD | 1 | 1 | 1 | 1 | 2 | 1 | 1 | |
BTV/cm3 | Mean | 545 | 539 | 589 | 657 | 627 | 663 | 676 |
SD | 345 | 314 | 365 | 416 | 401 | 424 | 412 | |
MGV/cm3 | Mean | 111 | 77 | 64 | 56 | 51 | 50 | 57 |
SD | 164 | 64 | 59 | 55 | 43 | 57 | 43 | |
PBD/% | Mean | 24 | 17 | 14 | 13 | 13 | 10 | 11 |
SD | 21 | 15 | 12 | 14 | 13 | 9 | 9 |
Value | Entire | UOQ | UIQ | LOQ | LIQ | |
---|---|---|---|---|---|---|
BTV/cm3 | Mean | 614 | 208 | 164 | 126 | 117 |
SD | 388 | 135 | 107 | 17 | 12 | |
Quadrant BTV share/% | Mean | - | 34 | 28 | 19 | 19 |
SD | - | 9 | 8 | 7 | 7 | |
MGV/cm3 | Mean | 62 | 21 | 13 | 17 | 12 |
SD | 68 | 23 | 15 | 24 | 17 | |
Quadrant MGV share/% | Mean | - | 34 | 21 | 26 | 18 |
SD | - | 14 | 11 | 13 | 10 | |
PBD/% | Mean | 14 | 13 | 11 | 19 | 13 |
SD | 13 | 13 | 13 | 17 | 14 | |
Quadrant PBD ratio/% | Mean | - | 99 | 75 | 142 | 92 |
SD | - | 31 | 27 | 47 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, S.; Unkelbach, J.; Landsmann, A.; Boss, A. Quantitative Study on the Breast Density and the Volume of the Mammary Gland According to the Patient’s Age and Breast Quadrant. Diagnostics 2023, 13, 3343. https://doi.org/10.3390/diagnostics13213343
Shim S, Unkelbach J, Landsmann A, Boss A. Quantitative Study on the Breast Density and the Volume of the Mammary Gland According to the Patient’s Age and Breast Quadrant. Diagnostics. 2023; 13(21):3343. https://doi.org/10.3390/diagnostics13213343
Chicago/Turabian StyleShim, Sojin, Jan Unkelbach, Anna Landsmann, and Andreas Boss. 2023. "Quantitative Study on the Breast Density and the Volume of the Mammary Gland According to the Patient’s Age and Breast Quadrant" Diagnostics 13, no. 21: 3343. https://doi.org/10.3390/diagnostics13213343
APA StyleShim, S., Unkelbach, J., Landsmann, A., & Boss, A. (2023). Quantitative Study on the Breast Density and the Volume of the Mammary Gland According to the Patient’s Age and Breast Quadrant. Diagnostics, 13(21), 3343. https://doi.org/10.3390/diagnostics13213343