Impact of Variation between Assays and Reference Intervals in the Diagnosis of Endocrine Disorders
Abstract
:1. Introduction
2. Aim and Method
3. Condition-Specific Examples of Assay and Reference Interval Discordance in Endocrine Disorders
3.1. Growth Hormone (GH) Deficiency and Excess
3.2. Thyroid Disorders
3.3. Polycystic Ovary Syndrome
3.4. Hypogonadism
3.5. Parathyroid Disorders
3.6. Glucocorticoid Deficiency and Excess
3.7. Diabetes Mellitus
3.8. Human Chorionic Gonadotropin
4. How to Assess for Potential Clinical Decision Discordance Resulting from Between-Assay Differences?
5. Mitigating the Impact of Assay Differences on the Management of Patients
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Badrick, T. Biological variation: Understanding why it is so important? Pract. Lab. Med. 2021, 23, e00199. [Google Scholar] [CrossRef] [PubMed]
- Whyte, M.B.; Kelly, P. The normal range: It is not normal and it is not a range. Postgrad. Med. J. 2018, 94, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Gräsbeck, R. The evolution of the reference value concept. Clin. Chem. Lab. Med. 2004, 42, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Ghazal, K.; Brabant, S.; Prie, D.; Piketty, M. Hormone Immunoassay Interference: A 2021 Update. Ann. Lab. Med. 2022, 42, 3–23. [Google Scholar] [CrossRef]
- Grottoli, S.; Gasco, V.; Ragazzoni, F.; Ghigo, E. Hormonal diagnosis of GH hypersecretory states. J. Endocrinol. Investig. 2003, 26 (Suppl. S10), 27–35. [Google Scholar]
- Chanson, P.; Arnoux, A.; Mavromati, M.; Brailly-Tabard, S.; Massart, C.; Young, J.; Piketty, M.; Souberbielle, J.; VARIETE Investigators. Reference Values for IGF-I Serum Concentrations: Comparison of Six Immunoassays. J. Clin. Endocrinol. Metab. 2016, 101, 3450–3458. [Google Scholar] [CrossRef]
- Clemmons, D.R. Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin. Chem. 2011, 57, 555–559. [Google Scholar] [CrossRef]
- Massart, C.; Poirier, J.Y. Serum insulin-like growth factor-1 measurement in the follow-up of treated acromegaly: Comparison of four immunoassays. Clin. Chim. Acta 2006, 373, 176–179. [Google Scholar] [CrossRef]
- Pokrajac, A.; Wark, G.; Ellis, A.R.; Wear, J.; Wieringa, G.E.; Trainer, P.J. Variation in GH and IGF-I assays limits the applicability of international consensus criteria to local practice. Clin. Endocrinol. 2007, 67, 65–70. [Google Scholar] [CrossRef]
- Varewijck, A.J.; Lamberts, S.W.J.; van der Lely, A.J.; Neggers, S.J.C.M.M.; Hofland, L.J.; Janssen, J.A.M.J.L. The introduction of the IDS-iSYS total IGF-1 assay may have far-reaching consequences for diagnosis and treatment of GH deficiency. J. Clin. Endocrinol. Metab. 2015, 100, 309–316. [Google Scholar] [CrossRef]
- Glynn, N.; Agha, A. Diagnosing Growth Hormone Deficiency in Adults. Int. J. Endocrinol. 2012, 2012, 972617. [Google Scholar] [CrossRef] [PubMed]
- Freda, P.U. Monitoring of acromegaly: What should be performed when GH and IGF-1 levels are discrepant? Clin. Endocrinol. 2009, 71, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Freda, P.U. Pitfalls in the Biochemical Assessment of Acromegaly. Pituitary 2003, 6, 135–140. [Google Scholar] [CrossRef]
- Zeinalizadeh, M.; Habibi, Z.; Fernandez-Miranda, J.C.; Gardner, P.A.; Hodak, S.P.; Challinor, S.M. Discordance between growth hormone and insulin-like growth factor-1 after pituitary surgery for acromegaly: A stepwise approach and management. Pituitary 2015, 18, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Bidlingmaier, M. Pitfalls of Insulin-Like Growth Factor 1 Assays. Horm. Res. 2009, 71 (Suppl. S1), 30–33. [Google Scholar] [CrossRef]
- Garber, J.R.; Cobin, R.H.; Gharib, H.; Hennessey, J.V.; Klein, I.; Mechanick, J.I.; Pessah-Pollack, R.; Singer, P.A.; Woeber, K.A. Clinical practice guidelines for hypothyroidism in adults: Cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid 2012, 22, 1200–1235. [Google Scholar] [CrossRef]
- Biondi, B.; Cappola, A.R.; Cooper, D.S. Subclinical Hypothyroidism: A Review. JAMA 2019, 322, 153–160. [Google Scholar] [CrossRef]
- Pearce, S.H.S.; Brabant, G.; Duntas, L.H.; Monzani, F.; Peeters, R.P.; Razvi, S.; Wemeau, J. 2013 ETA Guideline: Management of Subclinical Hypothyroidism. Eur. Thyroid J. 2014, 2, 215–228. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Thyroid Disease: Assessment and Management. NICE Guideline [NG 145]. Available online: https://www.nice.org.uk/guidance/ng145 (accessed on 26 September 2023).
- Thienpont, L.M.; Van Uytfanghe, K.; De Grande, L.A.C.; Reynders, D.; Das, B.; Faix, J.D.; MacKenzie, F.; Decallonne, B.; Hishinuma, A.; Lapauw, B.; et al. Harmonization of serum thyroid-stimulating hormone measurements paves the way for the adoption of a more uniform reference interval. Clin. Chem. 2017, 63, 1248–1260. [Google Scholar] [CrossRef]
- De Grande, L.A.C.; Van Uytfanghe, K.; Reynders, D.; Das, B.; Faiz, J.D.; MacKenzie, F.; Decallonne, B.; Hishinuma, A.; Lapauw, B.; Taelman, P.; et al. Standardization of free thyroxine measurements allows the adoption of a more uniform reference interval. Clin. Chem. 2017, 63, 1642–1652. [Google Scholar] [CrossRef]
- da Silva, V.A.; de Almeida, R.J.; Cavalcante, M.P.; Pereira, L.A., Jr.; Reis, F.M.; Pereira, M.F.; Kasamatsu, T.S.; Camacho, C.P. Two Thyroid Stimulating Hormone assays correlated in clinical practice show disagreement in subclinical hypothyroidism patients. Clin. Biochem. 2018, 53, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, T.; Fenn, J.; Sanders, A.; Ford, C.; Gama, R. Clinical concordance assessment should be an integral component of laboratory method comparison studies: A regression transference of routine clinical data approach. Clin. Biochem. 2022, 103, 25–28. [Google Scholar] [CrossRef]
- Kalaria, T.; Sanders, A.; Fenn, J.; Ashby, H.L.; Mohammed, P.; Buch, H.N.; Ford, C.; Gama, R. The diagnosis and management of subclinical hypothyroidism is assay-dependent– Implications for clinical practice. Clin. Endocrinol. 2021, 94, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, T.; Sanders, A.; Ford, C.; Buch, H.; Fenn, J.S.; Ashby, H.L.; Mohammed, P.; Gama, R.M. Biochemical assessment of adequate Levothyroxine replacement in primary hypothyroidism differs with different TSH assays—Potential clinical implications. J. Clin. Pathol. 2022, 75, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Tay, C.T.; Laven, J.J.E.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations from the 2023 international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Eur. J. Endocrinol. 2023, 189, G43–G64. [Google Scholar] [CrossRef]
- Livingston, M.; Downie, P.; Hackett, G.; Marrington, R.; Heald, A.; Ramachandran, S. An audit of the measurement and reporting of male testosterone levels in UK clinical biochemistry laboratories. Int. J. Clin. Pract. 2020, 74, e13607. [Google Scholar] [CrossRef]
- Newman, J.D.; Handelsman, D.J. Challenges to the measurement of oestradiol: Comments on an endocrine society position statement. Clin. Biochem. Rev. 2014, 35, 75. [Google Scholar]
- Rosner, W.; Hankinson, S.E.; Sluss, P.M.; Vesper, H.W.; Wierman, M.E. Challenges to the Measurement of Estradiol: An Endocrine society Position Statement. J. Clin. Endocrinol. Metab. 2013, 98, 1376–1387. [Google Scholar] [CrossRef]
- Coucke, W.; Devleeschouwer, N.; Libeer, J.; Schiettecatte, J.; Martin, M.; Smitz, J. Accuracy and reproducibility of automated estradiol-17beta and progesterone assays using native serum samples: Results obtained in the Belgian external assessment scheme. Hum. Reprod. 2007, 22, 3204–3209. [Google Scholar] [CrossRef]
- Vesper, H.W.; Botelho, J.C.; Vidal, M.L.; Rahmani, Y.; Thienpont, L.M.; Caudil, S.P. High Variability in serum estradiol measurements in men and women. Steroids 2014, 82, 7–13. [Google Scholar] [CrossRef]
- Vujovic, S.; Brincat, M.; Erel, T.; Gambacciani, M.; Lambrinoudaki, I.; Moen, M.H.; Schenck-Gustafsson, K.; Tremollieres, F.; Rozenberg, S.; Rees, M. EMAS position statement: Managing women with premature ovarian failure. Maturitas 2010, 67, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, T.; Fenn, J.; Sanders, A.; Yates, A.; Duff, C.; Ashby, H.; Mohammed, P.; Ford, C.; Gama, R. The Diagnosis of Normocalcaemic Hyperparathyroidism is Strikingly Dissimilar Using Different Commercial Laboratory Assays. Horm. Metab. Res. 2022, 54, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Barnidge, D.R.; Chen, L.; Twentyman, J.M.; Cradic, K.W.; Grebe, S.K.; Singh, R.J. Quantification of Serum 1–84 Parathyroid Hormone in Patients with Hyperparathyroidism by Immunocapture In Situ Digestion Liquid Chromatography–Tandem Mass Spectrometry. Clin. Chem. 2010, 56, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Sturgeon, C.M.; Sprague, S.; Almond, A.; Cavalier, E.; Fraser, W.D.; Algeciras-Schimnich, A.; Singh, R.; Souberbielle, J.; Vesper, H.W. Perspective and priorities for improvement of parathyroid hormone (PTH) measurement—A view from the IFCC Working Group for PTH. Clin. Chim. Acta 2017, 467, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Mirzazadeh, M.; Webster, C.; Weerasinghe, G.; Morris, T.; James, T.; Shine, B. UK Reference Intervals for Parathyroid Hormone Using Abbott Methods. Br. J. Biomed. Sci. 2023, 80, 11224. [Google Scholar] [CrossRef]
- Need, A.G.; O’Loughlin, P.D.; Morris, H.A.; Horowitz, M.; Nordin, B.E.C. The Effects of Age and Other Variables on Serum Parathyroid Hormone in Postmenopausal Women Attending an Osteoporosis Center. J. Clin. Endocrinol. Metab. 2004, 89, 1646–1649. [Google Scholar] [CrossRef]
- Carrivick, S.J.; Walsh, J.P.; Brown, S.J.; Wardrop, R.; Hadlow, N.C. Brief Report: Does PTH Increase with Age, Independent of 25-Hydroxyvitamin D, Phosphate, Renal Function, and Ionized Calcium? J. Clin. Endocrinol. Metab. 2015, 100, 2131–2134. [Google Scholar] [CrossRef]
- Farrell, C.L.; Nguyen, L.; Carter, A.C. Parathyroid hormone: Data mining for age-related reference intervals in adults. Clin. Endocrinol. 2018, 88, 311–317. [Google Scholar] [CrossRef]
- Delgado, J.A.; Bauça, J.M.; Pastor, M.I.; Barceló, A. Use of data mining in the establishment of age-adjusted reference intervals for parathyroid hormone. Clin. Chim. Acta 2020, 508, 217–220. [Google Scholar] [CrossRef]
- Cavalcante, L.B.C.P.; Brandão, C.M.Á.; Chiamolera, M.I.; Junior, J.V.L.; de Sá Tavares Russo, P.; Morgado, J.P.M.; de Francischi Ferrer, C.M.A.; Vieira, J.G.H. Big data-based parathyroid hormone (PTH) values emphasize need for age correction. J. Endocrinol. Investig. 2023, 46, 2525–2533. [Google Scholar] [CrossRef]
- El-Farhan, N.; Rees, D.A.; Evans, C. Measuring cortisol in serum, urine and saliva—Are our assays good enough? Ann. Clin. Biochem. 2017, 54, 308–322. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.M.; Neylon, I.; Raggatt, P.R.; Sheppard, M.C.; Stewart, P.M. Defining the normal cortisol response to the short Synacthen test: Implications for the investigation of hypothalamic-pituitary disorders. Clin. Endocrinol. 1998, 49, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Nieman, L.K.; Biller, B.M.K.; Findling, J.W.; Newell-Price, J.; Savage, M.O.; Stewart, P.M.; Montori, V.M. The Diagnosis of Cushing’s Syndrome: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2008, 93, 1526–1540. [Google Scholar] [CrossRef] [PubMed]
- Baid, S.K.; Sinaii, N.; Wade, M.; Rubino, D.; Nieman, L.K. Radioimmunoassay and Tandem Mass Spectrometry Measurement of Bedtime Salivary Cortisol Levels: A Comparison of Assays to Establish Hypercortisolism. J. Clin. Endocrinol. Metab. 2007, 92, 3102–3107. [Google Scholar] [CrossRef] [PubMed]
- Atkins, J.S.; Hawley, J.M.; Owen, L.J.; Clayton, J.; Scargill, J.; Keevil, B.G. Serum cortisol assay performance following the 1 mg overnight dexamethasone suppression test. Ann. Clin. Biochem. 2023; epub ahead of print. [Google Scholar] [CrossRef]
- Weykamp, C. HbA1c: A review of analytical and clinical aspects. Ann. Lab. Med. 2013, 33, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Weykamp, C.; John, W.G.; English, E.; Erasmus, R.T.; Sacks, D.B.; Buchta, C.; Mueller, M.M.; Lenga, Y.; Budina, M.; Kratochvila, J.; et al. EurA1c: The European HbA1c Trial to Investigate the Performance of HbA1c Assays in 2166 Laboratories across 17 Countries and 24 Manufacturers by Use of the IFCC Model for Quality Targets. Clin Chem 2018, 64, 1183–1192. [Google Scholar] [CrossRef]
- World Health Organization. Classification of Diabetes Mellitus. Available online: https://www.who.int/publications/item/classification-of-diabetes-mellitus (accessed on 10 September 2023).
- International Federation of Clinical Chemistry and Laboratory Medicine. EurA1c Trial. Available online: https://information.ifcchba1c.org/education-ifcc-c-eubd/eura1c-trial.aspx. (accessed on 13 September 2023).
- Berger, P.; Sturgeon, C.; Bidart, J.M.; Paus, E.; Gerth, R.; Niang, M.; Bristow, A.; Birken, S.; Stenman, U.H. The ISOBM TD-7 Workshop on hCG and related molecules. Towards user-oriented standardization of pregnancy and tumor diagnosis: Assignment of epitopes to the three-dimensional structure of diagnostically and commercially relevant monoclonal antibodies directed against human chorionic gonadotropin and derivatives. Tumour Biol. 2002, 23, 1–38. [Google Scholar] [CrossRef]
- Whittington, J.D.; Fantz, C.R.; Gronowski, A.M.; McCudden, C.; Mullins, R.; Sokoll, L.; Wiley, C.; Wilson, A.; Grenache, D.G. The analytical specificity of human chorionic gonadotropin assays determined using WHO International Reference Reagents. Clin. Chim. Acta 2010, 411, 81–85. [Google Scholar] [CrossRef]
- Stenman, U.H.; Tiitinen, A.; Alfthan, H.; Valmu, L. The classification, functions and clinical use of different isoforms of HCG. Hum. Reprod. Update 2006, 12, 769–784. [Google Scholar] [CrossRef]
- Cole, L.A.; Sutton, J.M.; Higgins, T.N.; Cembrowski, G.S. Between-method variation in human chorionic gonadotropin test results. Clin. Chem. 2004, 50, 874–882. [Google Scholar] [CrossRef]
- Sturgeon, C.M.; Ellis, A.R. Standardization of FSH, LH and hCG—Current position and future prospects. Mol. Cell. Endocrinol. 2007, 260–262, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Stenman, U.H.; Alfthan, H.; Hotakainen, K. Human chorionic gonadotropin in cancer. Clin. Biochem. 2004, 37, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Higgins, T.N.; Hanna, A.N.; Hofer, T.L.; Cembrowski, G.S. Measurement of inaccuracy and imprecision of HCG methods using dilutions of the WHO 4th IS-HCG standard and a pregnant patient’s serum. Clin. Biochem. 2004, 37, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Snyder, J.A.; Haymond, S.; Parvin, C.A.; Gronowski, A.M.; Grenache, D.G. Diagnostic considerations in the measurement of human chorionic gonadotropin in aging women. Clin. Chem. 2005, 51, 1830–1835. [Google Scholar] [CrossRef]
- Cole, L.A.; Sasaki, Y.; Muller, C.Y. Normal Production of Human Chorionic Gonadotropin in Menopause. N. Engl. J. Med. 2007, 356, 1184–1186. [Google Scholar] [CrossRef]
- Cole, L.A.; Khanlian, S.A.; Muller, C.Y. Detection of perimenopause or postmenopause human chorionic gonadotropin: An unnecessary source of alarm. Am. J. Obstet. Gynecol. 2008, 198, 275:e1–275:e7. [Google Scholar] [CrossRef]
- El Hage, L.; Hatipoglu, B. Elevated hCG can be a benign finding in perimenopausal and postmenopausal women. Cleve Clin. J. Med. 2021, 88, 635–639. [Google Scholar] [CrossRef]
- Stenman, U.H. Biomarker development, from bench to bedside. Crit. Rev. Clin. Lab. Sci. 2016, 53, 69–86. [Google Scholar] [CrossRef]
- Iles, R.K.; Lee, C.L.; Howes, I.; Davies, S.; Edwards, R.; Chard, T. Immunoreactive β-core-like material in normal postmenopausal urine: Human chorionic gonadotrophin or LH origin? Evidence for the existence of LH core. J. Endocrinol. 1992, 133, 459–466. [Google Scholar] [CrossRef]
- Pum, J. A practical guide to validation and verification of analytical methods in the clinical laboratory. Adv. Clin. Chem. 2019, 90, 215–281. [Google Scholar] [CrossRef]
- Horowitz, G.; Jones, G.R.D. Establishment and Use of Reference Intervals. In Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, 6th ed.; Rifai, N., Horvath, A.R., Wittwer, C.T., Eds.; Elsevier: St. Louis, MO, USA, 2018; pp. 170–194. ISBN 978-0-323-35921-4. [Google Scholar]
- Westgard, J.O.; Groth, T.; Aronsson, T.; de Verdier, C.H. Combined Shewhart cusum control chart for improved quality control in clinical chemistry. Clin. Chem. 1977, 23, 1881–1887. [Google Scholar] [CrossRef] [PubMed]
- Poh, D.K.H.; Lim, C.Y.; Tan, R.Z.; Markus, C.; Loh, T.P. Internal quality control: Moving average algorithms outperform Westgard rules. Clin. Biochem. 2021, 98, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.S.; Pearson, L.N.; Schmidt, R.L. An Analysis of Multirules for Monitoring Assay Quality Control. Lab. Med. 2020, 51, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, T.; Fenn, J.; Sharrod-Cole, H.; Sanders, A.; Ford, C.; Gama, R. Samples spiked with pituitary-derived thyroid-stimulating hormone may disguise the extent of differences between thyroid-stimulating hormone assays. Ann. Clin. Biochem. 2021, 58, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, T.; Sanders, A.; Fenn, J.; Ford, C.; Gama, R. Analytical method comparisons do not consider the comparison of reference ranges which may lead to differences in diagnosis and patient management: A case for clinical discordance checks. Ann. Clin. Biochem. 2021, 58, 549–551. [Google Scholar] [CrossRef]
- Ozarda, Y. Establishing and using reference intervals. Turk. Biyokim. Derg. 2020, 45, 1–10. [Google Scholar] [CrossRef]
- Jonklaas, J.; Razvi, S. Reference intervals in the diagnosis of thyroid dysfunction: Treating patients not numbers. Lancet Diabetes Endocrinol. 2019, 7, 473–483. [Google Scholar] [CrossRef]
Endocrine Condition (s) | Examples of Laboratory Variation Impacting Diagnosis/Monitoring | Reference (s) |
---|---|---|
Growth Hormone Deficiency and Excess | IGF-1 measurement on different platforms can give different results. | [5,6] |
IGF-1 reference intervals derived from the same local population using different platforms can be different. | [5] | |
Manufacturer-provided reference ranges for IGF-1 can lead to differences in interpretation of results when compared to reference intervals derived from local population. | [7,8,9] | |
Measurements of IGF-1 and GH (after GH dynamic function tests) can be incongruent due to assay performance issues. | [5,6,12,13,14] | |
Hypothyroidism and Subclinical Hypothyroidism | Biases in TSH and fT4 measurement on major immunoassay platforms, with reference ranges that enhance rather than mitigate the discrepancy, can lead to differences in clinical decision making. | [20,21,22,23] |
| [24] | |
| [25] | |
PCOS | Measurement of testosterone in women using immunoassays is associated with poor accuracy and precision and thus a risk of misdiagnosis when evaluating for PCOS. | [26] |
Some reference intervals for testosterone in women are likely to have been derived from women with PCOS and so may be too wide and lead to mislabelling of women with PCOS as being disease free. | [26] | |
Hypogonadism | Lower reference limits for testosterone in men vary widely across laboratories, with relatively few of these being derived from local populations. Thus, detection rates of male hypogonadism could vary from laboratory to laboratory. | [27] |
Large biases from target concentrations have been found on some immunoassays for testosterone levels in EQA schemes and this could cause variation in detection rates of male hypogonadism. | [27] | |
Most modern methods do not measure low concentrations of oestradiol with good precision. | [29] | |
Assay-related variation in oestradiol results can change diagnosis rates of ovarian failure across laboratories. | [30,31] | |
Parathyroid Disorders | PTH results for a specimen can vary significantly across platforms. Only 29% of 55 samples with a normocalcaemic hyperparathyroidism on one platform had the same diagnosis on two other platforms in a study. | [33] |
PTH reference intervals may vary dependant on population. Therefore, using the manufacturer-provided reference interval, which many laboratories do, may result in wrong classification of PTH results. | [36] | |
PTH rises physiologically with age, but many laboratories use the same reference interval for all adults and therefore may erroneously classify a PTH result as elevated in the elderly. | [37] | |
Glucocorticoid Deficiency and Excess | Laboratories may have to derive their own cut-off for post-Synacthen cortisol result because of differences in cortisol assays. | [42,43] |
Endocrine Society guidance considers a late-night salivary cortisol result >4 nmol/L indicative of hypercortisolism. However, a locally derived reference range for midnight salivary cortisol in healthy adults in one study was <4.7 nmol/L by RIA and <2.8 nmol/L by LC-MS/MS. | [44,45] | |
The overnight dexamethasone suppression test is used as one of the initial investigations for glucocorticoid excess with guidance that a positive result occurs when cortisol is >50 nmol/L. However, variation in cortisol assay performance causes differences in interpretation using this cut-off if different assay platforms are used. | [44,46] | |
Diabetes Mellitus | Among the 2166 European laboratories in the first EurA1c trial, 1 in every 20 laboratories could report a value for HbA1c that differed from the target by ≥5 mmol/mol and in the seventh iteration of the trial bias could be as high as −7.2 mmol/mol. These biases may be enough to cause misclassification of a patient’s diabetes status. | [48,50] |
Human Chorionic Gonadotrophin | This hormone, though not usually implicated in pathology of the endocrine system, can show profound assay-related differences. A study of seven major hCG assays showed biases that ranged from +30.9 to −37.5% when the WHO 4th international hCG standard was assayed. | [57] |
Upper reference intervals for hCG for patients who are not pregnant may be too restrictive when applied to post-menopausal women and have led to inappropriate investigation and treatment in this group. | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorde, N.; Elgharably, A.; Kalaria, T. Impact of Variation between Assays and Reference Intervals in the Diagnosis of Endocrine Disorders. Diagnostics 2023, 13, 3453. https://doi.org/10.3390/diagnostics13223453
Lorde N, Elgharably A, Kalaria T. Impact of Variation between Assays and Reference Intervals in the Diagnosis of Endocrine Disorders. Diagnostics. 2023; 13(22):3453. https://doi.org/10.3390/diagnostics13223453
Chicago/Turabian StyleLorde, Nathan, Ahmed Elgharably, and Tejas Kalaria. 2023. "Impact of Variation between Assays and Reference Intervals in the Diagnosis of Endocrine Disorders" Diagnostics 13, no. 22: 3453. https://doi.org/10.3390/diagnostics13223453
APA StyleLorde, N., Elgharably, A., & Kalaria, T. (2023). Impact of Variation between Assays and Reference Intervals in the Diagnosis of Endocrine Disorders. Diagnostics, 13(22), 3453. https://doi.org/10.3390/diagnostics13223453