An Automatic DWI/FLAIR Mismatch Assessment of Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Automated FLAIR Segmentations
2.3. Statistical Analysis
3. Results
3.1. Inter-Rater Agreement
3.2. DWI/FLAIR Mismatch Agreement
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
r-tPA | Recombinant Tissue-Type Plasminogen Activator |
FDA | Food and Drug Administration (U.S.) |
EMA | European Medicines Agency |
DWI | Diffusion-Weighted Imaging |
FLAIR | FLuid-Attenuated Inversion Recovery |
ANOVA | Analysis of Variance |
SD | Standard Deviation |
PBCC | Point-Biserial Correlation Coefficient |
Appendix A
References
- Berge, E.; Whiteley, W.; Audebert, H.; De Marchis, G.M.; Fonseca, A.C.; Padiglioni, C.; de la Ossa, N.P.; Strbian, D.; Tsivgoulis, G.; Turc, G. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur. Stroke J. 2021, 6, I–LXII. [Google Scholar] [CrossRef] [PubMed]
- Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Dávalos, A.; Guidetti, D.; Larrue, V.; Lees, K.R.; Medeghri, Z.; Machnig, T.; et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 2008, 359, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.E.; Zhou, J.; Li, W.B.; Zhao, Y.W.; Li, M.H.; Li, Y.H. MRI based thrombolysis for FLAIR-negative stroke patients within 4.5–6 h after symptom onset. J. Neurol. Sci. 2017, 372, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Schwamm, L.H.; Wu, O.; Song, S.S.; Latour, L.L.; Ford, A.L.; Hsia, A.W.; Muzikansky, A.; Betensky, R.A.; Yoo, A.J.; Lev, M.H.; et al. Intravenous thrombolysis in unwitnessed stroke onset: MR WITNESS trial results. Ann. Neurol. 2018, 83, 980–993. [Google Scholar] [CrossRef] [PubMed]
- Søyland, M.H.; Tveiten, A.; Eltoft, A.; Øygarden, H.; Varmdal, T.; Indredavik, B.; Mathiesen, E.B. Wake-up stroke and unknown-onset stroke; occurrence and characteristics from the nationwide Norwegian Stroke Register. Eur. Stroke J. 2022, 7, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Thomalla, G.; Simonsen, C.Z.; Boutitie, F.; Andersen, G.; Berthezene, Y.; Cheng, B.; Cheripelli, B.; Cho, T.H.; Fazekas, F.; Fiehler, J.; et al. MRI-guided thrombolysis for stroke with unknown time of onset. N. Engl. J. Med. 2018, 379, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Rimmele, D.L.; Thomalla, G. Wake-up stroke: Clinical characteristics, imaging findings, and treatment option–an update. Front. Neurol. 2014, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Thomalla, G.; Cheng, B.; Ebinger, M.; Hao, Q.; Tourdias, T.; Wu, O.; Kim, J.S.; Breuer, L.; Singer, O.C.; Warach, S.; et al. DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4· 5 h of symptom onset (PRE-FLAIR): A multicentre observational study. Lancet Neurol. 2011, 10, 978–986. [Google Scholar] [CrossRef]
- Zhang, H.; Polson, J.S.; Nael, K.; Salamon, N.; Yoo, B.; El-Saden, S.; Scalzo, F.; Speier, W.; Arnold, C.W. Intra-domain task-adaptive transfer learning to determine acute ischemic stroke onset time. Comput. Med. Imaging Graph. 2021, 90, 101926. [Google Scholar] [CrossRef]
- Polson, J.S.; Zhang, H.; Nael, K.; Salamon, N.; Yoo, B.Y.; El-Saden, S.; Starkman, S.; Kim, N.; Kang, D.W.; Speier, W.F., IV; et al. Identifying acute ischemic stroke patients within the thrombolytic treatment window using deep learning. J. Neuroimaging 2022, 32, 1153–1160. [Google Scholar] [CrossRef]
- Lee, H.; Lee, E.J.; Ham, S.; Lee, H.B.; Lee, J.S.; Kwon, S.U.; Kim, J.S.; Kim, N.; Kang, D.W. Machine learning approach to identify stroke within 4.5 hours. Stroke 2020, 51, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, S.; Ai, Z.; Shen, T.; Zhang, H.; Duan, S.; Chen, Y.C.; Yin, X.; Sun, J. Development and external validation of a stability machine learning model to identify wake-up stroke onset time from MRI. Eur. Radiol. 2022, 32, 3661–3669. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Jiang, L.; Zhang, H.; Luo, L.; Chen, Y.; Chen, Y. An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging. NeuroImage Clin. 2021, 31, 102744. [Google Scholar] [CrossRef] [PubMed]
- Offersen, C.M.; Sørensen, J.; Sheng, K.; Carlsen, J.F.; Langkilde, A.R.; Pai, A.; Truelsen, T.C.; Nielsen, M.B. Artificial Intelligence for Automated DWI/FLAIR Mismatch Assessment on Magnetic Resonance Imaging in Stroke: A Systematic Review. Diagnostics 2023, 13, 2111. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Singh, A.; Bhambhu, Y.; Buckchash, H.; Gupta, D.K.; Prasad, D.K. Latent Graph Attention for Enhanced Spatial Context. arXiv 2023, arXiv:2307.04149. [Google Scholar] [CrossRef]
- Valanarasu, J.M.J.; Oza, P.; Hacihaliloglu, I.; Patel, V.M. Medical transformer: Gated axial-attention for medical image segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, 27 September–1 October 2021; Proceedings, Part I 24. Springer: Berlin/Heidelberg, Germany, 2021; pp. 36–46. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Isensee, F.; Petersen, J.; Klein, A.; Zimmerer, D.; Jaeger, P.F.; Kohl, S.; Wasserthal, J.; Koehler, G.; Norajitra, T.; Wirkert, S.; et al. nnu-net: Self-adapting framework for u-net-based medical image segmentation. arXiv 2018, arXiv:1809.10486. [Google Scholar] [CrossRef]
- Hernandez Petzsche, M.R.; de la Rosa, E.; Hanning, U.; Wiest, R.; Valenzuela, W.; Reyes, M.; Meyer, M.; Liew, S.L.; Kofler, F.; Ezhov, I.; et al. ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset. Sci. Data 2022, 9, 762. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.F.; Hsu, J.; Xu, X.; Ramachandran, S.; Wang, V.; Miller, M.I.; Hillis, A.E.; Faria, A.V. Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke. Commun. Med. 2021, 1, 61. [Google Scholar] [CrossRef]
- Wong, K.K.; Cummock, J.S.; Li, G.; Ghosh, R.; Xu, P.; Volpi, J.J.; Wong, S.T. Automatic segmentation in acute ischemic stroke: Prognostic significance of topological stroke volumes on stroke outcome. Stroke 2022, 53, 2896–2905. [Google Scholar] [CrossRef]
- Xiao, H.; Li, L.; Liu, Q.; Zhu, X.; Zhang, Q. Transformers in medical image segmentation: A review. Biomed. Signal Process. Control 2023, 84, 104791. [Google Scholar] [CrossRef]
- Billot, B.; Greve, D.N.; Puonti, O.; Thielscher, A.; Van Leemput, K.; Fischl, B.; Dalca, A.V.; Iglesias, J.E. SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining. Med. Image Anal. 2023, 86, 102789. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Brinkmann, M.; Forkert, N.D.; Treszl, A.; Ebinger, M.; Köhrmann, M.; Wu, O.; Kang, D.W.; Liebeskind, D.S.; Tourdias, T.; et al. Quantitative measurements of relative fluid-attenuated inversion recovery (FLAIR) signal intensities in acute stroke for the prediction of time from symptom onset. J. Cereb. Blood Flow Metab. 2013, 33, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Scheldeman, L.; Wouters, A.; Dupont, P.; Christensen, S.; Boutitie, F.; Cheng, B.; Ebinger, M.; Endres, M.; Fiebach, J.B.; Gerloff, C.; et al. Diffusion-Weighted Imaging and Fluid-Attenuated Inversion Recovery Quantification to Predict Diffusion-Weighted Imaging-Fluid-Attenuated Inversion Recovery Mismatch Status in Ischemic Stroke With Unknown Onset. Stroke 2022, 53, 1665–1673. [Google Scholar] [CrossRef] [PubMed]
- Song, S.S.; Latour, L.L.; Ritter, C.H.; Wu, O.; Tighiouart, M.; Hernandez, D.A.; Ku, K.D.; Luby, M.; Warach, S. A pragmatic approach using magnetic resonance imaging to treat ischemic strokes of unknown onset time in a thrombolytic trial. Stroke 2012, 43, 2331–2335. [Google Scholar] [CrossRef] [PubMed]
- Maleki, F.; Ovens, K.; Gupta, R.; Reinhold, C.; Spatz, A.; Forghani, R. Generalizability of machine learning models: Quantitative evaluation of three methodological pitfalls. Radiol. Artif. Intell. 2022, 5, e220028. [Google Scholar] [CrossRef] [PubMed]
- Eche, T.; Schwartz, L.H.; Mokrane, F.Z.; Dercle, L. Toward generalizability in the deployment of artificial intelligence in radiology: Role of computation stress testing to overcome underspecification. Radiol. Artif. Intell. 2021, 3, e210097. [Google Scholar] [CrossRef] [PubMed]
- Wouters, A.; Lemmens, R.; Dupont, P.; Thijs, V. Wake-up stroke and stroke of unknown onset: A critical review. Front. Neurol. 2014, 5, 153. [Google Scholar] [CrossRef]
- Huisa, B.N.; Liebeskind, D.S.; Raman, R.; Hao, Q.; Meyer, B.C.; Meyer, D.M.; Hemmen, T.M.; University of California, Los Angeles Stroke Investigators. Diffusion-weighted imaging–fluid attenuated inversion recovery mismatch in nocturnal stroke patients with unknown time of onset. J. Stroke Cerebrovasc. Dis. 2013, 22, 972–977. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef]
Reader1/Reader2 | Reader1/Algo | Reader2/Algo | |
---|---|---|---|
Dice (SD)—Image weighted | 0.856 (0.07) | 0.820 (0.12) | 0.749 (0.15) |
Worst Dice | 0.7 | 0.444 | 0.4 |
Best Dice | 1 | 0.961 | 0.932 |
Min Volume | Max Volume | Min Ratio | Max Ratio | Avg. Volume (SD) | |
---|---|---|---|---|---|
DWI | 18 | 11634 | N/A | N/A | 1388 (2245) |
Reader2 | 6 | 8700 | 12.5% | 81.2% | 843 (1606) |
Reader1 | 9 | 7661 | 14% | 90.2% | 905 (1509) |
Algo | 14 | 9596 | 31.1% | 98.2% | 1111 (1834) |
Min Volume | Max Volume | Min Ratio | Max Ratio | Avg. Volume () | |
---|---|---|---|---|---|
DWI | 8 | 31,095 | N/A | N/A | 3587 (6062) |
FLAIR | 0 | 13,980 | 0% | 87.1% | 1735 (2804) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johansen, J.; Offersen, C.M.; Carlsen, J.F.; Ingala, S.; Hansen, A.E.; Nielsen, M.B.; Darkner, S.; Pai, A. An Automatic DWI/FLAIR Mismatch Assessment of Stroke Patients. Diagnostics 2024, 14, 69. https://doi.org/10.3390/diagnostics14010069
Johansen J, Offersen CM, Carlsen JF, Ingala S, Hansen AE, Nielsen MB, Darkner S, Pai A. An Automatic DWI/FLAIR Mismatch Assessment of Stroke Patients. Diagnostics. 2024; 14(1):69. https://doi.org/10.3390/diagnostics14010069
Chicago/Turabian StyleJohansen, Jacob, Cecilie Mørck Offersen, Jonathan Frederik Carlsen, Silvia Ingala, Adam Espe Hansen, Michael Bachmann Nielsen, Sune Darkner, and Akshay Pai. 2024. "An Automatic DWI/FLAIR Mismatch Assessment of Stroke Patients" Diagnostics 14, no. 1: 69. https://doi.org/10.3390/diagnostics14010069
APA StyleJohansen, J., Offersen, C. M., Carlsen, J. F., Ingala, S., Hansen, A. E., Nielsen, M. B., Darkner, S., & Pai, A. (2024). An Automatic DWI/FLAIR Mismatch Assessment of Stroke Patients. Diagnostics, 14(1), 69. https://doi.org/10.3390/diagnostics14010069