Palatine Tonsil Measurements and Echogenicity during Tonsillitis Using Ultrasonography: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Area of the Study
2.2. Study Design, Scanning, and Data Collection
2.3. Statistical Analysis
3. Results
3.1. Sample Distribution According to Age Groups
3.2. Measurement of Tonsils
3.2.1. Longitudinal and Transverse Measurement
3.2.2. Echogenicity Measurements
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ackay, A.; Kara, C.O.; Dagdeviren, E.; Zencir, M. Variation of tonsil size in 4- to 17-year-old schoolchildren. J. Otolaryngol. 2006, 35, 270–274. [Google Scholar]
- Brodsky, L.; Adler, E.; Stanievich, J.F. Naso-and oropharyngeal dimensions in children with obstructive sleep apnea. Int. J. Pediatr. Otorhinolaryngol. 1989, 17, 1–11. [Google Scholar]
- Anderson, J.; Paterek, E. Tonsillitis; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK544342/ (accessed on 30 November 2022).
- Buckley, A.R.; Moss, E.H.; Blokmanis, A. Diagnosis of peritonsillar abscess: Value of intraoral sonography. Am. J. Roentgenol. 1994, 162, 961–964. [Google Scholar]
- Lyon, M.; Glisson, P.; Blaivas, M. Bilateral peritonsillar abscess diagnosed on the basis of intraoral sonography. J. Ultrasound Med. 2003, 22, 993–996. [Google Scholar] [PubMed]
- Fordham, M.T.; Rock, A.N.; Bandarkar, A.; Preciado, D.; Levy, M.; Cohen, J.; Safdar, N.; Reilly, B.K. Transcervical ultrasonography in the diagnosis of pediatric peritonsillar abscess. Laryngoscope 2015, 125, 2799–2804. [Google Scholar]
- Lo, C.C.; Luo, C.M.; Fang, T.J. Aberrant internal carotid artery in the mouth mimicking peritonsillar abscess. Am. J. Emerg. Med. 2010, 28, 259.e5–259.e6. [Google Scholar]
- Sdralis, T.; Berkowitz, R.G. Early adenotonsillectomy for relief of acute upper airway obstruction due to acute tonsillitis in children. Int. J. Pediatr. Otorhinolaryngol. 1996, 35, 25–29. [Google Scholar]
- Cummings, C.W. Otolaryngology Head and Neck Surgery, 4th ed.; Mosby: St. Louis, MO, USA, 2005. [Google Scholar]
- Wang, J.H.; Chung, Y.S.; Jang, Y.J.; Lee, B.J. Palatine tonsil size and its correlation with subjective tonsil size in patients with sleep disordered breathing. Otolaryngol. Head Neck Surg. 2009, 141, 716–721. [Google Scholar] [PubMed]
- Becker, M. Oral Cavity and Oropharynx. In Imaging of the Head and Neck; Mafee, M.F., Valvasorri, G.E., Becker, M., Eds.; Thieme: Stuttgart, Germany, 2004; p. 866. Available online: https://archive-ouverte.unige.ch/unige:73002 (accessed on 12 December 2022).
- Iro, H.; Zenk, J.; Bozzato, A. Floor of the mouth and oropharynx. In Atlas of the Head and Neck Ultrasound; Thieme Gruppe: Stuttgart, Germany, 2013. [Google Scholar] [CrossRef] [Green Version]
- Glesson, M. The palatine tonsil, anatomy of the pharynx. In Scott-Brown Otolaryngology, 6th ed.; Reed Education& Professional Publisher: Oxford, UK, 1997; pp. 1/10/23–1/10/26. [Google Scholar]
- Bannister, L.H. Pharynx. In Gray’s Anatomy: The Anatomical Basis of Medicine and Surgery, 38th ed.; Churchill Livingstone: New York, NY, USA, 1995; Chapter 12; pp. 1728–1729. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S.L. Applied Logistic Regression, 2nd ed.; In CBSU Library; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Bandarkar, A.N.; Adeyiga, A.O.; Fordham, M.T.; Preciado, D.; Reilly, B.K. Tonsillar ultrasound: Technical approach and spectrum of pediatric peritonsillar infections. Pediatr. Radiol. 2016, 46, 1059–1067. [Google Scholar]
- Venkataraman, S.S.; Aravind, R.J.; Kavin, T. The role of diagnostic ultrasound as a new diagnostic aid in oral and maxillofacial surgery. J. Pharm. Bioallied. Sci. 2012, 4, S121–S124. [Google Scholar]
- Romano, A.; Di Stasio, D.; Petruzzi, M.; Fiori, F.; Lajolo, C.; Santarelli, A.; Lucchese, A.; Serpico, R.; Contaldo, M. Noninvasive Imaging Methods to Improve the Diagnosis of Oral Carcinoma and Its Precursors: State of the Art and Proposal of a Three-Step Diagnostic Process. Cancers 2021, 13, 2864. [Google Scholar] [CrossRef]
- Lane, P.M.; Gilhuly, T.; Whitehead, P.; Zeng, H.; Poh, C.F.; Ng, S.; Williams, P.M.; Zhang, L.; Rosin, M.P.; MacAulay, C.E. Simple device for the direct visualization of oral-cavity tissue fluorescence. J. Biomed. Opt. 2006, 11, 024006. [Google Scholar]
- Moore, C.L.; Copel, J.A. Current concepts: Point-of-care ultrasonography. N. Engl. J. Med. 2011, 364, 749–757. [Google Scholar]
- Coquia, S.F.; Hamper, U.M.; Holman, M.E.; DeJong, M.R.; Subramaniam, R.M.; Aygun, N.; Fakhry, C. Visualization of the Oropharynx With Transcervical Ultrasound. Am. J. Roentgenol. 2015, 205, 1288–1294. [Google Scholar] [CrossRef]
- Health. Available online: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/computed-tomography-ct-scan (accessed on 8 December 2022).
- Lin, E.C. Radiation risk from medical imaging. Mayo. Clin. Proc. 2010, 85, 1142–1146, quiz 1146. [Google Scholar] [CrossRef] [Green Version]
- Science Education, Computed Tomography. Available online: https://www.nibib.nih.gov/science-education/science-topics/computed-tomography-ct (accessed on 7 December 2022).
- Forshult, S.E. Magnetic Resonance Imaging—MRI—An Overview; Research Report, Karlstad University Studies 2007:22; Karlstad University: Karlstad Sweden, 2007; Available online: https://www.diva-portal.org/smash/get/diva2:5026/FULLTEXT01.pdf (accessed on 7 December 2022).
- Park, H.S.; Lee, J.M.; Choi, H.K.; Hong, S.H.; Han, J.K.; Choi, B.I. Preoperative evaluation of pancreatic cancer: Comparison of gadolinium-enhanced dynamic MRI with MR Cholangiopancreatography versus MDCT. J. Magn. Reson. Imaging 2009, 30, 586–595. [Google Scholar]
- Pitton, M.B.; Kloeckner, R.; Herber, S.; Otto, G.; Kreitner, K.F.; Dueber, C. MRI versus 64-row MDCT for diagnosis of hepatocellular cancer. World J. Gastroenterol. 2009, 15, 6044–6051. [Google Scholar]
- Science Education, Magnetic Resonance Imaging (MRI). Available online: https://www.nibib.nih.gov/science-education/science-topics/magnetic-resonance-imaging-mri (accessed on 7 December 2022).
- Ferris, N.; Goergen, S. What Is Gadolinium Contrast Medium? Inside Radiology. Available online: https://www.insideradiology.com.au/gadolinium-contrast-medium/#:~:text=The%20most%20common%20adverse%20reactions,coldness%20at%20the%20injection%20site. (accessed on 9 December 2022).
- Shellock, F.G. Magnetic resonance safety update 2002: Implants and devices. J. Magn. Reson. Imaging 2002, 16, 485–496. [Google Scholar]
- Shellock, F.G. Biomedical implants and devices: Assessment of magnetic field interactions with a 3.0-Tesla MR system. J. Magn. Reson. Imaging 2002, 16, 721–731. [Google Scholar]
- Tsai, L.L.; Grant, A.K.; Mortele, K.J.; Kung, J.W.; Smith, M.P. A practical guide to MR imaging safety: What radiologists need to know. Radiographics 2015, 35, 1722–1737. [Google Scholar]
- Bawazeer, N.; Vuong, H.; Riehm, S.; Veillon, F.; Charpiot, A. Magnetic resonance imaging after cochlear implants. J. Otol. 2019, 14, 22–25. [Google Scholar] [CrossRef]
- Heikkinen, J.; Nurminen, J.; Velhonoja, J.; Irjala, H.; Soukka, T.; Happonen, T.; Nyman, M.; Mattila, K.; Hirvonen, J. MRI Findings in Acute Tonsillar Infections. Am. J. Neuroradiol. 2022, 43, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Filho, B.C.A.; Sakae, F.A.; Sennes, L.U.; Imamura, R.; de Menezes, M.R. Intraoral and transcutaneous cervical ultrasound in the differential diagnosis of peritonsillar cellulitis and abscesses. Rev. Bras. Otorhinolaryngol. 2006, 72, 377–381. [Google Scholar]
- Miziara, I.D.; Koishi, H.U.; Zonato, A.I.; Miniti, A.; De Menezes, M.R. The use of ultrasound evaluation in the diagnosis of peritonsillar abscess. Rev. Laryngol. Otol. Rhinol. 2001, 122, 201–203. [Google Scholar]
- Powell, J.; Wilson, J.A. An evidence-based review of peritonsillar abscess. Clin. Otolaryngol. 2012, 37, 136–145. [Google Scholar]
- Brenner, D.; Elliston, C.; Hall, E.; Berdon, W. Estimated risks of radiationinduced fatal cancer from pediatric CT. Am. J. Roentgenol. 2001, 176, 289–296. [Google Scholar]
- Brenner, D.J.; Hall, E.J. Cancer risks from CT scans: Now we have data, what next? Radiology 2012, 265, 330–331. [Google Scholar]
- Pearce, M.S.; Salotti, J.A.; Little, M.P.; McHugh, K.; Lee, C.; Kim, K.P.; Howe, N.L.; Ronckers, C.M.; Rajaraman, P.; Craft, A.W.; et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study. Lancet 2012, 380, 499–505. [Google Scholar]
- Ozturk, M.; Kilinc, T. Sonographic measurement of palatine tonsil volume in children and comparison with actual volume. Med. Sci. 2017, 6, 685–688. [Google Scholar] [CrossRef] [Green Version]
- Bannister, L.H. Haemolymphoid. In Gray’s Anatomy: The Anatomical Basis of Medicine and Surgery, 38th ed.; Churchill Livingstone: New York, NY, USA, 1995; Chapter 9; pp. 1444–1447. [Google Scholar]
- Beasley, P. Anatomy of the pharynx and oesophagus. In Scott-Brown’s Otorhinolaryngology, 6th ed.; Kerr, A.G., Gleeson, M., Eds.; Butterworth-Heinemann Publications: Oxford, UK, 1997; pp. 1/10/1–1/10/40. [Google Scholar]
- Hosokawa, T.; Yamada, Y.; Takahashi, H.; Tanami, Y.; Sato, Y.; Hosokawa, M.; Oguma, E. Size of the Tonsil on Ultrasound in Children Without Tonsil-Associated Symptoms. Ultrasound Q 2020, 36, 24–31. [Google Scholar] [CrossRef]
- Arens, R.; McDonough, J.M.; Corbin, A.M.; Hernandez, M.E.; Maislin, G.; Schwab, R.J.; Pack, A.I. Linear dimensions of the upper airway structure during development assessment by magnetic resonance imaging. Am. J. Respiratory Critical Care Med. 2002, 165, 117–122. [Google Scholar]
- Chikui, T.; Yonetsu, K.; Nakamura, T. Multivariate analysis of sonographic finding on metastatic cervical lymph node, contribution of blood flow features revealed by power Doppler sonography in predicating metastasis. Am. J. Neuro Radiol. 2000, 21, 261–267. [Google Scholar]
- Bigeleisen, P.E. (Ed.) Ultrasound-Guided Regional Anesthesia and Pain Medicine; Lippincott Williams and Wilkins: London, UK, 2010. [Google Scholar]
- Pollard, B.A.; Chan, V.W. Introductory Curriculum for Ultrasound Guided Regional Anesthesia; University of Toronto Press Inc.: Toronto, ON, Canada, 2009. [Google Scholar]
- Tsui, B.C. Atlas of Ultrasound and Nerve Stimulation-Guided Regional Anesthesia; Springer Science+Business Media: New York, NY, USA, 2007. [Google Scholar]
- Izzo, L.; Casullo, A.; Caputo, M.; Costi, U.; Guerrisi, A.; Stasolla, A.; Basso, L.; Marini, M.; De Toma, G. Space occupying lesions of parotid gland. Comparative diagnostic imaging and pathological analysis of echo color/power Doppler and of magnetic resonance imaging. Acta Otorhinolaryngol. Ital. 2006, 26, 147–153. [Google Scholar]
- Hong, H.S.; Lee, J.Y.; Jeong, S.H. Normative Values for Tonsils in Pediatric Populations Based on Ultrasonography. J. Ultrasound Med. 2017, 37, 1657–1663. [Google Scholar] [CrossRef] [Green Version]
- Kay-Rivest, E.; Saint-Martin, C.; Daniel, S.J. High-Frequency Ultrasound: A Novel Diagnostic Tool to Measure Pediatric Tonsils in 3 Dimensions. Otolaryngol. Head Neck Surg. 2019, 161, 856–861. [Google Scholar] [CrossRef]
- Aydin, S.; Uner, C. Normal palatine tonsil size in healthy children: A sonographic study. Radiol. Med. 2020, 125, 864–869. [Google Scholar] [CrossRef]
- Mengi, E.; Sağtaş, E.; Kara, C.O. Assessment of Tonsil Volume With Transcervical Ultrasonography in Both Children and Adults. J. Ultrasound Med. 2020, 39, 529–534. [Google Scholar] [CrossRef]
- Asimakopoulos, P.; Pennell, D.J.L.; Mamais, C.; Veitch, D.; Stafrace, S.; Engelhardt, T. Ultrasonographic assessment of tonsillar volume in children. Int. J. Pediatr. Otorhinolaryngol. 2017, 95, 1–4. [Google Scholar] [CrossRef]
- Sievert, M.; Miksch, M.; Mantsopoulos, K.; Goncalves, M.; Rupp, R.; Mueller, S.; Traxdorf, M.; Iro, H.; Koch, M. The value of transcutaneous ultrasound in the diagnosis of tonsillar abscess: A retrospective analysis. Auris Nasus Larynx 2021, 48, 1120–1125. [Google Scholar] [CrossRef]
- Cabeçadas, J.; Martinez, D.; Andreasen, S.; Mikkelsen, L.H.; Molina-Urra, R.; Hall, D.; Strojan, P.; Hellquist, H.; Bandello, F.; Rinaldo, A.; et al. Lymphomas of the head and neck region: An update. Virchows Arch. 2019, 474, 649–665. [Google Scholar]
- Jiang, R.; Zhang, H.M.; Wang, L.Y.; Pian, L.P.; Cui, X.W. Ultrasound features of primary non-Hodgkin’s lymphoma of the palatine tonsil: A case report. World J. Clin. Cases. 2021, 9, 8470–8475. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.; Bandarkar, A.; Rana, M.S.; Tabrizi, P.R.; Preciado, D.; Jago, J.; Linguraru, M.G.; Reilly, B.K. Pilot study of the potential of 3D ultrasound to measure tonsillar volume and hypertrophy. Int. J. Pediatr. Otorhinolaryngol. 2019, 126, 109612. [Google Scholar] [CrossRef]
Group | Frequency | Percentage (within Groups) | Total Percentage | ||
---|---|---|---|---|---|
1st | 1–5 years | Normal | 30 | 62.5 | 22.9% |
Abnormal | 18 | 37.5 | 13.7% | ||
Subtotal | 48 | 100 | (36%) | ||
2nd | 6–10 years | Normal | 25 | 54.3 | 19% |
Abnormal | 21 | 45.7 | 16% | ||
Subtotal | 46 | (35%) | |||
3rd | >10 years | Normal | 24 | 64.9 | 18.3% |
Abnormal | 13 | 35.1 | 9.9% | ||
Subtotal | 37 | (28%) | |||
Total | 131 | 100% | |||
Gender | Male | 66 | 50.4 | ||
Female | 65 | 49.6 | |||
Total | 131 | 100% | |||
Weight | Minimum | Maximum | Mean (SD) | ||
8 kg | 50 kg | 28.2 (10.7) |
Age Group | Tonsil | Measurement | Status | Mean ± SD | t | Sig. (2-Tailed) |
---|---|---|---|---|---|---|
1–5 | RT | Longitudinal | Normal | 1.4 ± 0.16 | 0.06 | 0.955 |
Abnormal | 1.4 ± 0.24 | |||||
Transverse | Normal | 1.3 ± 0.16 | −3.5 | 0.001 * | ||
Abnormal | 1.5 ± 0.22 | |||||
LT | Longitudinal | Normal | 1.4 ± 0.14 | −0.22 | 0.820 | |
Abnormal | 1.4 ± 0.18 | |||||
Transverse | Normal | 1.3 ± 0.16 | −4.1 | 0.000 * | ||
Abnormal | 1.5 ± 0.2 | |||||
6–10 | RT | Longitudinal | Normal | 1.5 ± 0.13 | −0.657 | 0.514 |
Abnormal | 1.55 ± 0.22 | |||||
Transverse | Normal | 1.4 ± 0.15 | −3.302 | 0.002 * | ||
Abnormal | 1.6 ± 0.26 | |||||
LT | Longitudinal | Normal | 1.56 ± 0.12 | 0.408 | 0.685 | |
Abnormal | 1.53 ± 0.20 | |||||
Transverse | Normal | 1.46 ± 0.14 | −2.383 | 0.022 * | ||
Abnormal | 1.6 ± 0.26 | |||||
>10 | RT | Longitudinal | Normal | 1.5 ± 0.15 | −0.303 | 0.763 |
Abnormal | 1.5 ± 0.26 | |||||
Transverse | Normal | 1.4 ± 0.13 | −3.327 | 0.002 * | ||
Abnormal | 1.65 ± 0.26 | |||||
LT | Longitudinal | Normal | 1.57 ± 0.14 | −0.256 | 0.799 | |
Abnormal | 1.58 ± 0.29 | |||||
Transverse | Normal | 1.48 ± 0.11 | −2.868 | 0.007 * | ||
Abnormal | 1.67 ± 0.28 |
Age Group | Tonsil | Status | Echogenicities | p-Value | |
---|---|---|---|---|---|
Normal | Abnormal | ||||
1–5 | RT | Normal | 30 | 12 | 0.001 * |
Abnormal | 0 | 6 | |||
LT | Normal | 30 | 12 | 0.001 * | |
Abnormal | 0 | 6 | |||
6–10 | RT | Normal | 19 | 8 | 0.009 * |
Abnormal | 6 | 13 | |||
LT | Normal | 19 | 8 | 0.009 * | |
Abnormal | 6 | 13 | |||
>10 | RT | Normal | 19 | 5 | 0.108 |
Abnormal | 7 | 6 | |||
LT | Normal | 19 | 5 | 0.249 | |
Abnormal | 8 | 5 |
Area under the Curve | ||||
---|---|---|---|---|
Test Result Variable(s): W | ||||
Area | Std. Error a | Asymptotic Sig. b | Asymptotic 95% Confidence Interval | |
Lower Bound | Upper Bound | |||
0.743 | 0.052 | 0.000 | 0.640 | 0.845 |
Positive If Greater than or Equal To a | Sensitivity | 1—Specificity | Specificity | Sensitivity + Specificity |
---|---|---|---|---|
1.51 | 0.571 | 0.145 | 0.855 | 1.426 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelgabar, Z.A.; Hassan, M.G.; Elmahdi, T.S.A.; Sheikh, S.; Dator, W.L.T. Palatine Tonsil Measurements and Echogenicity during Tonsillitis Using Ultrasonography: A Case–Control Study. Diagnostics 2023, 13, 742. https://doi.org/10.3390/diagnostics13040742
Abdelgabar ZA, Hassan MG, Elmahdi TSA, Sheikh S, Dator WLT. Palatine Tonsil Measurements and Echogenicity during Tonsillitis Using Ultrasonography: A Case–Control Study. Diagnostics. 2023; 13(4):742. https://doi.org/10.3390/diagnostics13040742
Chicago/Turabian StyleAbdelgabar, Zohida A., Mahasin G. Hassan, Tasneem S. A. Elmahdi, Shanoo Sheikh, and Wireen Leila T. Dator. 2023. "Palatine Tonsil Measurements and Echogenicity during Tonsillitis Using Ultrasonography: A Case–Control Study" Diagnostics 13, no. 4: 742. https://doi.org/10.3390/diagnostics13040742
APA StyleAbdelgabar, Z. A., Hassan, M. G., Elmahdi, T. S. A., Sheikh, S., & Dator, W. L. T. (2023). Palatine Tonsil Measurements and Echogenicity during Tonsillitis Using Ultrasonography: A Case–Control Study. Diagnostics, 13(4), 742. https://doi.org/10.3390/diagnostics13040742