A Glimmer of Hope for Patients with a T3 Transformation Zone: miRNAs Are Potential Biomarkers for Cervical Dysplasia
Abstract
:1. Introduction
2. Materials and Methods
- “Normal findings”: this category encompassed findings such as polyps, viral warts, or metaplasia;
- “Minor changes”: thin, acetowhite epithelium, an irregular geographic border, a fine mosaic, and a fine punctation fell into this category;
- “Major changes”: dense acetowhite epithelium, rapid appearance of acetowhitening, cuffed crypt (gland) openings, a coarse mosaic, coarse punctuation, a sharp border, an inner border sign, and a ridge sign were classified as major changes;
- “Suspicious of invasion/cancer”: Findings falling into this category were suggestive of potential invasion or cancer.
2.1. Processing and Lysis
2.2. RNA Isolation, Reverse Transcription, and Amplification
2.3. Real-Time qPCR
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Liu, B.; Gao, S.; Li, S. A Comprehensive Comparison of CT, MRI, Positron Emission Tomography or Positron Emission Tomography/CT, and Diffusion Weighted Imaging-MRI for Detecting the Lymph Nodes Metastases in Patients with Cervical Cancer: A Meta-Analysis Based on 67 Studies. Gynecol. Obstet. Investig. 2017, 82, 209–222. [Google Scholar] [CrossRef]
- Chrysostomou, A.C.; Stylianou, D.C.; Constantinidou, A.; Kostrikis, L.G. Cervical Cancer Screening Programs in Europe: The Transition Towards HPV Vaccination and Population-Based HPV Testing. Viruses 2018, 10, 729. [Google Scholar] [CrossRef]
- Jansen, E.E.L.; Zielonke, N.; Gini, A.; Anttila, A.; Segnan, N.; Voko, Z.; Ivanus, U.; McKee, M.; de Koning, H.J.; de Kok, I.; et al. Effect of organised cervical cancer screening on cervical cancer mortality in Europe: A systematic review. Eur. J. Cancer 2020, 127, 207–223. [Google Scholar] [CrossRef]
- Arbyn, M.; Simon, M.; Peeters, E.; Xu, L.; Meijer, C.; Berkhof, J.; Cuschieri, K.; Bonde, J.; Ostrbenk Vanlencak, A.; Zhao, F.H.; et al. 2020 list of human papillomavirus assays suitable for primary cervical cancer screening. Clin. Microbiol. Infect. 2021, 27, 1083–1095. [Google Scholar] [CrossRef]
- Bulkmans, N.W.; Berkhof, J.; Rozendaal, L.; van Kemenade, F.J.; Boeke, A.J.; Bulk, S.; Voorhorst, F.J.; Verheijen, R.H.; van Groningen, K.; Boon, M.E.; et al. Human papillomavirus DNA testing for the detection of cervical intraepithelial neoplasia grade 3 and cancer: 5-year follow-up of a randomised controlled implementation trial. Lancet 2007, 370, 1764–1772. [Google Scholar] [CrossRef]
- Fey, M.C.; Beal, M.W. Role of human papilloma virus testing in cervical cancer prevention. J. Midwifery Women’s Health 2004, 49, 4–13. [Google Scholar] [CrossRef]
- Steenbergen, R.D.; Snijders, P.J.; Heideman, D.A.; Meijer, C.J. Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat. Rev. Cancer 2014, 14, 395–405. [Google Scholar] [CrossRef]
- Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF): Prävention des Zervixkarzinoms, Langversion 1.1, 2020, AWMF Registernummer: 015/027OL. Available online: http://www.leitlinienprogramm-onkologie.de/leitlinien/zervixkarzinom-praevention/ (accessed on 25 November 2023).
- Xue, P.; Seery, S.; Li, Q.; Jiang, Y.; Qiao, Y. Risk-Based Colposcopy for Cervical Precancer Detection: A Cross-Sectional Multicenter Study in China. Diagnostics 2022, 12, 585. [Google Scholar] [CrossRef]
- Bornstein, J.; Bentley, J.; Bosze, P.; Girardi, F.; Haefner, H.; Menton, M.; Perrotta, M.; Prendiville, W.; Russell, P.; Sideri, M.; et al. 2011 colposcopic terminology of the International Federation for Cervical Pathology and Colposcopy. Obstet. Gynecol 2012, 120, 166–172. [Google Scholar] [CrossRef]
- Gustafson, L.W.; Hammer, A.; Bennetsen, M.H.; Kristensen, C.B.; Majeed, H.; Petersen, L.K.; Andersen, B.; Bor, P. Cervical intraepithelial neoplasia in women with transformation zone type 3: Cervical biopsy versus large loop excision. BJOG 2022, 129, 2132–2140. [Google Scholar] [CrossRef]
- Booth, B.B.; Tranberg, M.; Gustafson, L.W.; Christiansen, A.G.; Lapirtis, H.; Krogh, L.M.; Hjorth, I.M.D.; Hammer, A. Risk of cervical intraepithelial neoplasia grade 2 or worse in women aged >/= 69 referred to colposcopy due to an HPV-positive screening test. BMC Cancer 2023, 23, 405. [Google Scholar] [CrossRef]
- Valls, J.; Baena, A.; Venegas, G.; Celis, M.; Gonzalez, M.; Sosa, C.; Santin, J.L.; Ortega, M.; Soilan, A.; Turcios, E.; et al. Performance of standardised colposcopy to detect cervical precancer and cancer for triage of women testing positive for human papillomavirus: Results from the ESTAMPA multicentric screening study. Lancet Glob. Health 2023, 11, e350–e360. [Google Scholar] [CrossRef]
- Munshi, V.N.; Perkins, R.B.; Sy, S.; Kim, J.J. Cost-effectiveness analysis of the 2019 American Society for Colposcopy and Cervical Pathology Risk-Based Management Consensus Guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. Am. J. Obstet. Gynecol. 2022, 226, 228.e1–228.e9. [Google Scholar] [CrossRef]
- Perkins, R.B.; Guido, R.S.; Castle, P.E.; Chelmow, D.; Einstein, M.H.; Garcia, F.; Huh, W.K.; Kim, J.J.; Moscicki, A.B.; Nayar, R.; et al. 2019 ASCCP Risk-Based Management Consensus Guidelines for Abnormal Cervical Cancer Screening Tests and Cancer Precursors. J. Low. Genit. Tract Dis. 2020, 24, 102–131. [Google Scholar] [CrossRef]
- NHS: Cervical Screening: Programme and Colposcopy Management. Available online: https://www.gov.uk/government/publications/cervical-screening-programme-and-colposcopy-management (accessed on 25 November 2023).
- Australia, C.C. Clinical Guidelines. Available online: https://www.cancer.org.au/clinical-guidelines/cervical-cancer/cervical-cancer-screening (accessed on 25 November 2023).
- Tanaka, Y.; Ueda, Y.; Kakuda, M.; Kubota, S.; Matsuzaki, S.; Iwamiya, T.; Okazawa, A.; Matsuzaki, S.; Hashimoto, K.; Kobayashi, E.; et al. Predictors for recurrent/persistent high-grade intraepithelial lesions and cervical stenosis after therapeutic conization: A retrospective analysis of 522 cases. Int. J. Clin. Oncol. 2017, 22, 921–926. [Google Scholar] [CrossRef]
- Wittenborn, J.; Wagels, L.; Kupec, T.; Iborra, S.; Najjari, L.; Stickeler, E. Anxiety in women referred for colposcopy: A prospective observational study. Arch. Gynecol. Obstet. 2022, 305, 625–630. [Google Scholar] [CrossRef]
- Meijer, C.J.; Berkhof, J.; Castle, P.E.; Hesselink, A.T.; Franco, E.L.; Ronco, G.; Arbyn, M.; Bosch, F.X.; Cuzick, J.; Dillner, J.; et al. Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. Int. J. Cancer 2009, 124, 516–520. [Google Scholar] [CrossRef]
- Wentzensen, N.; Schiffman, M. Filling a gap in cervical cancer screening programmes. Lancet Oncol. 2014, 15, 249–251. [Google Scholar] [CrossRef]
- Erbes, T.; Hirschfeld, M.; Rucker, G.; Jaeger, M.; Boas, J.; Iborra, S.; Mayer, S.; Gitsch, G.; Stickeler, E. Feasibility of urinary microRNA detection in breast cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer 2015, 15, 193. [Google Scholar] [CrossRef]
- Kupec, T.; Bleilevens, A.; Iborra, S.; Najjari, L.; Wittenborn, J.; Maurer, J.; Stickeler, E. Stability of circulating microRNAs in serum. PLoS ONE 2022, 17, e0268958. [Google Scholar] [CrossRef]
- Prahm, K.P.; Hogdall, C.; Karlsen, M.A.; Christensen, I.J.; Novotny, G.W.; Hogdall, E. Identification and validation of potential prognostic and predictive miRNAs of epithelial ovarian cancer. PLoS ONE 2018, 13, e0207319. [Google Scholar] [CrossRef]
- Van Keer, S.; Pattyn, J.; Tjalma, W.A.A.; Van Ostade, X.; Ieven, M.; Van Damme, P.; Vorsters, A. First-void urine: A potential biomarker source for triage of high-risk human papillomavirus infected women. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 216, 1–11. [Google Scholar] [CrossRef]
- Arab, A.; Karimipoor, M.; Irani, S.; Kiani, A.; Zeinali, S.; Tafsiri, E.; Sheikhy, K. Potential circulating miRNA signature for early detection of NSCLC. Cancer Genet. 2017, 216–217, 150–158. [Google Scholar] [CrossRef]
- Luo, B.; Kang, N.; Chen, Y.; Liu, L.; Zhang, Y. Oncogene miR-106a promotes proliferation and metastasis of prostate cancer cells by directly targeting PTEN in vivo and in vitro. Minerva Med. 2018, 109, 24–30. [Google Scholar] [CrossRef]
- Wittenborn, J.; Weikert, L.; Hangarter, B.; Stickeler, E.; Maurer, J. The use of miRNA in the early detection of cervical intraepithelial neoplasia. Carcinogenesis 2020, 41, 1781–1789. [Google Scholar] [CrossRef]
- Hecken, J.M.; Rezniczek, G.A.; Tempfer, C.B. Innovative Diagnostic and Therapeutic Interventions in Cervical Dysplasia: A Systematic Review of Controlled Trials. Cancers 2022, 14, 2670. [Google Scholar] [CrossRef]
- Cuzick, J.; Szarewski, A.; Cubie, H.; Hulman, G.; Kitchener, H.; Luesley, D.; McGoogan, E.; Menon, U.; Terry, G.; Edwards, R.; et al. Management of women who test positive for high-risk types of human papillomavirus: The HART study. Lancet 2003, 362, 1871–1876. [Google Scholar] [CrossRef]
- Mayrand, M.H.; Duarte-Franco, E.; Rodrigues, I.; Walter, S.D.; Hanley, J.; Ferenczy, A.; Ratnam, S.; Coutlee, F.; Franco, E.L.; Canadian Cervical Cancer Screening Trial Study, G. Human papillomavirus DNA versus Papanicolaou screening tests for cervical cancer. N. Engl. J. Med. 2007, 357, 1579–1588. [Google Scholar] [CrossRef]
- Ronco, G.; Dillner, J.; Elfstrom, K.M.; Tunesi, S.; Snijders, P.J.; Arbyn, M.; Kitchener, H.; Segnan, N.; Gilham, C.; Giorgi-Rossi, P.; et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: Follow-up of four European randomised controlled trials. Lancet 2014, 383, 524–532. [Google Scholar] [CrossRef]
- Sherman, M.E.; Lorincz, A.T.; Scott, D.R.; Wacholder, S.; Castle, P.E.; Glass, A.G.; Mielzynska-Lohnas, I.; Rush, B.B.; Schiffman, M. Baseline cytology, human papillomavirus testing, and risk for cervical neoplasia: A 10-year cohort analysis. J. Natl. Cancer Inst. 2003, 95, 46–52. [Google Scholar] [CrossRef]
- Gottschlich, A.; Gondara, L.; Smith, L.W.; Anderson, J.J.; Cook, D.; Krajden, M.; Lee, M.; Martin, R.E.; Melnikow, J.; Peacock, S.; et al. Colposcopy referral rates post-introduction of primary screening with human papillomavirus testing: Evidence from a large British Columbia cohort study. Lancet Reg. Health Am. 2023, 26, 100598. [Google Scholar] [CrossRef]
- Wei, B.; Li, Q.; Seery, S.; Qiao, Y.; Jiang, Y. Endocervical curettage for diagnosing high-grade squamous intraepithelial lesions or worse in women with type 3 transformation zone lesions: A retrospective, observational study. BMC Women’s Health 2023, 23, 245. [Google Scholar] [CrossRef]
- Khunnarong, J.; Bunyasontikul, N.; Tangjitgamol, S. Treatment Outcomes of Patients With Cervical Intraepithelial Neoplasia or Invasive Carcinoma Who Underwent Loop Electrosurgical Excision Procedure. World J. Oncol. 2021, 12, 111–118. [Google Scholar] [CrossRef]
- Starodubtseva, N.L.; Chagovets, V.V.; Nekrasova, M.E.; Nazarova, N.M.; Tokareva, A.O.; Bourmenskaya, O.V.; Attoeva, D.I.; Kukaev, E.N.; Trofimov, D.Y.; Frankevich, V.E.; et al. Shotgun Lipidomics for Differential Diagnosis of HPV-Associated Cervix Transformation. Metabolites 2022, 12, 503. [Google Scholar] [CrossRef]
- Akladios, C.; Lecointre, L.; Baulon, E.; Thoma, V.; Averous, G.; Fender, M.; Lefebvre, F.; Baldauf, J.J. Reliability of Endocervical Curettage in the Diagnosis of High-grade Cervical Neoplasia and Cervical Cancer in Selected Patients. Anticancer Res. 2015, 35, 4183–4189. [Google Scholar]
- Pretorius, R.G.; Belinson, J.L.; Azizi, F.; Peterson, P.C.; Belinson, S. Utility of random cervical biopsy and endocervical curettage in a low-risk population. J. Low. Genit. Tract. Dis. 2012, 16, 333–338. [Google Scholar] [CrossRef]
- Aarnio, R.; Wikstrom, I.; Gustavsson, I.; Gyllensten, U.; Olovsson, M. Diagnostic excision of the cervix in women over 40 years with human papilloma virus persistency and normal cytology. Eur. J. Obstet. Gynecol. Reprod. Biol. X 2019, 3, 100042. [Google Scholar] [CrossRef]
- Toro, A.U.; Shukla, S.K.; Bansal, P. Micronome Revealed miR-205-5p as Key Regulator of VEGFA During Cancer Related Angiogenesis in Hepatocellular Carcinoma. Mol. Biotechnol. 2023, 65, 1178–1186. [Google Scholar] [CrossRef]
- Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 2002, 99, 15524–15529. [Google Scholar] [CrossRef]
- Delic, D.; Eisele, C.; Schmid, R.; Baum, P.; Wiech, F.; Gerl, M.; Zimdahl, H.; Pullen, S.S.; Urquhart, R. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients. PLoS ONE 2016, 11, e0150154. [Google Scholar] [CrossRef]
- Fortunato, O.; Verri, C.; Pastorino, U.; Sozzi, G.; Boeri, M. MicroRNA Profile of Lung Tumor Tissues Is Associated with a High Risk Plasma miRNA Signature. Microarrays 2016, 5, 18. [Google Scholar] [CrossRef]
- Gao, X.; Wu, Y.; Yu, W.; Li, H. Identification of a seven-miRNA signature as prognostic biomarker for lung squamous cell carcinoma. Oncotarget 2016, 7, 81670–81679. [Google Scholar] [CrossRef]
- Hayashita, Y.; Osada, H.; Tatematsu, Y.; Yamada, H.; Yanagisawa, K.; Tomida, S.; Yatabe, Y.; Kawahara, K.; Sekido, Y.; Takahashi, T. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005, 65, 9628–9632. [Google Scholar] [CrossRef]
- Hogfeldt, T.; Johnsson, P.; Grander, D.; Bahnassy, A.A.; Porwit, A.; Eid, S.; Osterborg, A.; Zekri, A.R.; Lundahl, J.; Khaled, M.H.; et al. Expression of microRNA-1234 related signal transducer and activator of transcription 3 in patients with diffuse large B-cell lymphoma of activated B-cell like type from high and low infectious disease areas. Leuk. Lymphoma 2014, 55, 1158–1165. [Google Scholar] [CrossRef]
- Klein, U.; Lia, M.; Crespo, M.; Siegel, R.; Shen, Q.; Mo, T.; Ambesi-Impiombato, A.; Califano, A.; Migliazza, A.; Bhagat, G.; et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 2010, 17, 28–40. [Google Scholar] [CrossRef]
- Leidinger, P.; Backes, C.; Blatt, M.; Keller, A.; Huwer, H.; Lepper, P.; Bals, R.; Meese, E. The blood-borne miRNA signature of lung cancer patients is independent of histology but influenced by metastases. Mol. Cancer 2014, 13, 202. [Google Scholar] [CrossRef]
- Lages, E.; Ipas, H.; Guttin, A.; Nesr, H.; Berger, F.; Issartel, J.P. MicroRNAs: Molecular features and role in cancer. Front. Biosci. 2012, 17, 2508–2540. [Google Scholar] [CrossRef]
- Granados Lopez, A.J.; Lopez, J.A. Multistep model of cervical cancer: Participation of miRNAs and coding genes. Int. J. Mol. Sci. 2014, 15, 15700–15733. [Google Scholar] [CrossRef]
- Kawai, S.; Fujii, T.; Kukimoto, I.; Yamada, H.; Yamamoto, N.; Kuroda, M.; Otani, S.; Ichikawa, R.; Nishio, E.; Torii, Y.; et al. Identification of miRNAs in cervical mucus as a novel diagnostic marker for cervical neoplasia. Sci. Rep. 2018, 8, 7070. [Google Scholar] [CrossRef]
- Cheung, T.H.; Man, K.N.; Yu, M.Y.; Yim, S.F.; Siu, N.S.; Lo, K.W.; Doran, G.; Wong, R.R.; Wang, V.W.; Smith, D.I.; et al. Dysregulated microRNAs in the pathogenesis and progression of cervical neoplasm. Cell Cycle 2012, 11, 2876–2884. [Google Scholar] [CrossRef] [PubMed]
- Kupec, T.; Bleilevens, A.; Klein, B.; Hansen, T.; Najjari, L.; Wittenborn, J.; Stickeler, E.; Maurer, J. Comparison of Serum and Urine as Sources of miRNA Markers for the Detection of Ovarian Cancer. Biomedicines 2023, 11, 2508. [Google Scholar] [CrossRef] [PubMed]
HPV + CIN3 (CIN3-Group) | HPV Only (HPV Group) | Healthy Control Group (N) | |
---|---|---|---|
Total number | 23 | 21 | 19 |
Age (median) | 42 | 51 | 46 |
Result of cytology upon referral | |||
| 0 | 21 (100%) | 4 (21%) |
3 (13%) | 0 | 6 (31.6%) | |
4 (17.4%) | 0 | 2 (10.5%) | |
6 (26.1%) | 0 | 2 (10.5%) | |
9 (39.1%) | 0 | 1 (5.3%) | |
1 (4.3%) | 0 | 4 (21%) | |
Patients with previous positive screening results | 23 (100%) | 21 (100%) | 11 (57.9%) |
Control cytology prior to colposcopy | |||
| 2 (8.7%) | 21 (100%) | 12 (63.2%) |
6 (26.1%) | 0 | 7 (36.8%) | |
2 (8.7%) | 0 | 0 | |
4 (17.4%) | 0 | 0 | |
9 (39.1%) | 0 | 0 | |
0 | 0 | 0 | |
HPV | |||
| 15 (65.2%) | 8 (38.1%) | 0 |
12 (52.2%) | 7 (33.3%) | 0 | |
3 (13.0%) | 3 (14.3%) | 0 | |
0 | 3 (14.3%) | 0 | |
6 (26.1%) | 5 (23.8%) | 0 | |
5 (21.7%) | 4 (19.0%) | 0 |
CIN3 Group | HPV Group | Control Group (N) | |
---|---|---|---|
Minor changes | 2 (8.7%) | 9 (42.9%) | 8 (42.1%) |
Major changes | 17 (73.9%) | 0 | 0 |
normal | 3 (13%) | 12 (57.1%) | 11(57.9%) |
inadequate | 1 (4.3%) | 0 | 0 |
Endocervical curettage and Biopsies | 19 (82.6%) | 10 (47.6%) | 8 (42.1%) |
endocervical curettage only | 4 (17.4%) | 9 (42.9%) | 7 (36.8%) |
TZ 3 colposcopies illustrating ectocervical dysplasia | 14 (60.9%) | 0 | 0 |
No histological sample | 0 | 0 | 4 (21.1%) |
miRNA | p-Wert (CIN3 vs. N) |
---|---|
Hsa mir 338-3p | 0.3261 |
Hsa mir 223-3p | 0.3716 |
Hsa mir 205-5p | 0.1712 |
Hsa mir 130a-3p | 0.1367 |
Hsa mir191-5p | 0.4379 |
Hsa mir 143-3p | 0.2842 |
Hsa mir 142-3p | 0.6090 |
Hsa mir 26b-5p | 0.0893 |
miRNA | p-Wert (HPV vs. N) |
---|---|
Hsa mir 338-3p | 0.6258 |
Hsa mir 223-3p | 0.8875 |
Hsa mir 205-5p | 0.0422 |
Hsa mir 130a-3p | 0.9124 |
Hsa mir191-5p | 0.6711 |
Hsa mir 143-3p | 0.9374 |
Hsa mir 142-3p | 0.3688 |
Hsa mir 26b-5p | 0.6483 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wittenborn, J.; Flasshove, E.-M.; Kupec, T.; Najjari, L.; Stickeler, E.; Maurer, J. A Glimmer of Hope for Patients with a T3 Transformation Zone: miRNAs Are Potential Biomarkers for Cervical Dysplasia. Diagnostics 2023, 13, 3599. https://doi.org/10.3390/diagnostics13243599
Wittenborn J, Flasshove E-M, Kupec T, Najjari L, Stickeler E, Maurer J. A Glimmer of Hope for Patients with a T3 Transformation Zone: miRNAs Are Potential Biomarkers for Cervical Dysplasia. Diagnostics. 2023; 13(24):3599. https://doi.org/10.3390/diagnostics13243599
Chicago/Turabian StyleWittenborn, Julia, Eva-Marie Flasshove, Tomas Kupec, Laila Najjari, Elmar Stickeler, and Jochen Maurer. 2023. "A Glimmer of Hope for Patients with a T3 Transformation Zone: miRNAs Are Potential Biomarkers for Cervical Dysplasia" Diagnostics 13, no. 24: 3599. https://doi.org/10.3390/diagnostics13243599
APA StyleWittenborn, J., Flasshove, E. -M., Kupec, T., Najjari, L., Stickeler, E., & Maurer, J. (2023). A Glimmer of Hope for Patients with a T3 Transformation Zone: miRNAs Are Potential Biomarkers for Cervical Dysplasia. Diagnostics, 13(24), 3599. https://doi.org/10.3390/diagnostics13243599