A Study on the Factors and Prediction Model of Triple-Negative Breast Cancer for Public Health Promotion
Abstract
:1. Introduction
The Literature Review
2. Research Method
2.1. Research Subjects
2.2. Research Tools
2.3. Clinical Characteristics
2.4. TNBC and Non-TNBCs
2.5. Data Analysis
3. Results
3.1. Distribution of ER, PR, and HER2
3.2. Cross-Analysis between T-Code and M-Code
3.3. Clinical Characteristics Comparison of TNBCs and Non-TNBCs
3.4. Clinical Characteristics as Factors Associated with TNBC
3.5. Prediction Model According to the Presence or Absence of TNBC
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korea Central Cancer Registry. 2019 National Cancer Registry Statistics; Korea Central Cancer Registry: Goyang, Republic of Korea, 2021. [Google Scholar]
- Ambs, S. Prognostic significance of subtype classification for short and long-term survival in breast cancer: Survival time holds the key. PLoS Med. 2010, 7, 1000281. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, M.; Figueroa, J.; Ali, H.R.; Blows, F.; Lissowska, J.; Caldas, C. Combined quantitative measures of ER, PR, HER2, and KI67 provide more prognostic information than categorical combinations in luminal breast cancer. Mod. Pathol. 2019, 32, 1244–1256. [Google Scholar] [CrossRef]
- Lee, K.K.; Kim, J.Y.; Jung, J.H.; Park, J.Y.; Park, H.Y. Clinicopathological feature and recurrence pattern of triple negative breast cancer. J. Korean Surg. Soc. 2010, 79, 14–19. [Google Scholar] [CrossRef]
- Hong, Y.S. Medical treatment of breast cancer. J. Korean Med. Assoc. 2003, 46, 512–520. [Google Scholar] [CrossRef]
- Breast Cancer Is a Treatable Cancer. Available online: https://health.chosun.com/site/data/html_dir/2019/10/04/2019100401006.html (accessed on 27 May 2022).
- Konecny, G.; Pauletti, G.; Pegram, M.; Untch, M.; Dandekar, S.; Aguilar, Z. Quantitative association between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer. J. Natl. Cancer Inst. 2003, 95, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Returns Incurable Triple-Negative Breast Cancer Cells to a Treatable State. Available online: https://www.doctorsnews.co.kr/news/articleView.html?idxno=142174 (accessed on 27 May 2022).
- Female Hormone Positive, HER2 Positive, Triple Negative Breast Cancer…What Are the Differences? Available online: http://www.canceranswer.co.kr/news/articleView.html?idxno=3435 (accessed on 27 May 2022).
- Breast Cancer Factsheet. Global Cancer Observatory. International Agency for Research on Cancer. Available online: https://gco.iarc.fr/today/data/factsheets/cancers/20-Breast-fact-sheet.pdf (accessed on 31 March 2021).
- Mehrotra, R.; Yadav, K. Breast Cancer in India: Present Scenario and the Challenges Ahead. World J. Clin. Oncol. 2022, 13, 209–218. [Google Scholar] [CrossRef]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast Cancer Development and Progression: Risk Factors, Cancer Stem Cells, Signaling Pathways, Genomics, and Molecular Pathogenesis. Genes Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef]
- Shlyakhtina, Y.; Katherine, L.M.; Maximiliano, M.P. Genetic and Non-Genetic Mechanisms Underlying Cancer Evolution. Cancers 2021, 13, 181380. [Google Scholar] [CrossRef]
- Perou, C.M.; Sørlie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [Google Scholar] [CrossRef]
- Sorlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 2001, 98, 10869–10874. [Google Scholar] [CrossRef]
- Nielsen, T.O.; Hsu, F.D.; Jensen, K.; Cheang, M.; Karaca, G.; Hu, Z.; Hernandez-Boussard, T.; Livasy, C.; Cowan, D.; Dressler, L.; et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 2004, 10, 5367–5374. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Cheung, K.Y.; Kim, Y.S. Correlation between hormonal receptor status and clinicopathologic factors with prognostic assessment in breast cancer. J. Korean Surg. Soc. 2003, 65, 198–204. [Google Scholar]
- Slamon, D.J.; Godolphin, W.; Jones, L.A.; Holt, J.A.; Wong, S.G.; Keith, D.E.; Levin, W.J.; Stuart, S.G.; Udove, J.; Ullrich, A.; et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989, 244, 707–712. [Google Scholar] [CrossRef]
- Health Trends. Available online: https://www.k-health.com/news/articleView.html?idxno=50725 (accessed on 7 February 2023).
- Robert, D.B.; Marc, E.L. Cancer of the breast. In Cancer, Principle and Practice of Oncology, 6th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2001; pp. 1633–1651. [Google Scholar]
- Sue, A.J. Hormone receptors in breast cancer: Racial difference in distribution and survival. Breast Cancer Res. Treat. 2002, 73, 45–59. [Google Scholar] [CrossRef]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef] [PubMed]
- Korea Central Cancer Registry. National Cancer Center, Collaborative Stage Data User Guide; Korea Central Cancer Registry: Goyang, Republic of Korea, 2018. [Google Scholar]
- Korea Central Cancer Registry; National Cancer Center. Annual Report of Cancer Statistics in Korea in 2019; Ministry of Health and Welfare: Taipei City, Taiwan, 2021; p. 15. Available online: http://ncc.re.kr/cancerStatsList.ncc?searchKey=total&searchValue=&pageNum=1 (accessed on 27 May 2022).
- Korea Central Cancer Registry. Annual Report of Cancer Statistics in Korea in 2016; Korea Central Cancer Registry: Goyang, Republic of Korea, 2018. [Google Scholar]
- Jung, M.K.; Lee, S.K. A study on decision tree using logistic regression coefficients. J. Korean Data Anal. Soc. 2008, 10, 1517–1526. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth: Belmont, Australia, 1984. [Google Scholar]
- Kass, G.V. An exploratory technique for investigating large quantities of categorical data. Appl. Stat. 1980, 29, 119–129. [Google Scholar] [CrossRef]
- Choi, J.S.; Seo, D.S. Decision trees and its applications. Stat. Korea Stat. Anal. Res. 1999, 4, 61–83. [Google Scholar]
- Huh, M.H.; Lee, Y.G. Data Mining Modeling and Case, 2nd ed.; Hannarae: Seoul, Republic of Korea, 2008; pp. 171–250. [Google Scholar]
- Choi, J.H.; Seo, D.S. Data mining prediction and utilization. Stat. Anal. Res. 2002, 4, 61–83. [Google Scholar]
- Lu, C.; Yun, N. Triple negative breast cancer: Special histological types and emerging therapeutic methods. Cancer Biol. Med. 2020, 17, 293–306. [Google Scholar] [CrossRef]
- Yuli, C.; Shao, N.; Rao, R.; Aysola, P.; Reddy, V.; Oprea-llies, G.; Lee, L.; Okoli, J.; Partridge, E.; Reddy, E.S.P.; et al. BRCA1a has antitumor activity in TN breast, ovarian and prostate cancers. Oncogene 2007, 26, 6031–6037. [Google Scholar] [CrossRef]
- Carey, L.A.; Perou, C.M.; Livasy, C.A.; Dressler, L.G.; Cowan, D.; Conway, K.; Karaca, G.; Troester, M.A.; Tse, C.K.; Edmiston, S.; et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 2006, 295, 2492–2502. [Google Scholar] [CrossRef]
- Bauer, K.R.; Brown, M.; Cress, R.D.; Parise, C.A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: A population-based study from the California cancer Registry. Cancer 2007, 109, 1721–1728. [Google Scholar] [CrossRef]
- Rakha, E.A.; El-Sayed, M.E.; Green, A.R.; Lee, A.H.; Robertson, J.F.; Ellis, I.O. Prognostic markers in triple-negative breast cancer. Cancer 2007, 109, 25–32. [Google Scholar] [CrossRef]
- Sasa, M.; Bando, Y.; Takahashi, M.; Hirose, T.; Nagao, T. Screening for basal marker expression is necessary for decision of therapeutic strategy for triple-negative breast cancer. J. Surg. Oncol. 2008, 97, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.S.; Cho, J.H.; Kwon, S.Y.; Kang, S.H. Clinicopathologic characteristics and prognosis of early-stage triple negative breast cancer: Comparison with non-triple negative group. J. Korean Surg. Soc. 2009, 77, 37–42. [Google Scholar] [CrossRef]
- Haffty, B.G.; Yang, Q.; Reiss, M.; Kearney, T.; Higgins, S.A.; Weidhaas, J.; Harris, L.; Hait, W.; Toppmeyer, D. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J. Clin. Oncol. 2006, 24, 5652–5657. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.P.; Martel, M.; Harris, L.N. Triple negative breast cancer: Current understanding of biology and treatment options. Curr. Opin. Obstet. Gynecol. 2008, 20, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, Y.J.; Choi, Y.J. Does she advance her development in the face of cancer? A structural equation model of posttraumatic growth after diagnosed with cancer. Int. J. Adv. Nurs. Educ. Res. 2018, 3, 1–10. [Google Scholar] [CrossRef]
ER, PR | HER2 | Classification of Breast Cancer | Note |
---|---|---|---|
+ | − | ER/PR-positive | Non-TNBCs |
− | + | HER2-positive | |
+ | + | ER/PR- and HER2-positive | |
− | − | Triple-negative | TNBCs |
Classification | n | % | Cumulative (%) | X2 (p) |
---|---|---|---|---|
Triple-negative | 253 | 12.4 | 12.4 | 2045.000 (0.000) |
Triple-positive | 261 | 12.8 | 25.2 | |
ER (+) PR (+) HER2 (−) | 1047 | 51.2 | 76.4 | |
ER (−) PR (−) HER2 (+) | 205 | 10.0 | 86.4 | |
ER (+) PR (−) HER2 (−) | 166 | 8.1 | 94.5 | |
ER (+) PR (−) HER2 (+) | 95 | 4.6 | 99.1 | |
ER (−) PR (+) HER2 (+) | 10 | 0.5 | 99.6 | |
ER (−) PR (+) HER2 (−) | 8 | 0.4 | 100.0 | |
Total | 2045 | 100.0 |
Classification | T-Code n (%) | Total n (%) | X2 (p) | ||||
---|---|---|---|---|---|---|---|
C50.0–C50.1 | C50.2–C50.3 | C50.4–C50.5 | C50.8 | C50.6 –C50.9 | |||
M850–M854 | 113 (5.8) | 375 (19.4) | 833 (43.1) | 390 (20.2) | 223 (11.5) | 1934 (100.0) | 26.550 (0.047) |
M844–M849 | 3 (6.5) | 10 (21.7) | 17 (37.0) | 10 (21.7) | 6 (13.0) | 46 (100.0) | |
M814–M838 | 1 (3.3) | 3 (10.0) | 14 (46.7) | 6 (20.0) | 6 (20.0) | 30 (100.0) | |
M856–M857 | - | 6 (46.2) | 4 (30.8) | 2 (15.4) | 1 (7.7) | 13 (100.0) | |
M839–842, M800 | 2 (9.1) | 4 (18.2) | 3 (13.6) | 5 (22.7) | 8 (36.4) | 22 (100.0) | |
Total n (%) | 119 (5.8) | 398 (19.5) | 871 (42.6) | 413 (20.2) | 244 (11.9) | 2045 (100.0) |
Characteristics | TNBC n = 253 (%) | Non-TNBCs n = 1792 (%) | Total n = 2045 (%) | X2 (p) | |
---|---|---|---|---|---|
Age | ≤39 years | 38 (19.5) | 157 (80.5) | 195 (100.0) | 19.376 (0.001) |
40–49 years | 62 (9.3) | 603 (90.7) | 665 (100.0) | ||
50–59 years | 77 (11.7) | 581 (88.3) | 658 (100.0) | ||
60–69 years | 43 (12.8) | 293 (87.2) | 336 (100.0) | ||
≥70 years | 33 (17.3) | 158 (82.7) | 191 (100.0) | ||
T-code | C50.0–C50.1 | 11 (9.2) | 108 (90.8) | 1199 (100.0) | 7.677 (0.104) |
C50.2–C50.3 | 43 (10.8) | 355 (89.2) | 398 (100.0) | ||
C50.4–C50.5 | 125 (14.4) | 746 (85.6) | 871 (100.0) | ||
C50.8 | 52 (12.6) | 361 (87.4) | 413 (100.0) | ||
Other | 22 (9.0) | 222 (91.0) | 244 (100.0) | ||
M-code | M850-M854 | 233 (12.0) | 1701 (88.0) | 1934 (100.0) | 3.452 (0.074) |
Other | 20 (18.0) | 91 (82.0) | 111 (100.0) | ||
Tumor size | <2 cm | 94 (9.0) | 956 (91.0) | 1050 (100.0) | 23.273 (0.000) |
≥2 cm | 159 (16.0) | 836 (84.0) | 995 (100.0) | ||
Differentiation | Well | 1 (1.2) | 83 (98.8) | 84 (100.0) | 40.838 (0.000) |
Moderate | 18 (7.4) | 225 (92.6) | 243 (100.0) | ||
Poor | 45 (24.7) | 137 (75.3) | 182 (100.0) | ||
Unknown | 189 (12.3) | 1347 (87.7) | 1536 (100.0) | ||
Stage | Stage I | 85 (9.2) | 839 (90.8) | 924 (100.0) | 23.908 (0.000) |
Stage II | 127 (15.7) | 681 (84.3) | 808 (100.0) | ||
Stage III | 26 (10.9) | 212 (89.1) | 238 (100.0) | ||
Stage IV | 15 (21.7) | 54 (78.3) | 69 (100.0) | ||
SEER stage | Localized (code 1) | 156 (12.3) | 1114 (87.7) | 1270 (100.0) | 6.012 (0.049) |
Regional (code 2~4) | 80 (11.5) | 614 (88.5) | 694 (100.0) | ||
Distant (code 7) | 17 (21.0) | 64 (79.0) | 81 (100.0) | ||
Neoadj. Tx | Yes | 26 (24.1) | 82 (75.9) | 108 (100.0) | 20.103 (0.000) |
No | 204 (11.3) | 1609 (88.7) | 1813 (100.0) | ||
Unknown | 23 (18.5) | 101 (81.5) | 124 (100.0) |
Classification | Exp (B) | 95% CI | p | |
---|---|---|---|---|
Age | ≤39 years | 1.000 | ||
40–49 years | 2.123 | 1.342–3.359 | 0.001 | |
50–59 years | 1.775 | 1.136–2.775 | 0.012 | |
60–69 years | 1.537 | 0.929–2.541 | 0.094 | |
≥70 years | 1.002 | 0.580–1.729 | 0.996 | |
T-code | C50.0–C50.1 | 1.000 | ||
C50.2–C50.3 | 0.745 | 0.361–1.537 | 0.425 | |
C50.4–C50.5 | 0.530 | 0.270–1.042 | 0.066 | |
C50.8 | 0.642 | 0.315–1.307 | 0.222 | |
Other | 0.932 | 0.423–2.052 | 0.861 | |
M-code | M850-M854 | 1.000 | ||
Other | 0.547 | 0.323–0.928 | 0.025 | |
Tumor size | <2 cm | 1.000 | ||
≥2 cm | 0.695 | 0.420–1.149 | 0.156 | |
Differentiation | Well | 1.000 | ||
Moderate | 0.154 | 0.020–1.178 | 0.072 | |
Poor | 0.040 | 0.005–0.302 | 0.002 | |
Unknown | 0.092 | 0.013–0.668 | 0.018 | |
Stage | Stage I | 1.000 | ||
Stage II | 0.721 | 0.409–1.272 | 0.258 | |
Stage III | 1.067 | 0.469–2.425 | 0.877 | |
Stage IV | 0.452 | 0.070–2.910 | 0.403 | |
SEER stage | Localized (code 1) | 1.000 | 0.064 | |
Regional (code 2~4) | 1.610 | 1.080–2.402 | 0.020 | |
Distant (code 7) | 1.401 | 0.262–7.489 | 0.694 | |
Neoadj. Tx | Yes | 1.000 | 0.000 | |
No | 2.656 | 1.577–4.472 | 0.000 | |
Unknown | 1.535 | 0.792–2.978 | 0.205 |
Observed | Prediction Category | Risk Estimate | SE of Risk Estimate | |||||
---|---|---|---|---|---|---|---|---|
TNBC | Non-TNBCs | Total | Predicted Ratio | |||||
Logistic regression | Actual category | TNBC | 13 | 240 | 253 | 5.1 | 1.954 | 0.067 |
Non-TNBCs | 9 | 1783 | 1792 | 99.5 | ||||
Total | 22 | 2023 | 2045 | 87.8 | ||||
Decision-making tree | Actual category | TNBC | 0 | 253 | 253 | 0.0 | 0.124 | 0.007 |
Non-TNBCs | 0 | 1792 | 1792 | 100.0 | ||||
Total | 0 | 2045 | 2045 | 87.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, Y.-H. A Study on the Factors and Prediction Model of Triple-Negative Breast Cancer for Public Health Promotion. Diagnostics 2023, 13, 3486. https://doi.org/10.3390/diagnostics13223486
Nam Y-H. A Study on the Factors and Prediction Model of Triple-Negative Breast Cancer for Public Health Promotion. Diagnostics. 2023; 13(22):3486. https://doi.org/10.3390/diagnostics13223486
Chicago/Turabian StyleNam, Young-Hee. 2023. "A Study on the Factors and Prediction Model of Triple-Negative Breast Cancer for Public Health Promotion" Diagnostics 13, no. 22: 3486. https://doi.org/10.3390/diagnostics13223486
APA StyleNam, Y. -H. (2023). A Study on the Factors and Prediction Model of Triple-Negative Breast Cancer for Public Health Promotion. Diagnostics, 13(22), 3486. https://doi.org/10.3390/diagnostics13223486