Comparison of Vendor-Independent Software Tools for Liver Proton Density Fat Fraction Estimation at 1.5 T
Abstract
:1. Introduction
Theory
2. Materials and Methods
2.1. Phantoms
2.2. Patients
2.3. MRI Scans
2.4. Image Reconstruction and Measurements
2.5. Statistical Analysis
3. Results
3.1. Measurements in Phantoms
3.2. In Vivo Measurement of PDFF
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multisociety Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Lee, S.; Lee, J.S. Differences in the Prevalence of NAFLD, MAFLD, and MASLD According to Changes in the Nomenclature in a Health Check-up Using MRI-Derived Proton Density Fat Fraction. Abdom. Radiol. 2024. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.W.-S.; Ekstedt, M.; Wong, G.L.-H.; Hagström, H. Changing Epidemiology, Global Trends and Implications for Outcomes of NAFLD. J. Hepatol. 2023, 79, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-H.; Lee, H.A.; Kim, E.-J.; Kim, H.Y.; Kim, H.C.; Ahn, S.H.; Lee, H.; Kim, S.U. Metabolic Dysfunction-Associated Steatotic Liver Disease and Risk of Cardiovascular Disease. Gut 2024, 73, 533–540. [Google Scholar] [CrossRef] [PubMed]
- van Son, K.C.; Te Nijenhuis-Noort, L.C.; Boone, S.C.; Mook-Kanamori, D.O.; Holleboom, A.G.; Roos, P.R.; Lamb, H.J.; Alblas, G.; Coenraad, M.J.; Rosendaal, F.R.; et al. Prevalence of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in a Middle-Aged Population with Overweight and Normal Liver Enzymes, and Diagnostic Accuracy of Noninvasive Proxies. Medicine 2024, 103, e34934. [Google Scholar] [CrossRef]
- Mantovani, A.; Mingolla, L.; Rigolon, R.; Pichiri, I.; Cavalieri, V.; Zoppini, G.; Lippi, G.; Bonora, E.; Targher, G. Nonalcoholic Fatty Liver Disease Is Independently Associated with an Increased Incidence of Cardiovascular Disease in Adult Patients with Type 1 Diabetes. Int. J. Cardiol. 2016, 225, 387–391. [Google Scholar] [CrossRef]
- Hu, H.H.; Yokoo, T.; Bashir, M.R.; Sirlin, C.B.; Hernando, D.; Malyarenko, D.; Chenevert, T.L.; Smith, M.A.; Serai, S.D.; Middleton, M.S.; et al. Linearity and Bias of Proton Density Fat Fraction as a Quantitative Imaging Biomarker: A Multicenter, Multiplatform, Multivendor Phantom Study. Radiology 2021, 298, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Dixon, W.T. Simple Proton Spectroscopic Imaging. Radiology 1984, 153, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Reeder, S.B.; Cruite, I.; Hamilton, G.; Sirlin, C.B. Quantitative Assessment of Liver Fat with Magnetic Resonance Imaging and Spectroscopy. J. Magn. Reson. Imaging 2011, 34, 729–749. [Google Scholar] [CrossRef]
- Hernando, D.; Hines, C.D.G.; Yu, H.; Reeder, S.B. Addressing Phase Errors in Fat-Water Imaging Using a Mixed Magnitude/Complex Fitting Method. Magn. Reson. Med. 2012, 67, 638–644. [Google Scholar] [CrossRef]
- Roberts, N.T.; Hernando, D.; Holmes, J.H.; Wiens, C.N.; Reeder, S.B. Noise Properties of Proton Density Fat Fraction Estimated Using Chemical Shift-Encoded MRI. Magn. Reson. Med. 2018, 80, 685–695. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the Clinical Assessment and Management of Nonalcoholic Fatty Liver Disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef] [PubMed]
- Nasr, P.; Forsgren, M.F.; Ignatova, S.; Dahlström, N.; Cedersund, G.; Leinhard, O.D.; Norén, B.; Ekstedt, M.; Lundberg, P.; Kechagias, S. Using a 3% Proton Density Fat Fraction as a Cut-Off Value Increases Sensitivity of Detection of Hepatic Steatosis, Based on Results from Histopathology Analysis. Gastroenterology 2017, 153, 53–55. [Google Scholar] [CrossRef]
- Hernando, D.; Haldar, J.P.; Sutton, B.P.; Ma, J.; Kellman, P.; Liang, Z.-P. Joint Estimation of Water/Fat Images and Field Inhomogeneity Map. Magn. Reson. Med. 2008, 59, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Bydder, M.; Ghodrati, V.; Gao, Y.; Robson, M.D.; Yang, Y.; Hu, P. Constraints in Estimating the Proton Density Fat Fraction. Magn. Reson. Imaging 2020, 66, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Berglund, J.; Kullberg, J. Three-Dimensional Water/Fat Separation and T Estimation Based on Whole-Image Optimization—Application in Breathhold Liver Imaging at 1.5 T. Magn. Reson. Med. 2012, 67, 1684–1693. [Google Scholar] [CrossRef]
- Ma, J. Breath-Hold Water and Fat Imaging Using a Dual-Echo Two-Point Dixon Technique with an Efficient and Robust Phase-Correction Algorithm. Magn. Reson. Med. 2004, 52, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Reeder, S.B.; Shimakawa, A.; Brittain, J.H.; Pelc, N.J. Field Map Estimation with a Region Growing Scheme for Iterative 3-Point Water-Fat Decomposition. Magn. Reson. Med. 2005, 54, 1032–1039. [Google Scholar] [CrossRef]
- Reeder, S.B.; Wen, Z.; Yu, H.; Pineda, A.R.; Gold, G.E.; Markl, M.; Pelc, N.J. Multicoil Dixon Chemical Species Separation with an Iterative Least-Squares Estimation Method. Magn. Reson. Med. 2004, 51, 35–45. [Google Scholar] [CrossRef]
- Hernando, D.; Kellman, P.; Haldar, J.P.; Liang, Z.-P. Robust Water/Fat Separation in the Presence of Large Field Inhomogeneities Using a Graph Cut Algorithm. Magn. Reson. Med. 2010, 63, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.S.; An, L. Water-Fat Imaging with Direct Phase Encoding. J. Magn. Reson. Imaging 1997, 7, 1002–1015. [Google Scholar] [CrossRef] [PubMed]
- Berglund, J.; Skorpil, M. Multi-Scale Graph-Cut Algorithm for Efficient Water-Fat Separation. Magn. Reson. Med. 2017, 78, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Tsao, J.; Jiang, Y. Hierarchical IDEAL: Fast, Robust, and Multiresolution Separation of Multiple Chemical Species from Multiple Echo Times. Magn. Reson. Med. 2013, 70, 155–159. [Google Scholar] [CrossRef]
- Lu, W.; Hargreaves, B.A. Multiresolution Field Map Estimation Using Golden Section Search for Water-Fat Separation. Magn. Reson. Med. 2008, 60, 236–244. [Google Scholar] [CrossRef]
- Johnson, B.L.; Schroeder, M.E.; Wolfson, T.; Gamst, A.C.; Hamilton, G.; Shiehmorteza, M.; Loomba, R.; Schwimmer, J.B.; Reeder, S.; Middleton, M.S.; et al. Effect of Flip Angle on the Accuracy and Repeatability of Hepatic Proton Density Fat Fraction Estimation by Complex Data-Based, T1-Independent, T2*-Corrected, Spectrum-Modeled MRI. J. Magn. Reson. Imaging 2014, 39, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Bydder, M.; Yokoo, T.; Hamilton, G.; Middleton, M.S.; Chavez, A.D.; Schwimmer, J.B.; Lavine, J.E.; Sirlin, C.B. Relaxation Effects in the Quantification of Fat Using Gradient Echo Imaging. Magn. Reson. Imaging 2008, 26, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Reeder, S.B.; Shimakawa, A.; McKenzie, C.A.; Brittain, J.H. Robust Multipoint Water-Fat Separation Using Fat Likelihood Analysis. Magn. Reson. Med. 2012, 67, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Triay Bagur, A.; Hutton, C.; Irving, B.; Gyngell, M.L.; Robson, M.D.; Brady, M. Magnitude-intrinsic Water–Fat Ambiguity Can Be Resolved with Multipeak Fat Modeling and a Multipoint Search Method. Magn. Reson. Med. 2019, 82, 460–475. [Google Scholar] [CrossRef]
- Liu, C.-Y.; McKenzie, C.A.; Yu, H.; Brittain, J.H.; Reeder, S.B. Fat Quantification with IDEAL Gradient Echo Imaging: Correction of Bias from T1 and Noise. Magn. Reson. Med. 2007, 58, 354–364. [Google Scholar] [CrossRef]
- Bray, T.J.P.; Bainbridge, A.; Lim, E.; Hall-Craggs, M.A.; Zhang, H. MAGORINO: Magnitude-Only Fat Fraction and R* 2 Estimation with Rician Noise Modeling. Magn. Reson. Med. 2023, 89, 1173–1192. [Google Scholar] [CrossRef] [PubMed]
- Kořínek, R.; Gajdošík, M.; Trattnig, S.; Starčuk, Z.; Krššák, M. Low-Level Fat Fraction Quantification at 3 T: Comparative Study of Different Tools for Water–Fat Reconstruction and MR Spectroscopy. Magn. Reson. Mater. Phy. 2020, 33, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Hernando, D.; Sharma, S.D.; Aliyari Ghasabeh, M.; Alvis, B.D.; Arora, S.S.; Hamilton, G.; Pan, L.; Shaffer, J.M.; Sofue, K.; Szeverenyi, N.M.; et al. Multisite, Multivendor Validation of the Accuracy and Reproducibility of Proton-Density Fat-Fraction Quantification at 1.5T and 3T Using a Fat-Water Phantom. Magn. Reson. Med. 2017, 77, 1516–1524. [Google Scholar] [CrossRef] [PubMed]
- Kaposi, P.N.; Zsombor, Z.; Rónaszéki, A.D.; Budai, B.K.; Csongrády, B.; Stollmayer, R.; Kalina, I.; Győri, G.; Bérczi, V.; Werling, K.; et al. The Calculation and Evaluation of an Ultrasound-Estimated Fat Fraction in Non-Alcoholic Fatty Liver Disease and Metabolic-Associated Fatty Liver Disease. Diagnostics 2023, 13, 3353. [Google Scholar] [CrossRef] [PubMed]
- Labyed, Y.; Milkowski, A. Novel Method for Ultrasound-Derived Fat Fraction Using an Integrated Phantom. J. Ultrasound Med. 2020, 39, 2427–2438. [Google Scholar] [CrossRef] [PubMed]
- Bydder, M.; Girard, O.; Hamilton, G. Mapping the Double Bonds in Triglycerides. Magn. Reson. Imaging 2011, 29, 1041–1046. [Google Scholar] [CrossRef]
- Hamilton, G.; Yokoo, T.; Bydder, M.; Cruite, I.; Schroeder, M.E.; Sirlin, C.B.; Middleton, M.S. In Vivo Characterization of the Liver Fat 1H MR Spectrum. NMR Biomed. 2011, 24, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Daudé, P.; Roussel, T.; Troalen, T.; Viout, P.; Hernando, D.; Guye, M.; Kober, F.; Confort Gouny, S.; Bernard, M.; Rapacchi, S. Comparative Review of Algorithms and Methods for Chemical-Shift-Encoded Quantitative Fat-Water Imaging. Magn. Reson. Med. 2024, 91, 741–759. [Google Scholar] [CrossRef]
- Hong, C.W.; Hamilton, G.; Hooker, C.; Park, C.C.; Tran, C.A.; Henderson, W.C.; Hooker, J.C.; Fazeli Dehkordy, S.; Schwimmer, J.B.; Reeder, S.B.; et al. Measurement of Spleen Fat on MRI-Proton Density Fat Fraction Arises from Reconstruction of Noise. Abdom. Radiol. 2019, 44, 3295–3303. [Google Scholar] [CrossRef]
- Yu, H.; Shimakawa, A.; Hines, C.D.G.; McKenzie, C.A.; Hamilton, G.; Sirlin, C.B.; Brittain, J.H.; Reeder, S.B. Combination of Complex-Based and Magnitude-Based Multiecho Water-Fat Separation for Accurate Quantification of Fat-Fraction. Magn. Reson. Med. 2011, 66, 199–206. [Google Scholar] [CrossRef]
- Triay Bagur, A.; McClymont, D.; Hutton, C.; Borghetto, A.; Gyngell, M.L.; Aljabar, P.; Robson, M.D.; Brady, M.; Bulte, D.P. Estimation of Field Inhomogeneity Map Following Magnitude-Based Ambiguity-Resolved Water-Fat Separation. Magn. Reson. Imaging 2023, 97, 102–111. [Google Scholar] [CrossRef] [PubMed]
Patients (n = 20) | n (%) 1 | Mean ± SD |
---|---|---|
Age (years) | – | 53 ± 15 |
Female/Male | 9/11 (45%/55%) | – |
BMI (kg/m2) | – | 27.7 ± 4.7 |
T2DM | 3 (15%) | – |
Etiology of liver disease 2 | ||
MASLD | 15 (75%) | – |
MASH | 2 (10%) | – |
Cardiogenic | 1 (5%) | – |
Hemochromatosis | 1 (5%) | – |
PSC | 1 (5%) | – |
Method | Correlation 1 | p-Value | ||
---|---|---|---|---|
GC | 0.999 (0.997–1) | <0.001 | ||
QPBO | 0.999 (0.996–0.999) | <0.001 | ||
MAG | 0.999 (0.996–1) | <0.001 | ||
MAG-R | 0.999 (0.997–1) | <0.001 | ||
Method | Slope 2 | Intercept 2 | R 2 | p-Value |
GC | 1.09 | −1.13 | 0.998 | <0.001 |
QPBO | 1.07 | −1.43 | 0.997 | <0.001 |
MAG | 1.05 | −0.71 | 0.997 | <0.001 |
MAG-R | 1.02 | −0.45 | 0.998 | <0.001 |
Method | ICC 3 | p-Value | ||
GC | 0.995 (0.988–0.998) | <0.001 | ||
QPBO | 0.996 (0.991–0.999) | <0.001 | ||
MAG | 0.998 (0.994–0.999) | <0.001 | ||
MAG-R | 0.999 (0.997–1) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zsombor, Z.; Zsély, B.; Rónaszéki, A.D.; Stollmayer, R.; Budai, B.K.; Palotás, L.; Bérczi, V.; Kalina, I.; Maurovich Horvat, P.; Kaposi, P.N. Comparison of Vendor-Independent Software Tools for Liver Proton Density Fat Fraction Estimation at 1.5 T. Diagnostics 2024, 14, 1138. https://doi.org/10.3390/diagnostics14111138
Zsombor Z, Zsély B, Rónaszéki AD, Stollmayer R, Budai BK, Palotás L, Bérczi V, Kalina I, Maurovich Horvat P, Kaposi PN. Comparison of Vendor-Independent Software Tools for Liver Proton Density Fat Fraction Estimation at 1.5 T. Diagnostics. 2024; 14(11):1138. https://doi.org/10.3390/diagnostics14111138
Chicago/Turabian StyleZsombor, Zita, Boglárka Zsély, Aladár D. Rónaszéki, Róbert Stollmayer, Bettina K. Budai, Lőrinc Palotás, Viktor Bérczi, Ildikó Kalina, Pál Maurovich Horvat, and Pál Novák Kaposi. 2024. "Comparison of Vendor-Independent Software Tools for Liver Proton Density Fat Fraction Estimation at 1.5 T" Diagnostics 14, no. 11: 1138. https://doi.org/10.3390/diagnostics14111138
APA StyleZsombor, Z., Zsély, B., Rónaszéki, A. D., Stollmayer, R., Budai, B. K., Palotás, L., Bérczi, V., Kalina, I., Maurovich Horvat, P., & Kaposi, P. N. (2024). Comparison of Vendor-Independent Software Tools for Liver Proton Density Fat Fraction Estimation at 1.5 T. Diagnostics, 14(11), 1138. https://doi.org/10.3390/diagnostics14111138