Speckle Tracking Echocardiography in Patients with Non-Ischemic Dilated Cardiomyopathy Who Undergo Cardiac Resynchronization Therapy: A Narrative Review
Abstract
:1. Introduction
2. Speckle Tracking in Non-Iscemic Dilated Cardiomyopathy
2.1. STE and Prediction of CRT Response
2.2. STE and Diastolic Dyssynchrony after CRT
2.3. STE and Right Ventricle
2.4. STE and Mitral Regurgitation after CRT
2.5. 3D-STE
2.6. STE in Optimizing Lead Placement for CRT
2.7. STE in the Assessment of the Left Atrium after CRT
2.8. STE in Cardiac Magnetic Resonance Imaging
Author/Country/Year | Type of Study/Number of Centers | Number of Subjects/Age | Inclusion Criteria | Exclusion Criteria | Definition of Response |
---|---|---|---|---|---|
D’Andrea [37]; Italy; 2007 | Prospective; single center | 90: 47 DCM/43 IDCM; 52.4 ± 10.2 yr | NYHA III–IV; OMT; QRS > 120 ms; LVEF ≤ 35%; LVEDD > 55 mm; SR | Acute HF; severe valve stenosis or valve surgery; MI or CABG < 3 months ago | ≥15% ↓ in LV ESV |
Carasso [24]; Canada; 2009 | Retrospective; single center | 76; 65 ± 4 yr | >18 yr; NYHA class III-IV; OMT; QRS > 130 ms; LVEF ≤ 35% | Acute HF; severe valve disease or valve surgery; constrictive pericarditis; uncorrected CHD; ACS or stroke < 6 weeks ago; CABG < 3 months ago; life expectancy < 1 year; pregnancy | ≥10% ↑ in LVEF or ≥15% ↓ in LV ESV |
D’Andrea [31]; Italy; 2009 | Retrospective; single center | 110: 60 DCM/50 IDCM; 55.4 ± 11.2 yr | NYHA III–IV; OMT; QRS > 120 ms; LVEF ≤ 35%; LVEDD > 55 mm; SR | Acute HF; right heart HF; ascites; severe valve disease or valve surgery; MI or CABG < 3 months ago; pulmonary embolism; chronic cor pulmonale | ≥15% ↓ in LV ESV |
Mele [26]; Italy; 2009 | Prospective; Multicenter | 60 DCM; 68 ± 7 yr | >18 yr; NYHA class III–IV; OMT; QRS > 120 ms; LVEF ≤ 35%; SR | Acute HF; severe valve disease or valve surgery; constrictive pericarditis; uncorrected CHD; ACS or stroke < 6 weeks ago; CABG < 3 months ago; life expectancy < 1 year; pregnancy | 20% ↑ in LVEF or ≥15% ↓ in LVESV |
Phillips [25]; USA; 2009 | Retrospective; single center | 100: 47 DCM (57 ± 1 yr)/53 IDCM (69 ± 1 yr) | NYHA III–IV; OMT; QRS > 120 ms; LVEF ≤ 35% | n/a | ≥15% ↓ in LVESV |
Matsumoto [33]; Japan; 2011 | Retrospective; n/a | 84: 40 controls (70 ± 9 yr)/44 DCM (70 ± 7 yr) | NYHA III–IV; OMT; QRS > 130 ms; LVEF ≤ 35%; moderate-severe MR | CAD; other causes of cardiomyopathy; morphologic abnormalities of the MV | ≥15% ↓ in LVESV |
Vitarelli [32]; Italy; 2011 | Prospective; single center | 81; responders (65 ± 13 yr): 29 IDCM/21 DCM/non-responders: (63 ± 16 yr) 21 IDCM/10 DCM | NYHA III–IV; OMT; LBBB; QRS ≥ 120 ms; LVEF ≤ 35% | myocardial infarction (<3 months); extensive ventricular scars (>4 segments); no OMT; AF | ≥15% ↓ in LVESV |
Kang [34]; China; 2012 | Prospective; single center | 107: 55 controls (59.3 ± 12.5 yr)/52 DCM (62.2 ± 13.1 yr) | NYHA III or IV; EF ≤ 35%; QRS ≥ 120 ms, on OMT. | AF; valvular heart disease or CHD; CAD | ↑ SDI |
Sipula [27]; Czech Republic; 2019 | Prospective; single-center | 60: 31 IDCM, 29 DCM; 68.5 (31–85) yr | NYHA III/IV, OMT, LVEF < 30%, QRS > 130 ms | n/a | NYHA improvement ≥1 category |
Cimino [28]; Italy; 2019 | Prospective; single-center | 24; 71 ± 11 yr | QRS > 130 ms; OMT; NYHA III or IV; EF ≤ 35% | previous pacemaker implantation; AF & significant valvular disease | >10% ↓ in LVESV |
Pescariu [29]; Romania; 2021 | Prospective; single-center | 44: 17 IDCM, 31 DCM; 64 (53–70) yr | Symptoms despite OMT; LBBB; NYHA II–IV; LVEF ≤ 35% | n/a | CRT parameters: sensing & pacing |
Gurgu [30]; Romania; 2023 | Prospective; n/a | 62; 62 ± 11 yr | NYHA III–IV; OMT; QRS > 130 ms, LBBB, preserved atrioventricular conduction. | ACS or CAD, other causes of cardiomyopathy, AF, severe comorbidities, noncardiac health conditions that limit physical activity. | >5% ↑ in LVEF & 15% ↓ in LVES/LVDV, ↓ MV grade; ↑ NYHA; ↓ hospitalizations/mortality |
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seferovic, P.M.; Polovina, M.; Bauersachs, J.; Arad, M.; Gal, T.B.; Lund, L.H. Heart failure in cardiomyopathies: A position paper from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2019, 21, 553–576. [Google Scholar] [CrossRef]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar]
- Pinto, Y.M.; Elliott, P.M.; Arbustini, E.; Adler, Y.; Anastasakis, A.; Böhm, M.; Duboc, D.; Gimeno, J.; de Groote, P.; Imazio, M.; et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: A position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 2016, 37, 1850–1858. [Google Scholar] [CrossRef]
- Pecini, R.; Møller, D.V.; Torp-Pedersen, C.; Hassager, C.; Køber, L. Heart failure etiology impacts survival of patients with heart failure. Int. J. Cardiol. 2011, 149, 211–215. [Google Scholar] [CrossRef]
- Schwinger, R.H.G. Pathophysiology of heart failure. Cardiovasc. Diagn. Ther. 2021, 11, 263–276. [Google Scholar] [CrossRef]
- Ziaeian, B.; Fonarow, G. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef]
- Manca, P.; Nuzzi, V.; Cannatà, A.; Merlo, M.; Sinagra, G. Contemporary etiology and prognosis of dilated non-ischemic cardiomyopathy. Minerva Cardiol. Angiol. 2022, 70, 171–188. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Gillinov, A.M. Updated guidelines for device-based therapy of cardiac rhythm abnormalities. J. Thorac. Cardiovasc. Surg. 2012, 144, 1285. [Google Scholar] [CrossRef]
- Fudim, M.; Dalgaard, F.; Fathallah, M.; Iskandrian, A.E.; Borges-Neto, S. Mechanical dyssynchrony: How do we measure it, what it means, and what we can do about it. J. Nucl. Cardiol. 2021, 28, 2174–2184. [Google Scholar] [CrossRef]
- Khidir, M.J.; Delgado, V.; Ajmone Marsan, N.; Bax, J.J. Mechanical dyssynchrony in patients with heart failure and reduced ejection fraction: How to measure? Curr. Opin. Cardiol. 2016, 31, 523–530. [Google Scholar] [CrossRef]
- Chung, E.S.; Leon, A.R.; Tavazzi, L.; Sun, J.-P.; Nihoyannopoulos, P.; Merlino, J.; Abraham, W.T.; Ghio, S.; Leclercq, C.; Bax, J.J.; et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation 2008, 117, 2608–2616. [Google Scholar] [CrossRef]
- Linde, C.; Abraham, W.T.; Gold, M.R.; St John Sutton, M.; Ghio, S.; Daubert, C.; REVERSE (REsynchronization reVErses Remodeling in Systolic left vEntricular dysfunction) Study Group. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J. Am. Coll. Cardiol. 2008, 52, 1834–1843. [Google Scholar] [CrossRef]
- Moss, A.J.; Hall, W.J.; Cannom, D.S.; Klein, H.; Brown, M.W.; Daubert, J.P.; Estes, N.A.; Foster, E.; Greenberg, H.; Higgins, S.L.; et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 2009, 361, 1329–1338. [Google Scholar] [CrossRef]
- Tang, A.S.; Wells, G.A.; Talajic, M.; Arnold, M.O.; Sheldon, R.; Connolly, S.; Hohnloser, S.H.; Nichol, G.; Birnie, D.H.; Sapp, J.L.; et al. Cardiac resynchronization therapy for mild-to-moderate heart failure. N. Engl. J. Med. 2010, 363, 2385–2395. [Google Scholar] [CrossRef]
- Daubert, C.; Behar, N.; Martins, R.P.; Mabo, P.; Leclercq, C. Avoiding non-responders to cardiac resynchronization therapy: A practical guide. Eur. Heart J. 2017, 38, 1463–1472. [Google Scholar] [CrossRef]
- Prinzen, F.W.; Vernooy, K.; Auricchio, A. Cardiac resynchronization therapy: State-of-the-art of current applications, guidelines, ongoing trials, and areas of controversy. Circulation 2013, 128, 2407–2418. [Google Scholar] [CrossRef]
- Trivedi, S.J.; Altman, M.; Stanton, T.; Thomas, L. Echocardiographic Strain in Clinical Practice. Heart Lung Circ. 2019, 28, 1320–1330. [Google Scholar] [CrossRef]
- Amzulescu, M.S.; De Craene, M.; Langet, H.; Pasquet, A.; Vancraeynest, D.; Pouleur, A.C.; Vanoverschelde, J.L.; Gerber, B.L. Myocardial strain imaging: Review of general principles, validation, and sources of discrepancies. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 605–619. [Google Scholar] [CrossRef]
- Luis, S.A.; Chan, J.; Pellikka, P.A. Echocardiographic Assessment of Left Ventricular Systolic Function: An Overview of Contemporary Techniques, Including Speckle-Tracking Echocardiography. Mayo Clin. Proc. 2019, 94, 125–138. [Google Scholar] [CrossRef]
- Brady, B.; King, G.; Murphy, R.T.; Walsh, D. Myocardial strain: A clinical review. Ir. J. Med. Sci. 2023, 192, 1649–1656. [Google Scholar] [CrossRef]
- Muraru, D.; Niero, A.; Rodriguez-Zanella, H.; Cherata, D.; Badano, L. Three-dimensional speckle-tracking echocardiography: Benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc. Diagn. Ther. 2018, 8, 101–117. [Google Scholar] [CrossRef]
- Xu, T.Y.; Sun, J.P.; Lee, A.P.; Yang, X.S.; Qiao, Z.; Luo, X.; Fang, F.; Li, Y.; Yu, C.M.; Wang, J.G. Three-dimensional speckle strain echocardiography is more accurate and efficient than 2D strain in the evaluation of left ventricular function. Int. J. Cardiol. 2014, 176, 360–366. [Google Scholar] [CrossRef]
- Carasso, S.; Rakowski, H.; Witte, K.K.; Smith, P.; Carasso, D.; Garceau, P.; Sasson, Z.; Parker, J.D. Left ventricular strain patterns in dilated cardiomyopathy predict response to cardiac resynchronization therapy: Timing is not everything. J. Am. Soc. Echocardiogr. 2009, 22, 242–250. [Google Scholar] [CrossRef]
- Phillips, K.P.; Popović, Z.B.; Lim, P.; Meulet, J.E.; Barrett, C.D.; Di Biase, L.; Agler, D.; Thomas, J.D.; Grimm, R.A. Opposing wall mechanics are significantly influenced by longitudinal cardiac rotation in the assessment of ventricular dyssynchrony. JACC Cardiovasc. Imaging 2009, 2, 379–386. [Google Scholar] [CrossRef]
- Mele, D.; Toselli, T.; Capasso, F.; Stabile, G.; Piacenti, M.; Piepoli, M.; Giatti, S.; Klersy, C.; Sallusti, L.; Ferrari, R. Comparison of myocardial deformation and velocity dyssynchrony for identification of responders to cardiac resynchronization therapy. Eur. J. Heart Fail. 2009, 11, 391–399. [Google Scholar] [CrossRef]
- Sipula, D.; Kozak, M.; Sipula, J.; Homza, M.; Plasek, J.; Furst, T.M. Optimization of cardiac resynchronization therapy based on speckle tracking. Bratisl. Lek. Listy 2019, 120, 552–557. [Google Scholar] [CrossRef]
- Cimino, S.; Maestrini, V.; Cantisani, D.; Petronilli, V.; Filomena, D.; Gatto, M.C.; Birtolo, L.I.; Piro, A.; Lavalle, C.; Agati, L. 2D/3D Echocardiographic features of patients with reverse remodeling after cardiac resynchronization therapy. Echocardiography 2019, 36, 1475–1481. [Google Scholar] [CrossRef]
- Pescariu, S.A.; Şoşdean, R.; Tudoran, C.; Ionac, A.; Pop, G.N.; Timar, R.Z.; Pescariu, S.; Tudoran, M. Echocardiographic Parameters as Predictors for the Efficiency of Resynchronization Therapy in Patients with Dilated Cardiomyopathy and HFrEF. Diagnostics 2021, 12, 35. [Google Scholar] [CrossRef]
- Gurgu, A.; Luca, C.T.; Vacarescu, C.; Petrescu, L.; Goanta, E.V.; Lazar, M.A.; Arnăutu, D.A.; Cozma, D. Considering Diastolic Dyssynchrony as a Predictor of Favorable Response in LV-Only Fusion Pacing Cardiac Resynchronization Therapy. Diagnostics 2023, 13, 1186. [Google Scholar] [CrossRef]
- D’Andrea, A.; Salerno, G.; Scarafile, R.; Riegler, L.; Gravino, R.; Castaldo, F.; Cocchia, R.; Limongelli, G.; Romano, M.; Calabrò, P.; et al. Right ventricular myocardial function in patients with either idiopathic or ischemic dilated cardiomyopathy without clinical sign of right heart failure: Effects of cardiac resynchronization therapy. Pacing Clin. Electrophysiol. 2009, 32, 1017–1029. [Google Scholar] [CrossRef]
- Vitarelli, A.; Franciosa, P.; Nguyen, B.L.; Capotosto, L.; Ciccaglioni, A.; Conde, Y.; Iorio, G.; De Curtis, G.; Caranci, F.; Vitarelli, M.; et al. Additive value of right ventricular dyssynchrony indexes in predicting the success of cardiac resynchronization therapy: A speckle-tracking imaging study. J. Card. Fail. 2011, 17, 392–402. [Google Scholar] [CrossRef]
- Matsumoto, K.; Tanaka, H.; Okajima, K.; Hayashi, T.; Kajiya, T.; Kawai, H.; Hirata, K. Relation between left ventricular morphology and reduction in functional mitral regurgitation by cardiac resynchronization therapy in patients with idiopathic dilated cardiomyopathy. Am. J. Cardiol. 2011, 108, 1327–1334. [Google Scholar] [CrossRef]
- Kang, Y.; Sun, M.M.; Cui, J.; Chen, H.Y.; Su, Y.G.; Pan, C.Z.; Shu, X.H. Three-dimensional speckle tracking echocardiography for the assessment of left ventricular function and mechanical dyssynchrony. Acta Cardiol. 2012, 67, 423–430. [Google Scholar] [CrossRef]
- Khan, F.Z.; Virdee, M.S.; Palmer, C.R.; Pugh, P.J.; O’Halloran, D.; Elsik, M.; Read, P.A.; Begley, D.; Fynn, S.P.; Dutka, D.P. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: The TARGET study: A randomized, controlled trial. J. Am. Coll. Cardiol. 2012, 59, 1509–1518. [Google Scholar] [CrossRef]
- Saba, S.; Marek, J.; Schwartzman, D.; Jain, S.; Adelstein, E.; White, P.; Oyenuga, O.A.; Onishi, T.; Soman, P.; Gorcsan, J., 3rd. Echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy: Results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region trial. Circ. Heart Fail. 2013, 6, 427–434. [Google Scholar] [CrossRef]
- D’Andrea, A.; Caso, P.; Romano, S.; Scarafile, R.; Riegler, L.; Salerno, G.; Limongelli, G.; Di Salvo, G.; Calabrò, P.; Del Viscovo, L.; et al. Different effects of cardiac resynchronization therapy on left atrial function in patients with either idiopathic or ischaemic dilated cardiomyopathy: A two-dimensional speckle strain study. Eur. Heart J. 2007, 28, 2738–2748. [Google Scholar] [CrossRef]
- Balmforth, C.; Simpson, J.; Shen, L.; Jhund, P.S.; Lefkowitz, M.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.; Solomon, S.D.; Swedberg, K.; et al. Outcomes and effect of treatment according to etiology in HFrEF: An analysis of PARADIGM-HF. JACC Heart Fail. 2019, 7, 457–465. [Google Scholar] [CrossRef]
- Merlo, M.; Cannatà, A.; Pio Loco, C.; Stolfo, D.; Barbati, G.; Artico, J.; Gentile, P.; De Paris, V.; Ramani, F.; Zecchin, M.; et al. Contemporary survival trends and aetiological characterization in non-ischaemic dilated cardiomyopathy. Eur. J. Heart Fail. 2020, 22, 1111–1121. [Google Scholar] [CrossRef]
- Merlo, M.; Cannatà, A.; Gobbo, M.; Stolfo, D.; Elliott, P.M.; Sinagra, G. Evolving concepts in dilated cardiomyopathy. Eur. J. Heart Fail. 2018, 20, 228–239. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.M.; Stainback, R.F.; Bailey, S.R.; Epstein, A.E.; Heidenreich, P.A.; Jessup, M.; Kapa, S.; Kremers, M.S.; Lindsay, B.D.; Stevenson, L.W. ACCF/HRS/AHA/ASE/HFSA/SCAI/SCCT/SCMR 2013 appropriate use criteria for implantable cardioverter–defibrillators and cardiac resynchronization therapy: A report of the American College of Cardiology Foundation appropriate use criteria task force, Heart Rhythm Society, American Heart Association, American Society of Echocardiography, Heart Failure Society of America, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J. Am. Coll. Cardiol. 2013, 61, 1318–1368. [Google Scholar] [PubMed]
- Chinitz, J.S.; d’Avila, A.; Goldman, M.; Reddy, V.; Dukkipati, S. Cardiac resynchronization therapy: Who benefits? Ann. Glob. Health 2014, 80, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. Lancet Digit. Health 2019, 1, e271–e297. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Nazar, W.; Szymanowicz, S.; Nazar, K.; Kaufmann, D.; Wabich, E.; Braun-Dullaeus, R.; Daniłowicz-Szymanowicz, L. Artificial intelligence models in prediction of response to cardiac resynchronization therapy: A systematic review. Heart Fail. Rev. 2024, 29, 133–150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoniou, N.; Kalaitzoglou, M.; Tsigkriki, L.; Baroutidou, A.; Tsaousidis, A.; Koulaouzidis, G.; Giannakoulas, G.; Charisopoulou, D. Speckle Tracking Echocardiography in Patients with Non-Ischemic Dilated Cardiomyopathy Who Undergo Cardiac Resynchronization Therapy: A Narrative Review. Diagnostics 2024, 14, 1178. https://doi.org/10.3390/diagnostics14111178
Antoniou N, Kalaitzoglou M, Tsigkriki L, Baroutidou A, Tsaousidis A, Koulaouzidis G, Giannakoulas G, Charisopoulou D. Speckle Tracking Echocardiography in Patients with Non-Ischemic Dilated Cardiomyopathy Who Undergo Cardiac Resynchronization Therapy: A Narrative Review. Diagnostics. 2024; 14(11):1178. https://doi.org/10.3390/diagnostics14111178
Chicago/Turabian StyleAntoniou, Nikolaos, Maria Kalaitzoglou, Lamprini Tsigkriki, Amalia Baroutidou, Adam Tsaousidis, George Koulaouzidis, George Giannakoulas, and Dafni Charisopoulou. 2024. "Speckle Tracking Echocardiography in Patients with Non-Ischemic Dilated Cardiomyopathy Who Undergo Cardiac Resynchronization Therapy: A Narrative Review" Diagnostics 14, no. 11: 1178. https://doi.org/10.3390/diagnostics14111178
APA StyleAntoniou, N., Kalaitzoglou, M., Tsigkriki, L., Baroutidou, A., Tsaousidis, A., Koulaouzidis, G., Giannakoulas, G., & Charisopoulou, D. (2024). Speckle Tracking Echocardiography in Patients with Non-Ischemic Dilated Cardiomyopathy Who Undergo Cardiac Resynchronization Therapy: A Narrative Review. Diagnostics, 14(11), 1178. https://doi.org/10.3390/diagnostics14111178