The Comparison of the Selected Parameters of Brain Injury and Interleukins in the CSF in Patients Diagnosed De Novo with RRMS Compared to the Control Group
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Comparison of the Selected Parameters of Brain Injury and the Selected Interleukins in the CSF in Patients Diagnosed De Novo with RRMS and the Controls
3.1.1. Correlations of the Selected Interleukins with the Selected Parameters of Brain Injury in the CSF in Patients Diagnosed De Novo with RRMS
3.1.2. Correlations of the Selected Interleukins with the Selected Parameters of Brain Injury in the CSF in the Control Group
3.2. Correlations of the Selected Parameters of Brain Injury with the Selected Interleukins in the CSF in Patients Diagnosed De Novo with RRMS Depending on MRI Lesions and the Time from the First Symptoms to Diagnosis
4. Discussion
4.1. Heavy Neurofilament (NF-H)
4.2. Glial Fibrillary Acidic Protein (GFAP)
4.3. S100B
4.4. Ubiquitin C-Terminal Hydrolase-L1 (UCHL1)
4.5. Interleukins
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cotsapas, C.; Mitrovic, M.; Hafler, D. Multiple sclerosis. Handb. Clin. Neurol. 2018, 148, 723–730. [Google Scholar]
- Lassmann, H. Multiple sclerosis pathology. In Cold Spring Harbor Perspectives in Medicine; Cold Spring Harbor Laboratory Press: Woodbury, NY, USA, 2018; Volume 8. [Google Scholar]
- Kamińska, J.; Koper, O.M.; Piechal, K.; Kemona, H. Multiple sclerosis—Etiology and diagnostic potential. Adv. Hyg. Exp. Med. 2017, 71, 551–563. [Google Scholar] [CrossRef]
- Ruiz, F.; Vigne, S.; Pot, C. Resolution of inflammation during multiple sclerosis. Semin. Immunopathol. 2019, 41, 711–726. [Google Scholar] [CrossRef]
- Sandi, D.; Fricska-Nagy, Z.; Bencsik, K.; Vécsei, L. Neurodegeneration in Multiple Sclerosis: Symptoms of Silent Progression, Biomarkers and Neuroprotective Therapy—Kynurenines Are Important Players. Molecules 2021, 26, 3423. [Google Scholar] [CrossRef]
- Stys, P.K.; Zamponi, G.W.; van Minnen, J.; Geurts, J.J.G. Will the real multiple sclerosis please stand up? Nat. Rev. Neurosci. 2012, 13, 507–514. [Google Scholar] [CrossRef]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.T.; Sharma, R.; Lim, J.L.; Haider, L.; Frischer, J.M.; Drexhage, J.; Mahad, D.; Bradl, M.; van Horssen, J.; Lassmann, H. NADPH oxidase expression in active multiple sclerosis lesions in relation to oxidative tissue damage and mitochondrial injury. Brain 2012, 135, 886–899. [Google Scholar] [CrossRef] [PubMed]
- Lassmann, H.; van Horssen, J.; Mahad, D. Progressive multiple sclerosis: Pathology and pathogenesis. Nat. Rev. Neurol. 2012, 8, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Rival, M.; Galoppin, M.; Thouvenot, E. Biological Markers in Early Multiple Sclerosis: The Paved Way for Radiologically Isolated Syndrome. Front. Immunol. 2022, 13, 866092. [Google Scholar] [CrossRef]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Barro, C.; Kappos, L.; Comabella, M.; Fazekas, F.; et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef]
- Ferreira-Atuesta, C.; Reyes, S.; Giovanonni, G.; Gnanapavan, S. The Evolution of Neurofilament Light Chain in Multiple Sclerosis. Front. Neurosci. 2021, 15, 642384. [Google Scholar] [CrossRef] [PubMed]
- Varhaug, K.N.; Torkildsen, Ø.; Myhr, K.M.; Vedeler, C.A. Neurofilament Light Chain as a Biomarker in Multiple Sclerosis. Front. Neurol. 2019, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.; Zetterberg, H.; Chataway, J. Neurofilaments in progressive multiple sclerosis: A systematic review. J. Neurol. 2021, 268, 3212–3222. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, K.K.W. Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015, 38, 364–374. [Google Scholar] [CrossRef]
- Escartin, C.; Galea, E.; Lakatos, A.; O’Callaghan, J.P.; Petzold, G.C.; Serrano-Pozo, A.; Steinhäuser, C.; Volterra, A.; Carmignoto, G.; Agarwal, A.; et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 2021, 24, 312–325. [Google Scholar] [CrossRef]
- Azzolini, F.; Gilio, L.; Pavone, L.; Iezzi, E.; Dolcetti, E.; Bruno, A.; Buttari, F.; Musella, A.; Mandolesi, G.; Guadalupi, L.; et al. Neuroinflammation Is Associated with GFAP and sTREM2 Levels in Multiple Sclerosis. Biomolecules 2022, 12, 222. [Google Scholar] [CrossRef]
- Buffo, A.; Rite, I.; Tripathi, P.; Lepier, A.; Colak, D.; Horn, A.P.; Mori, T.; Götz, M. Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc. Natl. Acad. Sci. USA 2008, 105, 3581–3586. [Google Scholar] [CrossRef]
- Kono, S.; Miyajima, H. Aceruloplasminemia. Rosenberg’s Molecular and Genetic Basis of Neurological and Psychiatric Disease, 5th ed.; Sociedad de Biología de Chile: Santiago, Chile, 2014; pp. 495–506. [Google Scholar]
- Brenner, M.; Messing, A. Regulation of GFAP Expression. ASN Neuro 2021, 13, 175909142098120. [Google Scholar] [CrossRef]
- Meier, S.; Willemse, E.A.; Schaedelin, S.; Oechtering, J.; Lorscheider, J.; Melie-Garcia, L.; Cagol, A.; Barakovic, M.; Galbusera, R.; Subramaniam, S.; et al. Serum Glial Fibrillary Acidic Protein Compared With Neurofilament Light Chain as a Biomarker for Disease Progression in Multiple Sclerosis. JAMA Neurol. 2023, 80, 287. [Google Scholar] [CrossRef]
- Sun, M.; Liu, N.; Xie, Q.; Li, X.; Sun, J.; Wang, H.; Wang, M. A candidate biomarker of glial fibrillary acidic protein in CSF and blood in differentiating multiple sclerosis and its subtypes: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2021, 51, 102870. [Google Scholar] [CrossRef]
- Momtazmanesh, S.; Shobeiri, P.; Saghazadeh, A.; Teunissen, C.E.; Burman, J.; Szalardy, L.; Klivenyi, P.; Bartos, A.; Fernandes, A.; Rezaei, N. Neuronal and glial CSF biomarkers in multiple sclerosis: A systematic review and meta-analysis. Rev. Neurosci. 2021, 32, 573–595. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.; Barateiro, A.; Brites, D.; Fernandes, A. S100B Impairs Oligodendrogenesis and Myelin Repair Following Demyelination Through RAGE Engagement. Front. Cell Neurosci. 2020, 14, 279. [Google Scholar] [CrossRef] [PubMed]
- Langeh, U.; Singh, S. Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders. Curr. Neuropharmacol. 2020, 19, 265–277. [Google Scholar] [CrossRef]
- Camponeschi, C.; De Carluccio, M.; Amadio, S.; Clementi, M.E.; Sampaolese, B.; Volonté, C.; Tredicine, M.; Romano Spica, V.; Di Liddo, R.; Ria, F.; et al. S100B Protein as a Therapeutic Target in Multiple Sclerosis: The S100B Inhibitor Arundic Acid Protects from Chronic Experimental Autoimmune Encephalomyelitis. Int. J. Mol. Sci. 2021, 22, 13558. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.J.; Lassmann, H. The role of nitric oxide in multiple sclerosis. Lancet Neurol. 2002, 1, 232–241. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.; Xie, W.; Liu, J.; Wang, C. UCHL1 from serum and CSF is a candidate biomarker for amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 2020, 7, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Sjölin, K.; Kultima, K.; Larsson, A.; Freyhult, E.; Zjukovskaja, C.; Alkass, K.; Burman, J. Distribution of five clinically important neuroglial proteins in the human brain. Mol. Brain 2022, 15, 52. [Google Scholar] [CrossRef]
- Brophy, G.M.; Mondello, S.; Papa, L.; Robicsek, S.A.; Gabrielli, A.; Tepas, J., III; Buki, A.; Robertson, C.; Tortella, F.C.; Hayes, R.L.; et al. Biokinetic Analysis of Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in Severe Traumatic Brain Injury Patient Biofluids. J. Neurotrauma 2011, 28, 861–870. [Google Scholar] [CrossRef]
- Papa, L.; Akinyi, L.; Liu, M.C.; Pineda, J.A.; Tepas, J.J., III; Oli, M.W.; Zheng, W.; Robinson, G.; Robicsek, S.A.; Gabrielli, A.; et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit. Care Med. 2010, 38, 138–144. [Google Scholar] [CrossRef]
- Górska, E.; Tylicka, M.; Hermanowicz, A.; Matuszczak, E.; Sankiewicz, A.; Gorodkiewicz, E.; Hermanowicz, J.; Karpińska, E.; Socha, K.; Kochanowicz, J.; et al. UCHL1, besides leptin and fibronectin, also could be a sensitive marker of the relapsing–remitting type of multiple sclerosis. Sci. Rep. 2023, 13, 3423. [Google Scholar] [CrossRef]
- Lu, H.; Wu, P.F.; Zhang, W.; Liao, X. Circulating Interleukins and Risk of Multiple Sclerosis: A Mendelian Randomization Study. Front. Immunol. 2021, 12, 647588. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.; Lobo, J.M.S. Cytokines and Growth Factors; Springer: Cham, Switzerland, 2019; pp. 87–113. [Google Scholar]
- Ryff, J.C.; Pestka, S. Interferons and Interleukins. In Pharmaceutical Biotechnology; Springer: New York, NY, USA, 2013; pp. 413–437. [Google Scholar]
- Morawiec, N.; Techmański, T.; Tracz, K.; Kluska, A.; Arendarczyk, M.; Baran, M.; Adamczyk, B.; Czuba, Z.; Bronikowska, J.; Adamczyk-Sowa, M. The comparative analysis of selected interleukins and proinflammatory factors in CSF among de novo diagnosed patients with RRMS. Clin. Neurol Neurosurg. 2023, 225, 107522. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Houser, B. Bio-Rad’s Bio-Plex® suspension array system, xMAP technology overview. Arch. Physiol. Biochem. 2012, 118, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Herrera, M.I.; Kölliker-Frers, R.A.; Otero-Losada, M.; Perez Lloret, S.; Filippo, M.; Tau, J.; Capani, F.; Villa, A.M. A Pilot Cross-Sectional Study to Investigate the Biomarker Potential of Phosphorylated Neurofilament-H and Immune Mediators of Disability in Patients With 5 Year Relapsing-Remitting Multiple Sclerosis. Front. Neurol. 2019, 10, 1046. [Google Scholar] [CrossRef]
- Shehab, A.A.; Solima, D.A.; Abdel-Hafeez, M.A.; Mohamed, S.M. Serum Phosphorylated Neurofilament Heavy Chain Level in Relapsing Remitting Multiple Sclerosis in Correlation to Disease Activity and Disability. Egypt J. Immunol. 2019, 26, 1–13. [Google Scholar]
- Tüzün, E.; Şanlı, E.Ş.; Akbayır, E.; Türkoğlu, R. Phosphorylated neurofilament heavy chain (pNFH) in clinically isolated syndrome and multiple sclerosis. Arch. Neuropsychiatry 2021, 58, 255. [Google Scholar]
- Martín-Aguilar, L.; Presas-Rodriguez, S.; Rovira, À.; Capellades, J.; Massuet-Vilamajó, A.; Ramió-Torrentà, L.; Tintoré, M.; Brieva-Ruiz, L.; Moral, E.; Cano-Orgaz, A.; et al. Gadolinium-enhanced brain lesions in multiple sclerosis relapse. Neurologia (Engl. Ed.) 2022, 37, 557–563. [Google Scholar]
- Matsushige, T.; Ichiyama, T.; Anlar, B.; Tohyama, J.; Nomura, K.; Yamashita, Y.; Furukawa, S. CSF neurofilament and soluble TNF receptor 1 levels in subacute sclerosing panencephalitis. J. Neuroimmunol. 2008, 205, 155–159. [Google Scholar] [CrossRef]
- Daoud, H.; Alharfi, I.; Alhelali, I.; Charyk Stewart, T.; Qasem, H.; Fraser, D.D. Brain Injury Biomarkers as Outcome Predictors in Pediatric Severe Traumatic Brain Injury. Neurocrit. Care 2014, 20, 427–435. [Google Scholar]
- Lund, B.T.; Ashikian, N.; Ta, H.Q.; Chakryan, Y.; Manoukian, K.; Groshen, S.; Gilmore, W.; Cheema, G.S.; Stohl, W.; Burnett, M.E.; et al. Increased CXCL8 (IL-8) expression in Multiple Sclerosis. J. Neuroimmunol. 2004, 155, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Motta, C.; Studer, V.; Macchiarulo, G.; Germani, G.; Finardi, A.; Furlan, R.; Martino, G.; Centonze, D. Subclinical central inflammation is risk for RIS and CIS conversion to MS. Mult. Scler. J. 2015, 21, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Stampanoni Bassi, M.; Iezzi, E.; Landi, D.; Monteleone, F.; Gilio, L.; Simonelli, I.; Musella, A.; Mandolesi, G.; De Vito, F.; Furlan, R.; et al. Delayed treatment of MS is associated with high CSF levels of IL-6 and IL-8 and worse future disease course. J. Neurol. 2018, 265, 2540–2547. [Google Scholar] [CrossRef] [PubMed]
- Kassubek, R.; Gorges, M.; Schocke, M.; Hagenston, V.A.; Huss, A.; Ludolph, A.C.; Kassubek, J.; Tumani, H. GFAP in early multiple sclerosis: A biomarker for inflammation. Neurosci. Lett. 2017, 657, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Ayrignac, X.; Le Bars, E.; Duflos, C.; Hirtz, C.; Maleska Maceski, A.; Carra-Dallière, C.; Charif, M.; Pinna, F.; Prin, P.; Menjot de Champfleur, N.; et al. Serum GFAP in multiple sclerosis: Correlation with disease type and MRI markers of disease severity. Sci. Rep. 2020, 10, 10923. [Google Scholar] [CrossRef]
- Di Sante, G.; Amadio, S.; Sampaolese, B.; Clementi, M.E.; Valentini, M.; Volonté, C.; Casalbore, P.; Ria, F.; Michetti, F. The S100B Inhibitor Pentamidine Ameliorates Clinical Score and Neuropathology of Relapsing—Remitting Multiple Sclerosis Mouse Model. Cells 2020, 9, 748. [Google Scholar] [CrossRef]
- Michetti, F.; D’Ambrosi, N.; Toesca, A.; Puglisi, M.A.; Serrano, A.; Marchese, E.; Corvino, V.; Geloso, M.C. The S100B story: From biomarker to active factor in neural injury. J. Neurochem. 2019, 148, 168–187. [Google Scholar] [CrossRef]
- Bartosik-Psujek, H.; Psujek, M.; Jaworski, J.; Stelmasiak, Z. Total tau and S100b proteins in different types of multiple sclerosis and during immunosuppressive treatment with mitoxantrone. Acta Neurol. Scand. 2011, 123, 252–256. [Google Scholar] [CrossRef]
- Rejdak, K.; Petzold, A.; Kocki, T.; Kurzepa, J.; Grieb, P.; Turski, W.A.; Stelmasiak, Z. Astrocytic activation in relation to inflammatory markers during clinical exacerbation of relapsing-remitting multiple sclerosis. J. Neural Transm. 2007, 114, 1011–1015. [Google Scholar] [CrossRef]
- Barateiro, A.; Afonso, V.; Santos, G.; Cerqueira, J.J.; Brites, D.; van Horssen, J.; Fernandes, A. S100B as a Potential Biomarker and Therapeutic Target in Multiple Sclerosis. Mol. Neurobiol. 2016, 53, 3976–3991. [Google Scholar] [CrossRef]
- Bianchi, R.; Giambanco, I.; Donato, R. S100B/RAGE-dependent activation of microglia via NF-κB and AP-1. Neurobiol. Aging 2010, 31, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, H.; Won, S.J.; Basu, J.; Kapfhamer, D.; Swanson, R.A. Microglial activation induced by the alarmin S100B is regulated by poly(ADP-ribose) polymerase-1. Glia 2016, 64, 1869–1878. [Google Scholar] [CrossRef]
- Gunawan, P.I.; Saharso, D.; Sari, D.P. Correlation of serum S100B levels with brain magnetic resonance imaging abnormalities in children with status epilepticus. Korean J. Pediatr. 2019, 62, 281–285. [Google Scholar] [CrossRef]
- Mi, Z.; Graham, S.H. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury. Ageing Res. Rev. 2023, 86, 101856. [Google Scholar] [CrossRef]
- Dougan, M.; Dranoff, G.; Dougan, S.K. GM-CSF, IL-3, and IL-5 Family of Cytokines: Regulators of Inflammation. Immunity 2019, 50, 796–811. [Google Scholar] [CrossRef]
- Wang, K.; Song, F.; Fernandez-Escobar, A.; Luo, G.; Wang, J.H.; Sun, Y. The Properties of Cytokines in Multiple Sclerosis: Pros and Cons. Am. J. Med. Sci. 2018, 356, 552–560. [Google Scholar] [CrossRef]
- Mathur, D.; Mishra, B.K.; Rout, S.; Lopez-Iranzo, F.J.; Lopez-Rodas, G.; Vallamkondu, J.; Kandimalla, R.; Casanova, B. Potential Biomarkers Associated with Multiple Sclerosis Pathology. Int. J. Mol. Sci. 2021, 22, 10323. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hamade, M.; Wu, Q.; Wang, Q.; Axtell, R.; Giri, S.; Mao-Draayer, Y. Current and Future Biomarkers in Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 5877. [Google Scholar] [CrossRef] [PubMed]
Study Group | Control | |
---|---|---|
N | 101 | 75 |
Gender (% of females) | 72.27% | 85.33% |
Age * (years) | 38.44 ± 11.78 | 38.88 ± 11.59 |
Median number of T2-weighted lesions on brain MRI | 16.72 | NA |
Time from the first symptoms to the diagnosis (months) | 63.53 | NA |
Parameter | RRMS Group | Control | p |
---|---|---|---|
N | 101 | 75 | |
GFAP (pg/mL) | 2208.91 ± 1137.16 | 1530.84 ± 992.57 | 0.001 |
NF-H (pg/mL) | 12.15 ± 17.61 | 8.89 ± 12.14 | 0.001 |
S100B (pg/mL) | 13.86 ± 10.72 | 16.79 ± 12.13 | 0.097 |
UCHL1 (pg/mL) | 103.08 ± 68.48 | 272.03 ± 68.39 | 0.001 |
Study Group | Control | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | TNF-α | IL-2 | IL-3 | IL-7 | IL-8 | IL-10 | IFN-γ | IL-5 | IL-6 | IL-7 | IL-8 | IL-9 |
GFAP (pg/mL) | - | - | - | - | R = 0.211 p = 0.042 | - | - | - | - | - | - | - |
NF-H (pg/mL) | R = 0.232 p = 0.025 | - | - | R = 0.226 p = 0.029 | - | R = 0.243 p = 0.019 | - | - | R = 0.383 p = 0.001 | - | R = 0.310 p = 0.008 | - |
S100B (pg/mL) | - | - | - | - | - | - | R = 0.269 p = 0.023 | R = 0.240 p = 0.043 | R = 0.3398 p = 0.004 | R = 0.276 p = 0.019 | R = 0.341 p = 0.004 | R = 0.244 p = 0.040 |
UCHL1 (pg/mL) | - | R = 0.252 p = 0.015 | R = 0.273 p = 0.008 | - | - | - | - | - | - | - | - | - |
Parameter | No Gd+ Lesions | Gd+ Lesions | p |
---|---|---|---|
N | 69 | 27 | |
GFAP (pg/mL) | 1873.84 ± 1191.32 | 2328.24 ± 1109.17 | 0.002 |
NF-H (pg/mL) | 4.87 ± 2.28 | 15.01 ± 20.05 | 0.001 |
S100B (pg/mL) | 11.19 ± 10.25 | 14.84 ± 10.86 | 0.061 |
UCHL1 (pg/mL) | 128.79 ± 92.66 | 93.70 ± 55.65 | 0.633 |
Parameter | IFN-γ | TNF-α | IL-1 | IL-4 | IL-5 | IL-9 | IL-10 |
---|---|---|---|---|---|---|---|
Time from the first symptoms to diagnosis | R = 0.361 p = 0.000 | R = 0.311 p = 0.003 | R = 0.246 p = 0.019 | R = 0.236 p = 0.025 | R = 0.280 p= 0.007 | R = 0.241 p = 0.22 | R = 0.250 p = 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamczyk, B.; Morawiec, N.; Mamak, G.; Boczek, S.; Brzęk, D.; Trędota, N.; Walocha, P.; Czuba, Z.P.; Błachut, M.; Bartman, W.; et al. The Comparison of the Selected Parameters of Brain Injury and Interleukins in the CSF in Patients Diagnosed De Novo with RRMS Compared to the Control Group. Diagnostics 2023, 13, 3436. https://doi.org/10.3390/diagnostics13223436
Adamczyk B, Morawiec N, Mamak G, Boczek S, Brzęk D, Trędota N, Walocha P, Czuba ZP, Błachut M, Bartman W, et al. The Comparison of the Selected Parameters of Brain Injury and Interleukins in the CSF in Patients Diagnosed De Novo with RRMS Compared to the Control Group. Diagnostics. 2023; 13(22):3436. https://doi.org/10.3390/diagnostics13223436
Chicago/Turabian StyleAdamczyk, Bożena, Natalia Morawiec, Gabriela Mamak, Sylwia Boczek, Dominika Brzęk, Natalia Trędota, Patryk Walocha, Zenon P. Czuba, Michał Błachut, Wojciech Bartman, and et al. 2023. "The Comparison of the Selected Parameters of Brain Injury and Interleukins in the CSF in Patients Diagnosed De Novo with RRMS Compared to the Control Group" Diagnostics 13, no. 22: 3436. https://doi.org/10.3390/diagnostics13223436
APA StyleAdamczyk, B., Morawiec, N., Mamak, G., Boczek, S., Brzęk, D., Trędota, N., Walocha, P., Czuba, Z. P., Błachut, M., Bartman, W., & Adamczyk-Sowa, M. (2023). The Comparison of the Selected Parameters of Brain Injury and Interleukins in the CSF in Patients Diagnosed De Novo with RRMS Compared to the Control Group. Diagnostics, 13(22), 3436. https://doi.org/10.3390/diagnostics13223436