Interactions between Cognitive, Affective, and Respiratory Profiles in Chronic Respiratory Disorders: A Cluster Analysis Approach
Abstract
:1. Introduction
1.1. General Context
1.2. The Relevance of the Intersection between Psychiatry and Pulmonology
1.3. Study Objectives
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Respiratory Assessment
2.3. Psychiatric Evaluation
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Results of the Normality Test for Evaluative Measurement Instruments
3.3. Analysis of the Association between MRC Scores and Cognitive and Affective Evaluations of Patients
3.4. Analysis of the Association between FEV1 Scores and Cognitive and Affective Evaluations of Patients
3.5. Analysis of the Association between CAT Scores and Cognitive and Affective Evaluations of Patients
3.6. Exploration of the Interaction between MRC Scores and Numeric Evaluations of Cognitive and Affective Performance of Patients
3.7. Exploration of the Interaction between FEV1 Scores and Numeric Evaluations of Cognitive and Affective Performance of Patients
3.8. Cluster Analysis—Identifying Patient Profiles Based on Cognitive, Affective, and Respiratory Characteristics
3.9. Characteristics of Cluster 0
3.10. Identification Methods for Moderate Cognitive Respiratory Cluster
3.11. Characteristics of Cluster 1
3.12. Characteristics of Cluster 2
3.13. Identification Methods for Stable Cognitive Respiratory Cluster
4. Discussion
4.1. Specific Results of Classic Analysis: Preliminary Data Evaluation
4.2. Cluster Analysis Results and Identified Profiles
4.2.1. Analysis of the Moderate Cognitive Respiratory Cluster
4.2.2. Moderate Cognitive Function and Correlation with COPD and Asthma
4.2.3. Variability in Cognitive Function
4.2.4. Psychological Impact of Respiratory Conditions
4.2.5. Severity of Respiratory Symptoms and the Need for Interventions
4.2.6. Impaired Pulmonary Capacity and Its Relationship with Cognitive Function and Emotional State
4.2.7. Conclusions and Recommendations for the Moderate Cognitive Respiratory Cluster
4.2.8. General Characteristics of the Severe Cognitive Respiratory Cluster
4.2.9. Severely Impaired Cognitive Function
4.2.10. Impact of Cognitive Dysfunctions on Daily Life
4.2.11. Anxiety and Its Impact on Disease Management
4.2.12. Quality of Life and Respiratory Symptoms—Interaction with Cognitive and Emotional State
4.2.13. Strategies for Enhancing Quality of Life
4.2.14. Conclusions and Recommendations for the Severe Cognitive Respiratory Cluster
4.2.15. General Characteristics of the Stable Cognitive Respiratory Cluster
4.2.16. Preserving Cognitive Function in the Presence of Respiratory Conditions
4.2.17. Reduced Impact of Depressive Symptoms
4.2.18. Anxiety and Adaptation to Illness
4.2.19. Mild Respiratory Symptoms and Their Impact on Daily Life
4.2.20. Reduced Impact of Respiratory Symptoms on Quality of Life
4.3. Conclusions and Recommendations for the Stable Cognitive Respiratory Cluster
4.4. Future Research
4.4.1. Discussion of Implications
4.4.2. Research Suggestions
4.4.3. Practical Applications
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soriano, J.B.; Kendrick, P.J.; Paulson, K.R.; Gupta, V.; Abrams, E.M.; Adedoyin, R.A.; Adhikari, T.B.; Advani, S.M.; Agrawal, A.; Ahmadian, E.; et al. Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Respir. Med. 2020, 8, 585–596. [Google Scholar] [CrossRef] [PubMed]
- GBD 2015 Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017, 5, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.-H.; Ahn, H.-R.; Park, J.-K.; Kim, J.-W.; Nam, G.-H.; Hong, S.-K.; Kim, M.-J.; Ghoshal, A.G.; Muttalif, A.R.B.A.; Lin, H.-C.; et al. Burden of Respiratory Disease in Korea: An Observational Study on Allergic Rhinitis, Asthma, COPD, and Rhinosinusitis. Allergy Asthma. Immunol. Res. 2016, 8, 527–534. [Google Scholar] [CrossRef] [PubMed]
- He, Q.-Y.; Zhou, X.; Xie, C.; Liang, Z.-A.; Chen, P.; Wu, C.-G. Impact of chronic obstructive pulmonary disease on quality of life and economic burden in Chinese urban areas. Zhonghua Jie He He Hu Xi Za Zhi/Chin. J. Tuberc. Respir. Dis. 2009, 32, 253–257. [Google Scholar]
- Cupurdija, V. Economic Impact of Leading Prosperity Diseases: COPD in South East Europe. Front. Public Health. 2015, 24, 50. [Google Scholar] [CrossRef] [PubMed]
- Kamusheva, M.; Dimitrova, M.; van Boven, J.F.M.; Postma, M.J.; van der Molen, T.; Kocks, J.W.H.; Mitov, K.; Doneva, M.; Petrova, D.; Georgiev, O.; et al. Clinical characteristics, treatment patterns, and socio-economic burden of COPD in Bulgaria. J. Med. Econ. 2017, 20, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Milne, K.; Sin, D. Acute Exacerbations of Chronic Lung Disease: Cardiac Considerations. Cardiac Considerations in Chronic Lung Disease; Humana: Cham, Switzerland, 2020; pp. 229–245. [Google Scholar]
- Cavaillès, A.; Brinchault-Rabin, G.; Dixmier, A.; Goupil, F.; Gut-Gobert, C.; Marchand-Adam, S.; Meurice, J.C.; Morel, H.; Person-Tacnet, C.; Leroyer, C.; et al. Comorbidities of COPD. Eur. Respir. Rev. 2013, 22, 454–475. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.H.; Richardson, C.R.; Han, M.K.; Cigolle, C.T. Chronic obstructive pulmonary disease, cognitive impairment, and development of disability: The health and retirement study. Ann. Am. Thorac. Soc. 2014, 11, 1362–1370. [Google Scholar] [CrossRef]
- Salık, Y.; Ozalevli, S.; Cımrın, A. Cognitive function and its effects on the quality of life status in the patients with chronic obstructive pulmonary disease (COPD). Arch. Gerontol. Geriatr. 2007, 45, 273–280. [Google Scholar] [CrossRef]
- Ng, I.K.; Tseng, F.S. Evaluation of mental health illness in patients with chronic respiratory disease. Intern. Med. J. 2021, 51, 1007. [Google Scholar] [CrossRef]
- Zhou, X.; Li, J.; Gu, W.; Wang, J.; Zhu, Y.; Zhang, G.; Ding, Y.; Tang, Y. Prevalence and associated factors of anxiety and depression among patients with chronic respiratory diseases in eight general hospitals in Jiangsu Province of China: A cross-sectional study. Psychiatry Res. 2017, 251, 48–53. [Google Scholar] [CrossRef]
- Zafar, M. Common mental disorder among patients with chronic respiratory disease. Egypt. J. Chest Dis. Tuberc. 2022, 71, 38–43. [Google Scholar] [CrossRef]
- Mahler, D.A.; Wells, C.K. Evaluation of clinical methods for rating dyspnea. Chest 1988, 93, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.W.; Harding, G.; Berry, P.; Wiklund, I.; Chen, W.H.; Kline Leidy, N. Development and first validation of the COPD Assessment Test. Eur. Respir. J. 2009, 34, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Enright, P.L.; Lebowitz, M.D.; Cockroft, D.W. Physiologic measures: Pulmonary function tests. Asthma outcome. Am. J. Respir. Crit. Care Med. 1994, 149 Pt 2, S9–S18; discussion S19–S20. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Zigmond, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, M.; Trojano, L.; De Micco, R.; Sant’Elia, V.; Giordano, A.; Russo, A.; Passamonti, L.; Tedeschi, G.; Chiorri, C.; Tessitore, A. Correlates of the discrepancy between objective and subjective cognitive functioning in non-demented patients with Parkinson’s disease. J. Neurol. 2021, 268, 3444–3455. [Google Scholar] [CrossRef]
- Kim, Y.; Rogers, J.; Jammula, V.; Vera, E.; Christ, A.; Leeper, H.; Acquaye, A.; Boris, L.; Briceno, N.; Burton, E.; et al. INNV-32. Comparing the Montreal Cognitive Assessment (MOCA) Full and 5-Minute Protocols in Mild Cognitive Impairment Screening of Adult CNS Tumor Patients. Neuro-Oncology 2022, 24 (Suppl. 7), vii148. [Google Scholar] [CrossRef]
- Crişan, A.F.; Oancea, C.; Timar, B.; Fira-Mladinescu, O.; Crişan, A.; Tudorache, V. Cognitive impairment in chronic obstructive pulmonary disease. PLoS ONE 2014, 9, e102468. [Google Scholar] [CrossRef] [PubMed]
- Jessy, J.; Shaji, C.V.; Venugopal, P. Variation of Cognition and Cerebral Activity with Severity of Airflow Obstruction in COPD. Int. J. Adv. Res. 2021, 9, 860–868. [Google Scholar]
- Villeneuve, S.; Pepin, V.; Rahayel, S.; Bertrand, J.A.; de Lorimier, M.; Rizk, A.; Desjardins, C.; Parenteau, S.; Beaucage, F.; Joncas, S.; et al. Mild cognitive impairment in moderate to severe COPD: A preliminary study. Chest 2012, 142, 1516–1523. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, F.; Verga, M.; Reggente, M.; Maria Casanova, F.; Santus, P.; Blasi, F.; Allegra, L.; Centanni, S. Anxiety and depression in COPD patients: The roles of gender and disease severity. Respir. Med. 2006, 100, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Lou, P.; Zhu, Y.; Chen, P.; Zhang, P.; Yu, J.; Zhang, N.; Chen, N.; Zhang, L.; Wu, H.; Zhao, J. Prevalence and correlations with depression, anxiety, and other features in outpatients with chronic obstructive pulmonary disease in China: A cross-sectional case control study. BMC Pulm. Med. 2012, 12, 53. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Lin, Y.X.; Yang, T.; Zhang, H.; Jiao, X.; Zhang, S.; Chang, X.H.; Wang, Z.M.; Wang, C. Predictive validity of BODE index for anxious and depressive symptoms in patients with chronic obstructive pulmonary disease. Chin. Med. J. 2010, 123, 1845–1851. [Google Scholar]
- Sharma, S.; Shakya, U.; Sharma, P.; Limbu, P. Association between Psychological Status and Dyspnea in Patients with Chronic Obstructive Pulmonary Disease. J. Biomed. Pharm. Res. 2017, 6, 43–52. [Google Scholar]
- Rantala, H.A.; Leivo-Korpela, S.; Lehto, J.T.; Lehtimäki, L. Dyspnea on Exercise Is Associated with Overall Symptom Burden in Patients with Chronic Respiratory Insufficiency. Palliat. Med. Rep. 2021, 2, 48–53. [Google Scholar] [CrossRef]
- Athayde, F.; Sampaio, R.; Vieira, B.; Vieira, D.; Britto, R.; Parreira, V. Evaluation of different domains of the Saint George’s respiratory questionnaire (SGRQ) according to the severity levels of chronic obstructive pulmonary disease (COPD). Eur. Respir. J. 2011, 38, 3580. [Google Scholar]
- Sachdev, P.; Anstey, K.; Parslow, R.; Wen, W.; Maller, J.; Kumar, R.; Christensen, H.; Jorm, A. Pulmonary function, cognitive impairment and brain atrophy in a middle-aged community sample. Dement. Geriatr. Cogn. Disord. 2006, 21, 300–308. [Google Scholar] [CrossRef]
- Daulatzai, M.A. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J. Neurosci. Res. 2017, 95, 943–972. [Google Scholar] [CrossRef] [PubMed]
- Wiegman, A.F.; Meier, I.B.; Schupf, N.; Manly, J.J.; Guzman, V.A.; Narkhede, A.; Stern, Y.; Martinez-Ramirez, S.; Viswanathan, A.; Luchsinger, J.A.; et al. Cerebral microbleeds in a multiethnic elderly community: Demographic and clinical correlates. J. Neurol. Sci. 2014, 345, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Niu, L.; Li, S.; Le, W. Pathological Impacts of Chronic Hypoxia on Alzheimer’s Disease. ACS Chem. Neurosci. 2019, 10, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Shang, S.; Wu, C. Association between cognitive declines and disability in activities of daily living in older adults with COPD: Evidence from the China health and retirement longitudinal study. BMJ Open 2020, 10, e040098. [Google Scholar] [CrossRef]
- Dodd, J.W.; Charlton, R.A.; Broek, M.D.v.D.; Jones, P.W. Cognitive dysfunction in patients hospitalized with acute exacerbation of COPD. Chest 2013, 144, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Dodd, J.W.; Novotny, P.; Sciurba, F.C.; Benzo, R.P. Executive Function, Survival, and Hospitalization in Chronic Obstructive Pulmonary Disease. A Longitudinal Analysis of the National Emphysema Treatment Trial (NETT). Ann. Am. Thorac. Soc. 2015, 12, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Karamanli, H.; Ilik, F.; Kayhan, F.; Pazarlı, A.C. Assessment of cognitive impairment in long-term oxygen therapy-dependent COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 2087–2094. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, K.; Sedeno, M.; Li, P.-Z.; Troosters, T.; Hamilton, A.; De Sousa, D.; Bourbeau, J. Effects of bronchodilator therapy and exercise with self-management behaviour-modification on psychological and cognitive outcomes in COPD. Eur. Respir. J. 2017, 50, OA4669. [Google Scholar]
- Lavoie, K.L.; Sedeno, M.; Hamilton, A.; Li, P.-Z.; De Sousa, D.; Troosters, T.; Maltais, F.; Bourbeau, J. Behavioural interventions targeting physical activity improve psychocognitive outcomes in COPD. ERJ Open Res. 2019, 5, e00013-02019. [Google Scholar] [CrossRef]
- Hirano, T.; Doi, K.; Matsunaga, K.; Takahashi, S.; Donishi, T.; Suga, K.; Oishi, K.; Yasuda, K.; Mimura, Y.; Harada, M.; et al. A Novel Role of Growth Differentiation Factor (GDF)-15 in Overlap with Sedentary Lifestyle and Cognitive Risk in COPD. J. Clin. Med. 2020, 9, 2737. [Google Scholar] [CrossRef]
- Pierobon, A.; Bottelli, E.S.; Ranzini, L.; Bruschi, C.; Maestri, R.; Bertolotti, G.; Sommaruga, M.; Torlaschi, V.; Callegari, S.; Giardini, A. COPD patients’ self-reported adherence, psychosocial factors and mild cognitive impairment in pulmonary rehabilitation. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 2059–2067. [Google Scholar] [CrossRef] [PubMed]
- Incalzi, R.; Chiappini, F.; Fuso, L.; Torrice, M.; Gemma, A.; Pistelli, R. Predicting cognitive decline in patients with hypoxaemic COPD. Respir. Med. 1998, 92, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Reséndiz-Hernández, J.M.; Falfán-Valencia, R. Genetic polymorphisms and their involvement in the regulation of the inflammatory response in asthma and COPD. Adv. Clin. Exp. Med. 2018, 27, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Christenson, S.A.; Steiling, K.; van den Berge, M.; Hijazi, K.; Hiemstra, P.S.; Postma, D.S.; Lenburg, M.E.; Spira, A.; Woodruff, P.G. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2015, 191, 758–766. [Google Scholar] [CrossRef] [PubMed]
- HHassing, L.B.; Hofer, S.M.; Nilsson, S.E.; Berg, S.; Pedersen, N.L.; McClearn, G.; Johansson, B. Comorbid type 2 diabetes mellitus and hypertension exacerbates cognitive decline: Evidence from a longitudinal study. Age Ageing 2004, 33, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Dag, E.; Bulcun, E.; Turkel, Y.; Ekici, A.; Ekici, M. Factors influencing cognitive function in subjects with COPD. Respir. Care 2016, 61, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Doyle, T.; Palmer, S.; Johnson, J.; Babyak, M.A.; Smith, P.; Mabe, S.; Welty-Wolf, K.; Martinu, T.; Blumenthal, J.A. Association of anxiety and depression with pulmonary-specific symptoms in chronic obstructive pulmonary disease. Int. J. Psychiatry Med. 2013, 45, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Balcells, E.; Gea, J.; Ferrer, J.; Serra, I.; Orozco-Levi, M.; de Batlle, J.; Rodriguez, E.; Benet, M.; Donaire-González, D.; Antó, J.M.; et al. Factors affecting the relationship between psychological status and quality of life in COPD patients. Health Qual. Life Outcomes 2010, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Parreira, V.F.; Kirkwood, R.N.; Towns, M.; Aganon, I.; Barrett, L.; Darling, C.; Lee, M.; Hill, K.; Goldstein, R.S.; Brooks, D. Is there an association between symptoms of anxiety and depression and quality of life in patients with chronic obstructive pulmonary disease? Can. Respir. J. 2015, 22, 37–41. [Google Scholar] [CrossRef]
- Salerno, F.; Carone, M. Anxiety and depression in COPD. Multidiscip. Respir. Med. 2011, 6, 212–213. [Google Scholar] [CrossRef]
- Hill, K.; Geist, R.; Goldstein, R.S.; Lacasse, Y. Anxiety and depression in end-stage COPD. Eur. Respir. J. 2008, 31, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Coventry, P.A.; Bower, P.; Keyworth, C.; Kenning, C.; Knopp, J.; Garrett, C.; Hind, D.; Malpass, A.; Dickens, C. The effect of complex interventions on depression and anxiety in chronic obstructive pulmonary disease: Systematic review and meta-analysis. PLoS ONE 2013, 8, e60532. [Google Scholar] [CrossRef] [PubMed]
- Kew, K.M.; Dias, S.; Cates, C.J. Long-acting inhaled therapy (beta-agonists, anticholinergics and steroids) for COPD: A network meta-analysis. Cochrane Database Syst. Rev. 2014, 2014, CD010844. [Google Scholar] [CrossRef] [PubMed]
- Sohanpal, R.; Pinnock, H.; Steed, L.; Marshall, K.H.; Chan, C.; Kelly, M.; Priebe, S.; Roberts, C.M.; Singh, S.; Smuk, M.; et al. Tailored, psychological intervention for anxiety or depression in people with chronic obstructive pulmonary disease (COPD), TANDEM (Tailored intervention for ANxiety and DEpression Management in COPD): Protocol for a randomised controlled trial. Trials 2020, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Jans, M.P.; Schellevis, F.G.; Le Coq, E.M.; Bezemer, P.D.; van Eijk, J.T. Health outcomes of asthma and COPD patients: The evaluation of a project to implement guidelines in general practice. Int. J. Qual. Health Care 2001, 13, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Witte, J.A.; Birnie, E.; Braunstahl, G.-J.; van den Akker, E.; van Litsenburg, W.J.M.; Chavannes, N.H.; Maureen; Van Mölken, P.M.H.R.; In ‘t Veen, J.C.C.M. Towards a holistic approach of patients with Asthma and COPD: Implementing a diagnostic care pathway. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Terasaki, J.; Singh, G.; Zhang, W.; Wagner, P.; Sharma, G. Using EMR to improve compliance with clinical practice guidelines for management of stable COPD. Respir. Med. 2015, 109, 1423–1429. [Google Scholar] [CrossRef]
- Cui, L.; Liu, H.; Sun, L. Multidisciplinary respiratory rehabilitation in combination with non-invasive positive pressure ventilation in the treatment of elderly patients with severe chronic obstructive pulmonary disease. Pak. J. Med. Sci. 2019, 35, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Wedzicha, J.A.; Bestall, J.C.; Garrod, R.; Garnham, R.; Paul, E.A.; Jones, P.W. Randomized controlled trial of pulmonary rehabilitation in severe chronic obstructive pulmonary disease patients, stratified with the MRC dyspnoea scale. Eur. Respir. J. 1998, 12, 363–369. [Google Scholar] [CrossRef]
- Daynes, E.; Greening, N.J.; Harvey-Dunstan, T.C.; Singh, S.J. High-Frequency Airway Oscillating Device for Respiratory Muscle Training in Subjects With COPD. Respir. Care 2018, 63, 584–590. [Google Scholar] [CrossRef]
- Kruis, A.L.; Smidt, N.; Assendelft, W.J.; Gussekloo, J.; Boland, M.R.; Rutten-van Mölken, M.; Chavannes, N.H. Integrated disease management interventions for patients with chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2013, 9, CD009437. [Google Scholar] [CrossRef] [PubMed]
- Krommydas, G.C.; Gourgoulianis, K.I.; Angelopoulos, N.V.; Kotrotsiou, E.; Raftopoulos, V.; Molyvdas, P.A. Depression and pulmonary function in outpatients with asthma. Respir. Med. 2004, 98, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Güell, R.; Resqueti, V.; Sangenis, M.; Morante, F.; Martorell, B.; Casan, P.; Guyatt, G.H. Impact of pulmonary rehabilitation on psychosocial morbidity in patients with severe COPD. Chest 2006, 129, 899–904, Erratum in Chest 2007, 132, 738. [Google Scholar] [CrossRef]
- Pumar, M.I.; Roll, M.; Fung, P.; Rolls, T.A.; Walsh, J.R.; Bowman, R.V.; Fong, K.M.; Yang, I.A. Cognitive behavioural therapy (CBT) for patients with chronic lung disease and psychological comorbidities undergoing pulmonary rehabilitation. J. Thorac. Dis. 2019, 11 (Suppl. 17), S2238–S2253. [Google Scholar] [CrossRef] [PubMed]
- Basara, L.; Glunčić, T.J.; Samaržija, M. Importance of psychosocial interventions in pulmonary rehabilitation. Eur. Health Psychol. 2017, 19, 1072. [Google Scholar]
- Wen, X.H.; Li, Y.; Han, D.; Sun, L.; Ren, P.X.; Ren, D. The relationship between cognitive function and arterial partial pressure O2 in patients with COPD: A meta-analysis. Medicine 2018, 97, e9599. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.B.; Sun, P.L.; Zhao, A.P.; Gu, J.; Ding, X.; Qi, J.; Sun, X.L.; Hu, G. Chronic asthma results in cognitive dysfunction in immature mice. Exp. Neurol. 2013, 247, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, J.T.; Wang, H.F.; Tan, C.C.; Meng, X.F.; Tan, L. Non-pharmacological interventions for patients with mild cognitive impairment: A meta-analysis of randomized controlled trials of cognition-based and exercise interventions. J. Alzheimer’s Dis. 2014, 42, 663–678. [Google Scholar] [CrossRef]
- Ströhle, A.; Schmidt, D.K.; Schultz, F.; Fricke, N.; Staden, T.; Hellweg, R.; Priller, J.; Rapp, M.A.; Rieckmann, N. Drug and Exercise Treatment of Alzheimer Disease and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis of Effects on Cognition in Randomized Controlled Trials. Am. J. Geriatr. Psychiatry 2015, 23, 1234–1249. [Google Scholar] [CrossRef]
- Yazar, E.E.; Aydin, S.; Gunluoglu, G.; Kamat, S.; Gungen, A.C.; Yildiz, P. Clinical effects of cognitive impairment in patients with chronic obstructive pulmonary disease. Chron. Respir. Dis. 2018, 15, 306–314. [Google Scholar] [CrossRef]
- Antonelli-Incalzi, R.; Corsonello, A.; Trojano, L.; Pedone, C.; Acanfora, D.; Spada, A.; Izzo, O.; Rengo, F. Screening of Cognitive Impairment in Chronic Obstructive Pulmonary Disease. Dement. Geriatr. Cogn. Disord. 2007, 23, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Garbisson, A.; Laraki, Y.; Dubois, T.; André, M.; Rainteau, N.; Capdevielle, D.; Raffard, S. Cognitive Remediation Program for Family Caregivers in Schizophrenia (CIRCUS): Study of the Effectiveness of a Guided AND WEB-BASED Compensatory Cognitive Remediation: A Randomized Pilot Study. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Bahar-Fuchs, A.; Martyr, A.; Goh, A.M.; Sabates, J.; Clare, L. Cognitive training for people with mild to moderate dementia. Cochrane Database Syst. Rev. 2019, 3, CD013069. [Google Scholar] [CrossRef] [PubMed]
- DiMatteo, M.R.; Lepper, H.S.; Croghan, T.W. Depression is a risk factor for noncompliance with medical treatment: Meta-analysis of the effects of anxiety and depression on patient adherence. Arch. Intern. Med. 2000, 160, 2101–2107. [Google Scholar] [CrossRef] [PubMed]
- Yorke, J.; Fleming, S.; Shuldham, C.; Rao, H.; Smith, H.E. Nonpharmacological interventions aimed at modifying health and behavioural outcomes for adults with asthma: A critical review. Clin. Exp. Allergy 2015, 45, 1750–1764. [Google Scholar] [CrossRef] [PubMed]
- Ţîrcă, S.M.; Ciontea, M.S.; Vlad, E.; Mihălţan, F.D. A Clinical Trial of the Relationship Between Anxiety and Lung Function and Respiratory Symptoms in Patients with Asthma, Copd and Copd-Asthma. Assessment of Life Quality. Intern. Med. 2022, 19, 19–42. [Google Scholar] [CrossRef]
- Dodd, J.W.; Hogg, L.; Nolan, J.; Jefford, H.; Grant, A.; Lord, V.M.; Falzon, C.; Garrod, R.; Lee, C.; Polkey, M.I.; et al. The COPD assessment test (CAT): Response to pulmonary rehabilitation. A multicentre, prospective study. Thorax 2011, 66, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Herrero, E.P.; Etxebarria, A.V.; Ojembarrena, A.A.; Salmerón, P.P.; López, J.M.Q.; González, C.E.; Rebollal, M.S.G.; Angulo, J.M.A.; Etxebarria, S.U.; Luengas, I.I.; et al. Influence of the COPD Assessment Test respiratory item score on the decision to hospitalize patients with disease exacerbation in a hospital emergency department. Emergencias 2022, 34, 95–102. [Google Scholar]
- Ayora, A.F.; Macia-Soler, L.; Orts-Cortés, M.I.; Hernández, C.; Seijas-Babot, N. Comparative analysis of the psychometric parameters of two quality-of-life questionnaires, the SGRQ and CAT, in the assessment of patients with COPD exacerbations during hospitalization: A multicenter study. Chron. Respir. Dis. 2018, 15, 374–383. [Google Scholar] [CrossRef]
- Ji, W.; Kwon, H.; Lee, S.; Kim, S.; Hong, J.S.; Park, Y.R.; Kim, H.R.; Lee, J.C.; Jung, E.J.; Kim, D.; et al. Mobile Health Management Platform-Based Pulmonary Rehabilitation for Patients With Non-Small Cell Lung Cancer: Prospective Clinical Trial. JMIR Mhealth Uhealth 2019, 7, e12645. [Google Scholar] [CrossRef]
- Rivas, C.; Abbott, S.; Taylor, S.J.; Clarke, A.; Roberts, C.M.; Stone, R.; Griffiths, C. Collaborative working within UK NHS secondary care and across sectors for COPD and the impact of peer review: Qualitative findings from the UK National COPD Resources and Outcomes Project. Int. J. Integr. Care 2010, 10, e58. [Google Scholar] [CrossRef]
- Nurmatov, U.; Buckingham, S.; Kendall, M.; Murray, S.A.; White, P.; Sheikh, A.; Pinnock, H. Effectiveness of holistic interventions for people with severe chronic obstructive pulmonary disease: Systematic review of controlled clinical trials. PLoS ONE 2012, 7, e46433. [Google Scholar] [CrossRef]
- Tiffin-Richards, F.E.; Costa, A.S.; Holschbach, B.; Frank, R.D.; Vassiliadou, A.; Krüger, T.; Kuckuck, K.; Gross, T.; Eitner, F.; Floege, J.; et al. The Montreal Cognitive Assessment (MoCA)—A sensitive screening instrument for detecting cognitive impairment in chronic hemodialysis patients. PLoS ONE 2014, 9, e106700. [Google Scholar] [CrossRef] [PubMed]
- Dulohery, M.M.; Schroeder, D.R.; Benzo, R.P. Cognitive function and living situation in COPD: Is there a relationship with self-management and quality of life? Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 1883–1889. [Google Scholar] [CrossRef]
- Mowbray, C.T.; Collins, M.E.; Bellamy, C.D.; Megivern, D.A.; Bybee, D.; Szilvagyi, S. Supported education for adults with psychiatric disabilities: An innovation for social work and psychosocial rehabilitation practice. Soc. Work 2005, 50, 7–20. [Google Scholar] [CrossRef]
- Barlow, J.H.; Ellard, D.R. Psycho-educational interventions for children with chronic disease, parents and siblings: An overview of the research evidence base. Child Care Health Dev. 2004, 30, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Oruç, S.; Günay, E.; Aktaş, O.; Akar, O.; Koyuncu, T.; Ünlü, M. Effects of COPD on cognitive functions: A case control study. Tuberk. Toraks 2013, 61, 193–199. [Google Scholar]
- Huang, Y.; Ma, J.; Jiang, B.; Yang, N.; Fu, F.; Chen, X.; Liu, C.; Miao, X.; Mao, H.; Zheng, R.; et al. Effect of nutritional risk on cognitive function in patients with chronic obstructive pulmonary disease. J. Int. Med. Res. 2021, 49, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Troosters, T.; van der Molen, T.; Polkey, M.; Rabinovich, R.A.; Vogiatzis, I.; Weisman, I.; Kulich, K. Improving physical activity in COPD: Towards a new paradigm. Respir. Res. 2013, 14, 115. [Google Scholar] [CrossRef]
- Emery, C.F.; Schein, R.L.; Hauck, E.R.; MacIntyre, N.R. Psychological and cognitive outcomes of a randomized trial of exercise among patients with chronic obstructive pulmonary disease. Health Psychol. 1998, 17, 232–240. [Google Scholar] [CrossRef]
- Xu, Y.; Qi, J.; Yang, Y.; Wen, X. The contribution of lifestyle factors to depressive symptoms: A cross-sectional study in Chinese college students. Psychiatry Res. 2016, 245, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Mata, J.; Hogan, C.L.; Joormann, J.; Waugh, C.E.; Gotlib, I.H. Acute exercise attenuates negative affect following repeated sad mood inductions in persons who have recovered from depression. J. Abnorm. Psychol. 2013, 122, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Thompson, N.J.; Patel, A.H.; Selwa, L.M.; Stoll, S.C.; Begley, C.E.; Johnson, E.K.; Fraser, R.T. Expanding the efficacy of Project UPLIFT: Distance delivery of mindfulness-based depression prevention to people with epilepsy. J. Consult. Clin. Psychol. 2015, 83, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Kuyken, W.; Warren, F.C.; Taylor, R.S.; Whalley, B.; Crane, C.; Bondolfi, G.; Hayes, R.; Huijbers, M.; Ma, H.; Schweizer, S.; et al. Efficacy of Mindfulness-Based Cognitive Therapy in Prevention of Depressive Relapse: An Individual Patient Data Meta-analysis From Randomized Trials. JAMA Psychiatry 2016, 73, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Dowson, C.; Laing, R.; Barraclough, R.; Town, I.; Mulder, R.; Norris, K.; Drennan, C. The use of the Hospital Anxiety and Depression Scale (HADS) in patients with chronic obstructive pulmonary disease: A pilot study. N. Z. Med. J. 2001, 114, 447–449. [Google Scholar] [PubMed]
- Puhan, M.A.; Frey, M.; Büchi, S.; Schünemann, H.J. The minimal important difference of the hospital anxiety and depression scale in patients with chronic obstructive pulmonary disease. Health Qual. Life Outcomes 2008, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Weis, J. Support groups for cancer patients. Support. Care Cancer 2003, 11, 763–768. [Google Scholar] [CrossRef] [PubMed]
- von Mackensen, S.; Gallmann, L.; Siebert, M.; Halimeh, S. Assessment of Haemophilia Patients’ and Other Bleeding Disorders Needs of Psychosocial Support and Health Care Needs and Their Utilization in Haemophilia Treatment Centres (ILLUSTRATE Study). Blood 2023, 142 (Suppl. 1), 5065. [Google Scholar] [CrossRef]
- Michalsen, A.; Grossman, P.; Lehmann, N.; Knoblauch, N.T.; Paul, A.; Moebus, S.; Budde, T.; Dobos, G.J. Psychological and quality-of-life outcomes from a comprehensive stress reduction and lifestyle program in patients with coronary artery disease: Results of a randomized trial. Psychother. Psychosom. 2005, 74, 344–352. [Google Scholar] [CrossRef]
- Viramontes, J.L.; O’Brien, B. Relationship between symptoms and health-related quality of life in chronic lung disease. J. Gen. Intern. Med. 1994, 9, 46–48. [Google Scholar] [CrossRef]
- Mirdamadi, M.; Rahimi, B.; Safavi, E.; Abtahi, H.; Peiman, S. Correlation of cardiopulmonary exercise testing parameters with quality of life in stable COPD patients. J. Thorac. Dis. 2016, 8, 2138–2145. [Google Scholar] [CrossRef] [PubMed]
- Mendes, F.A.; Almeida, F.M.; Cukier, A.; Stelmach, R.; Jacob-Filho, W.; Martins, M.A.; Carvalho, C.R. Effects of aerobic training on airway inflammation in asthmatic patients. Med. Sci. Sports Exerc. 2011, 43, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, P.; Li, N.; Wang, Z.; Li, J.; Liu, X.; Wu, W. Effects of Home-Based Breathing Exercises in Subjects With COPD. Respir. Care 2020, 65, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Sansores, R.H.; Ramírez-Venegas, A.; Hernández-Zenteno, R.; Mayar-Maya, M.E.; Pérez-Bautista, O.G.; Uncal, M.V. Prevalence and diagnosis of chronic obstructive pulmonary disease among smokers at risk. A comparative study of case-finding vs. screening strategies. Respir. Med. 2013, 107, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Cannon, D.; Buys, N.; Sriram, K.B.; Sharma, S.; Morris, N.; Sun, J. The effects of chronic obstructive pulmonary disease self-management interventions on improvement of quality of life in COPD patients: A meta-analysis. Respir. Med. 2016, 121, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Yorke, J.; Deaton, C.; Campbell, M.; McGowen, L.; Sephton, P.; Kiely, D.G.; Armstrong, I. Symptom severity and its effect on health-related quality of life over time in patients with pulmonary hypertension: A multisite longitudinal cohort study. BMJ Open Respir. Res. 2018, 5, e000263. [Google Scholar] [CrossRef]
- Long, G.S.; Hussen, M.; Dench, J.; Aris-Brosou, S. Identifying genetic determinants of complex phenotypes from whole genome sequence data. BMC Genom. 2019, 20, 470. [Google Scholar] [CrossRef]
Objective | Description | Purpose |
---|---|---|
Identification and Description of Patient Clusters | Analyzing and classifying patients into clusters based on cognitive performance, affective state, and severity of respiratory symptoms. | Deepening the understanding of how different patient profiles correlate with the progression of respiratory diseases and their management. |
Assessment of Associations Between Cluster Characteristics | Determining statistical correlations between cognitive, affective, and respiratory disease severity variables within each cluster. | Identifying predictive factors that can influence disease progression and response to treatment, contributing to the personalization of therapeutic interventions. |
Investigation of Clinical and Therapeutic Implications | Analyzing the impact of clustering results on medical practice and proposing changes to intervention strategies. | Improving integrated patient management, optimizing treatment and quality of life through personalized approaches. |
Measurement Tool | Mean ± Standard Deviation | Statistic | p Value Shapiro–Wilk |
---|---|---|---|
MoCA | 23.85 ± 4.434 | 0.8443 | <0.001 * |
MMSE | 23.64 ± 4.291 | 0.8662 | <0.001 * |
HADS-D | 8.39 ± 3.687 | 0.9222 | <0.001 * |
HADS-A | 11.77 ± 6.174 | 0.9445 | <0.001 * |
CATS | 25.54 ± 9.996 | 0.9448 | 0.0014 * |
FEV1 | 54.13 ± 16.157 | 0.9643 | 0.0082 * |
Variable | Variable Type | MRC 1 | MRC 2 | MRC 3 | MRC 4 | Chi-Square | p-Value |
---|---|---|---|---|---|---|---|
MoCA | Normal | 17 (30.91%) | 14 (25.45%) | 16 (29.09%) | 8 (14.55%) | 30.090 | <0.001 * |
Mild | 2 (6.06%) | 5 (15.15%) | 11 (33.33%) | 15 (45.45%) | |||
Moderate | 0 (0.00%) | 4 (40.00%) | 6 (60.00%) | 0 (0.00%) | |||
Severe | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 2 (100.00%) | |||
MMSE | Normal | 17 (29.31%) | 14 (24.14%) | 15 (25.86%) | 12 (20.69%) | 25.299 | 0.003 * |
Mild | 1 (3.57%) | 8 (28.57%) | 8 (28.57%) | 11 (39.29%) | |||
Moderate | 1 (7.69%) | 1 (7.69%) | 10 (76.92%) | 1 (7.69%) | |||
Severe | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 1 (100.00%) | |||
HADS-D | Normal | 15 (42.86%) | 13 (37.14%) | 5 (14.29%) | 2 (5.71%) | 35.322 | <0.001 * |
Mild | 3 (6.25%) | 7 (14.58%) | 22 (45.83%) | 16 (33.33%) | |||
Moderate | 1 (5.88%) | 3 (17.65%) | 6 (35.29%) | 7 (41.18%) | |||
HADS-A | Normal | 13 (50.00%) | 10 (38.46%) | 1 (3.85%) | 2 (7.69%) | 37.165 | <0.0010 * |
Mild | 3 (13.04%) | 3 (13.04%) | 11 (47.83%) | 6 (26.09%) | |||
Moderate | 3 (7.69%) | 7 (17.95%) | 17 (43.59%) | 12 (30.77%) | |||
Severe | 0 (0.00%) | 3 (25.00%) | 4 (33.33%) | 5 (41.67%) |
Variable | Severity | FEV1 Normal | FEV1 Mild | FEV1 Moderate | FEV1 Moderate Severe | FEV1 Severe | FEV1 Very Severe | Chi-Square | p-Value |
---|---|---|---|---|---|---|---|---|---|
MoCA | Normal | 2 (3.64%) | 13 (23.64%) | 11 (20.00%) | 8 (14.55%) | 18 (32.73%) | 3 (5.45%) | 27.652 | 0.024 * |
Mild | 4 (12.12%) | 3 (9.09%) | 1 (3.03%) | 5 (15.15%) | 14 (42.42%) | 6 (18.18%) | |||
Moderate | 1 (10.00%) | 1 (10.00%) | 1 (10.00%) | 5 (50.00%) | 1 (10.00%) | 2 (20.00%) | |||
Severe | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 2 (100.00%) | 0 (0.00%) | |||
MMSE | Normal | 3 (5.17%) | 13 (22.41%) | 10 (17.24%) | 8 (13.79%) | 21 (36.21%) | 3 (5.17%) | 18.244 | 0.25 |
Mild | 3 (10.71%) | 4 (14.29%) | 2 (7.14%) | 5 (17.86%) | 8 (28.57%) | 6 (21.43%) | |||
Moderate | 1 (7.69%) | 0 (0.00%) | 0 (0.00%) | 5 (38.46%) | 5 (38.46%) | 2 (15.38%) | |||
Severe | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 1 (100.00%) | 0 (0.00%) | |||
HADS-D | Normal | 1 (2.86%) | 11 (31.43%) | 7 (20.00%) | 4 (11.43%) | 10 (28.57%) | 2 (5.71%) | 17.561 | 0.063 |
Mild | 3 (6.25%) | 5 (10.42%) | 3 (6.25%) | 10 (20.83%) | 20 (41.67%) | 7 (14.58%) | |||
Moderate | 3 (17.65%) | 1 (5.88%) | 2 (11.76%) | 4 (23.53%) | 5 (29.41%) | 2 (11.76%) | |||
HADS-A | Normal | 1 (3.85%) | 8 (30.77%) | 6 (23.08%) | 2 (7.69%) | 8 (30.77%) | 2 (7.69%) | 28.734 | 0.017 * |
Mild | 3 (13.04%) | 3 (13.04%) | 3 (13.04%) | 4 (17.39%) | 8 (34.78%) | 5 (21.74%) | |||
Moderate | 5 (12.82%) | 5 (12.82%) | 5 (12.82%) | 11 (28.21%) | 14 (35.90%) | 4 (10.26%) | |||
Severe | 2 (16.67%) | 1 (8.33%) | 2 (16.67%) | 1 (8.33%) | 5 (41.67%) | 5 (41.67%) |
Variable | MRC Group | Median (IQR) | Min–Max | Mean ± Standard Deviation | p-Value Kruskal–Wallis Test |
---|---|---|---|---|---|
MoCA | 1 | 27.0 (1.0) | 20–29 | 26.16 ± 2.14 | 0.040 * |
2 | 26.0 (7.0) | 16–29 | 23.91 ± 4.54 | ||
3 | 25.0 (6.0) | 13–29 | 23.36 ± 4.58 | ||
4 | 24.0 (5.0) | 8–28 | 22.68 ± 4.98 | ||
MMSE | 1 | 26.0 (2.0) | 19–29 | 25.63 ± 2.45 | 0.141 |
2 | 26.0 (6.0) | 13–29 | 24.13 ± 3.78 | ||
3 | 24.0 (7.0) | 11–29 | 22.30 ± 5.19 | ||
4 | 23.0 (5.0) | 9–28 | 23.44 ± 4.07 | ||
HADS-D | 1 | 5.0 (3.0) | 3–14 | 5.68 ± 2.65 | <0.001 * |
2 | 6.0 (3.5) | 4–17 | 7.39 ± 3.43 | ||
3 | 9.0 (2.0) | 2–16 | 9.24 ± 3.28 | ||
4 | 9.0 (4.0) | 3–18 | 10.24 ± 3.79 | ||
HADS-A | 1 | 6.0 (3.0) | 2–19 | 7.47 ± 4.49 | <0.001 * |
2 | 10.0 (7.5) | 2–24 | 10.22 ± 6.71 | ||
3 | 14.0 (7.0) | 3–24 | 13.42 ± 5.27 | ||
4 | 13.0 (8.0) | 4–24 | 14.28 ± 6.05 |
Variable | FEV1S Group | Median (IQR) | Min–Max | Mean ± Standard Deviation | p-Value Kruskal–Wallis Test |
---|---|---|---|---|---|
MoCA | Normal | 22.0 (5.0) | 16–28 | 22.57 ± 4.31 | 0.034 * |
Mild | 26.0 (1.0) | 17–29 | 25.24 ± 3.68 | ||
Moderate | 27.0 (2.0) | 20–29 | 26.58 ± 2.27 | ||
Moderate severe | 24.5 (9.5) | 13–28 | 22.39 ± 5.23 | ||
Severe | 26.0 (4.5) | 8–28 | 23.51 ± 4.65 | ||
Very severe | 24.0 (4.0) | 16–28 | 23.00 ± 4.20 | ||
MMSE | Normal | 22.0 (5.0) | 19–28 | 23.00 ± 3.37 | 0.043 * |
Mild | 26.0 (2.0) | 21–29 | 25.35 ± 2.47 | ||
Moderate | 26.0 (0.5) | 21–28 | 25.75 ± 1.86 | ||
Moderate severe | 22.0 (6.75) | 11–29 | 21.78 ± 5.17 | ||
Severe | 26.0 (5.0) | 9–29 | 23.89 ± 4.57 | ||
Very severe | 22.0 (4.0) | 13–27 | 21.36 ± 4.76 | ||
HADS-D | Normal | 8.0 (5.0) | 4–14 | 9.71 ± 3.73 | 0.096 |
Mild | 5.0 (4.0) | 2–17 | 6.47 ± 3.68 | ||
Moderate | 6.5 (4.0) | 4–15 | 7.58 ± 3.55 | ||
Moderate severe | 9.0 (2.0) | 4–16 | 9.33 ± 3.80 | ||
Severe | 8.0 (3.5) | 3–18 | 8.54 ± 3.56 | ||
Very severe | 9.0 (1.5) | 4–17 | 9.36 ± 3.47 | ||
HADS-A | Normal | 16.0 (6.0) | 12–24 | 16.86 ± 4.85 | 0.033 * |
Mild | 8.0 (8.0) | 2–22 | 9.12 ± 5.95 | ||
Moderate | 6.5 (5.75) | 4–24 | 10.42 ± 7.89 | ||
Moderate severe | 13.0 (7.5) | 2–24 | 12.78 ± 5.57 | ||
Severe | 12.0 (7.5) | 3–24 | 12.34 ± 6.06 | ||
Very severe | 9.0 (7.0) | 3–19 | 10.64 ± 4.88 |
Variable | Variable Type | Cluster 0 (n = 50) Mean ± Std. Deviation /Number and % | Cluster 1 (n = 12) Mean ± Std. Deviation /Number and % | Cluster 2 (n = 38) Mean ± Std. Deviation /Number and % |
---|---|---|---|---|
MoCA | Continue | 24.56 ± 2.80 | 14.58 ± 3.02 | 25.84 ± 2.62 |
MMSE | Continue | 24.00 ± 3.50 | 16.50 ± 4.62 | 25.42 ± 2.58 |
HADS-D | Continue | 8.96 ± 2.82 | 12.33 ± 4.52 | 6.39 ± 3.19 |
HADS-A | Continue | 13.08 ± 5.48 | 18.17 ± 4.30 | 8.03 ± 5.16 |
MRC | Categorical (1) | - | - | 19 (50%) |
Categorical (2) | - | 4 (33%) | 2 (50%) | |
Categorical (3) | 27 (54%) | 6 (50%) | - | |
Categorical (4) | 23 (46%) | 2 (16.67%) | - | |
CAT | Continue | 28.84 ± 8.42 | 24.25 ± 13.02 | 21.61 ± 9.58 |
FEV1 | Continue | 50.86 ± 13.98 | 53.42 ± 17.90 | 58.66 ± 17.56 |
Variable | Cluster 0 (Moderate Cognitive Respiratory) | Cluster 1 (Severe Cognitive Respiratory) | Cluster 2 (Stable Cognitive Respiratory) |
---|---|---|---|
MoCA | ≥20 and <26 | <20 | ≥26 |
MMSE | ≥21 and <25 | <21 | ≥25 |
HADS-D | ≥7 and ≤11 | ≥12 | <7 |
HADS-A | ≥9 and ≤16 | ≥17 | <9 |
MRC | 3 or 4 | 3 or 4, but especially 4 | 1 or 2 |
CAT | ≥25 and ≤35 | ≥20 and ≤30 | ≤25 |
FEV1 | ≥40 and ≤60 | ≥50 and ≤65 | ≥55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buican, I.-L.; Gheorman, V.; Udriştoiu, I.; Olteanu, M.; Rădulescu, D.; Calafeteanu, D.M.; Nemeş, A.F.; Călăraşu, C.; Rădulescu, P.-M.; Streba, C.-T. Interactions between Cognitive, Affective, and Respiratory Profiles in Chronic Respiratory Disorders: A Cluster Analysis Approach. Diagnostics 2024, 14, 1153. https://doi.org/10.3390/diagnostics14111153
Buican I-L, Gheorman V, Udriştoiu I, Olteanu M, Rădulescu D, Calafeteanu DM, Nemeş AF, Călăraşu C, Rădulescu P-M, Streba C-T. Interactions between Cognitive, Affective, and Respiratory Profiles in Chronic Respiratory Disorders: A Cluster Analysis Approach. Diagnostics. 2024; 14(11):1153. https://doi.org/10.3390/diagnostics14111153
Chicago/Turabian StyleBuican, Iulian-Laurențiu, Victor Gheorman, Ion Udriştoiu, Mădălina Olteanu, Dumitru Rădulescu, Dan Marian Calafeteanu, Alexandra Floriana Nemeş, Cristina Călăraşu, Patricia-Mihaela Rădulescu, and Costin-Teodor Streba. 2024. "Interactions between Cognitive, Affective, and Respiratory Profiles in Chronic Respiratory Disorders: A Cluster Analysis Approach" Diagnostics 14, no. 11: 1153. https://doi.org/10.3390/diagnostics14111153
APA StyleBuican, I. -L., Gheorman, V., Udriştoiu, I., Olteanu, M., Rădulescu, D., Calafeteanu, D. M., Nemeş, A. F., Călăraşu, C., Rădulescu, P. -M., & Streba, C. -T. (2024). Interactions between Cognitive, Affective, and Respiratory Profiles in Chronic Respiratory Disorders: A Cluster Analysis Approach. Diagnostics, 14(11), 1153. https://doi.org/10.3390/diagnostics14111153